
Available on CMS information server CMS CR -2018/272

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
12 October 2018 (v4, 09 January 2020)

A scalable online monitoring system based on
Elasticsearch for distributed data acquisition in

CMS

Dainius Simelevicius for the CMS Collaboration

Abstract

The part of the CMS data acquisition (DAQ) system responsible for data readout and event building is
a complex network of interdependent distributed applications. To ensure successful data taking, these
programs have to be constantly monitored in order to facilitate the timeliness of necessary corrections
in case of any deviation from specified behaviour. A large number of diverse monitoring data samples
are periodically collected from multiple sources across the network. Monitoring data are kept in
memory for online operations and optionally stored on disk for post-mortem analysis. We present
a generic, reusable solution based on an open source NoSQL database, Elasticsearch, which is fully
compatible and non-intrusive with respect to the existing system. The motivation is to benefit from
an off-the-shelf software to facilitate the development, maintenance and support efforts. Elasticsearch
provides failover and data redundancy capabilities as well as a programming language independent
JSON-over-HTTP interface. The possibility of horizontal scaling matches the requirements of a DAQ
monitoring system. The data load from all sources is balanced by redistribution over an Elasticsearch
cluster that can be hosted on a computer cloud. In order to achieve the necessary robustness and to
validate the scalability of the approach the above monitoring solution currently runs in parallel with
an existing in-house developed DAQ monitoring system.

Presented at CHEP 2018 Computing in High-Energy Physics 2018

A Scalable Online Monitoring System Based on
Elasticsearch for Distributed Data Acquisition in
CMS

Jean-Marc Andre5, Ulf Behrens1, James Branson4, Philipp Brummer2,10, Olivier Chaze2,

Sergio Cittolin4, Diego Da Silva Gomes2, Georgiana-Lavinia Darlea6, Christian Deldicque2,

Zeynep Demiragli6, Marc Dobson2, Nicolas Doualot5, Samim Erhan3, Jonathan Richard

Fulcher2, Dominique Gigi2, Maciej Gladki2, Frank Glege2, Guillelmo Gomez-Ceballos6,

Jeroen Hegeman2, Andre Holzner4, Mindaugas Janulis2,9, Michael Lettrich2, Audrius

Mecionis5,9, Frans Meijers2, Emilio Meschi2, Remigius K. Mommsen5, Srecko Morovic5,

Vivian O'Dell5, Luciano Orsini2, Ioannis Papakrivopoulos7, Christoph Paus6, Petia Petrova2,

Andrea Petrucci8, Marco Pieri4, Dinyar Rabady2, Attila Racz2, Valdas Rapsevicius5,9,

Thomas Reis2, Hannes Sakulin2, Christoph Schwick2, Dainius Simelevicius2,9,*, Mantas

Stankevicius5,9, Cristina Vazquez Velez2, Michail Vougioukas2, Christian Wernet2, and Petr

Zejdl2,5

1DESY, Hamburg, Germany
2CERN, Geneva, Switzerland
3University of California, Los Angeles, Los Angeles, California, USA
4University of California, San Diego, San Diego, California, USA
5FNAL, Batavia, Illinois, USA
6Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
7Technical University of Athens, Athens, Greece
8Rice University, Houston, Texas, USA
9Vilnius University, Vilnius, Lithuania
10Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. The part of the CMS Data Acquisition (DAQ) system responsible

for data readout and event building is a complex network of interdependent

distributed applications. To ensure successful data taking, these programs

have to be constantly monitored in order to facilitate the timeliness of

necessary corrections in case of any deviation from specified behaviour. A

large number of diverse monitoring data samples are periodically collected

from multiple sources across the network. Monitoring data are kept in

memory for online operations and optionally stored on disk for post-mortem

analysis. We present a generic, reusable solution based on an open source

NoSQL database, Elasticsearch, which is fully compatible and non-intrusive

with respect to the existing system. The motivation is to benefit from an off-

the-shelf software to facilitate the development, maintenance and support

efforts. Elasticsearch provides failover and data redundancy capabilities as

well as a programming language independent JSON-over-HTTP interface.

The possibility of horizontal scaling matches the requirements of a DAQ

monitoring system. The data load from all sources is balanced by

* Corresponding author: dainius.simelevicius@cern.ch

mailto:dainius.simelevicius@cern.ch

redistribution over an Elasticsearch cluster that can be hosted on a computer

cloud. In order to achieve the necessary robustness and to validate the

scalability of the approach the above monitoring solution currently runs in

parallel with an existing in-house developed DAQ monitoring system.

1 Introduction

The Compact Muon Solenoid (CMS) [1] is a general-purpose particle detector at the Large

Hadron Collider (LHC) [2] at CERN in Geneva, Switzerland. The CMS Data Acquisition

(DAQ) system [3] is responsible for building and filtering of events from about 600 data

sources at a maximum trigger rate of 100 kHz. The monitoring system has to provide the

facilities to retrieve, process, store, and display monitoring data during the operation of the

CMS experiment. The DAQ is composed of a few hundred hosts [4] and of O(1000)

interdependent applications that need to be monitored in near real-time. In addition to all

requirements, scalability is a major factor that affects all aspects of the system design.

The main purpose of the CMS monitoring system is to collect all necessary data values

from all distributed DAQ applications and make them available for further use to diagnose

deviation from nominal system behaviour. The data are made available for both online and

post-mortem analysis. The approach proposed in this paper fits these needs by providing a

scalable solution based on Elasticsearch technology [5]. Another Elasticsearch based system

is used for the High-Level-Trigger (HLT) part of the DAQ system monitoring, which also

benefits from this off-the-shelf solution facilitating data storing and load balancing [6].

2 Architecture and Design

The CMS DAQ system is a large distributed system based on XDAQ middleware [7-9]. In

this context multiple intercommunicating processes in a computer network are running

diverse applications, like sub-detector electronics controllers, frontend readout and event

builder to accomplish the DAQ task.
The current monitoring system is based on CMS in-house protocols and components

following a scalable publisher/subscriber with message broker topology [10-11]. In this

approach each process, besides DAQ functionality, includes a dedicated monitoring

application, namely, sensor that retrieves all the required monitoring information and

publishes to a distributed message broker. Collector and data access applications subscribe

to the message broker to receive information for collection and, optionally, storage in Oracle

database. Retrieved data are then made available to monitoring clients for presentation and

analysis to end-users. All the monitoring data are treated using a uniform table-based data

format throughout the whole processing chain. Table definitions enumerating all data items

from DAQ applications are called flashlists and are specified in XML files. Specifications of

flashlists reliably identify the content with additional information including timestamp,

version and identification fields (see Figure 1). Flashlist format is well suited to define both

simple and complex data types, e.g. structures and arrays. The sensor can process different

flashlist types and send retrieved monitoring data tables in binary format to the message

broker.

2.1 The Elasticsearch Approach

The new approach proposed in this paper benefits from the advantages of using an off-the-

shelf technology to define, report, collect, store and conveniently access monitoring data and

is a potential replacement to the publisher/subscriber with message broker solution described

above. In this respect Elasticsearch offers the necessary capabilities and functionalities.

Definition of monitoring data is implemented with index mapping types. Reporting and

collection of data correspond to insertion of documents into indices, whereas data access is

achieved with efficient search operation. A standard uniform protocol based on JSON-over-

HTTP is used for all Elasticsearch operations, which is suitable for CMS DAQ monitoring

system. In addition, Elasticsearch provides required scalability, fault tolerance and data

redundancy capabilities to ensure higher reliability.

Figure 1. An excerpt from an example flashlist defining different data fields from CMS

ferolInputStream XDAQ application.

The integration of Elasticsearch in the existing framework is implemented by a pluggable

application called timestream that runs in parallel with the existing sensor application. It

retrieves the required local monitoring variables and injects the data into an Elasticsearch

cluster using document index operations. In this approach we are able to replace existing in-

house components like message broker, collector, data access and store services with

Elasticsearch (see Figure 2).

Figure 2. Monitoring data are injected into Elasticsearch cluster from multiple data sources. The data

are retrieved directly from Elasticsearch cluster by multiple monitoring clients.

Three types of operations are performed within the monitoring system according to three

different roles: data producer, data consumer and data administrator. Operations are executed

independently without the need of a central point of coordination. Data producer role is

<?xml version='1.0'?>

<xmas:flash xmlns:xmas="http://xdaq.web.cern.ch/xdaq/xsd/2006/xmas-10" id="urn:xdaq-

flashlist:ferolInputStream" version="1.0" key ="context,lid,slotNumber,streamNumber">

 <xmas:item name="context" … type="string"/>

 <xmas:item name="timestamp … type="time"/>

 <xmas:item name="lid" … type="string"/>

 <xmas:item name="slotNumber" … type="unsigned int 32"/>

 <xmas:item name="streamNumber" … type="unsigned int 32"/>

 …

 <xmas:item name="EventCounter" … type="unsigned int 64"/>

 <xmas:item name="TriggerNumber" … type="unsigned int 32"/>

 <xmas:item name="BX" … type="unsigned int 32"/>

 <xmas:item name="SLinkCRCError" … type="unsigned int 64"/>

</xmas:flash>

played by the timestream application, which creates settings and data. Data consumer can be

any monitoring client that performs data retrieval. Data administrator is a script that runs

periodically within each node of the Elasticsearch cluster and performs maintenance of

indices.

The timestream application converts monitoring data variables within the framework into

JSON formatted documents that are subsequently injected into Elasticsearch cluster using

HTTP protocol. The process consists of three steps: (1) creation of an index template with a

mapping for every flashlist, (2) creation of an associated index per predefined time interval,

and (3) an actual document insertion into the current associated index. Time-based indices

are used in order to allow a document removal by means of a removal of a whole index as

opposed to a removal of single documents.

Templates are created only once for each flashlist. They contain information about data

mapping as well as general index properties. This way each index is subsequently created

based on the information provided in the template.

The timestream automatically creates a new index upon start of a new interval of time.

This process results in a sequence of independent indices along the time. The total available

data span over all created indices (see Figure 3). Time intervals can be individually

configured for each flashlist. The amount of data inserted into each index depends on the data

insertion rate and the number of sources within the system.

Figure 3. Multiple time-based indices are created dynamically by the timestream application according

to a predefined time interval.

For each input document an index name is generated according to the following naming

convention:

<zone>-<type>_<start time>_<time interval>

where

• start time is the beginning of the interval calculated according to the following formula:

start time = current time - (current time % time interval);

• time interval is a duration of an index as defined by a configuration (both start time and

time interval values are based on ISO 8601 format [12]);

• type is a flashlist name;

• zone allows a multi-tenant approach to cope with monitoring sources that belong to

different systems. This is an example of an index name:

cdaq-ferolinputstream_2018-10-08t01:05:00z_p1dt7h5m

Upon creation of an index data can be inserted. In addition to user data, each document

must include the following fields containing timing information: creation time,

expiration time and withdraw time as defined by the following expressions:

creation time = current time

expiration time = current time + time to live

withdraw time = current time + flash interval

where

• creation time is the time when a document was created;

• expiration time is the time when a document expires;

• time to live is the document lifespan;

• withdraw time is the time when a document becomes too old for instant monitoring;

• flash interval is the interval within which a document is searchable for instant

monitoring.

The time interval, time to live and flash interval are defined within the configuration file. If

the data is not renewed by the data source within the flash interval it means that instant

monitoring data is missing.

Data consumers retrieve monitoring data by performing search operations provided by

the Elasticsearch API. Since the data are distributed over several indices the search can be

performed by using aliases associating a set of required indices. Two aliases are used to refer

to different groups of indices (see Figure 4).

One alias refers to all created indices for a particular flashlist. The second one refers to

the last two created indices and is used to access the very latest data for efficient instant

monitoring. Aliases are automatically created through the template mechanism provided by

Elasticsearch upon index creation.

Figure 4. Usage of time-based indices and aliases.

Instant monitoring is used in CMS to retrieve the last monitoring updates from a set of

independent DAQ applications. For example, all the counters from all readout units

participating in the event building. For this purpose, the last updates aliases can be used to

limit the search to a smaller number of indices. Further data reduction from the result of the

search operation can be obtained by applying a filter according to the withdraw time. For

search operations over all indices the full history alias is used with filtering according to the

expiration time.

Indices and aliases for a given flashlist need to be maintained according to the

configuration. Aliases of instant monitoring pointing to obsolete indices need to be deleted

and indices containing expired documents have to be removed. For this purpose, a separate

facility called data administrator, running on each node of the Elasticsearch cluster is used.

Documents are permanently deleted according to their expiration time. However, in

Elasticsearch technology, data removal by means of deletion of a full index is more efficient

as compared to the removal of individual documents [5]. Therefore, deletion of expired

documents is always achieved by the deletion of an index as a whole with negligible impact

on the performance. As a consequence, expired documents are not deleted immediately but

only when every document in an index is expired. Typical time to live spans from 3 days up

to 2 years. The deletion of an index is executed according to the following rule:

start time + time interval + time to live < current time

To support efficient data retrieval the aliases pointing to latest indices in the sequence

must be maintained. The data administrator script is performing this task by periodically

removing aliases to all but the last two indices in the creation sequence (see Figure 4).

Every actor in the system: timestream and data administrator work independently within

the system. The consistency of the data is ensured by the following general constraints:

1. The flash interval must be configured long enough to contain the data from all the

data sources.

2. Flash interval should be shorter or equal to time to live to prevent the loss of current

data entries (flash interval <= time to live).

3. The most recent entries needed for instant monitoring must always fit in the last

two indices created (flash interval <= time interval).

2.2 Performance Management

In order to achieve the required performance, four different issues need to be addressed: (1)

the distribution of the input load from all data sources; (2) the expensive Elasticsearch

operation of index creation; (3) the specific Elasticsearch internal settings and tuning; (4) the

usage of Elasticsearch bulk operations whenever possible.

A large number of sources need to inject monitoring data into several Elasticsearch nodes

in parallel. In order to achieve the right balance, every node should have an equal number of

network connections. This is achieved by using a DNS round robin scheme where every

timestream application that wants to connect to the Elasticsearch cluster is dynamically

assigned an IP address of one of the nodes in the cluster. The same approach is used by all

monitoring clients that need to retrieve data from the Elasticsearch cluster.

The timestream repeatedly creates indices according to the timing configuration for each

flashlist. When creating indices, the status of the Elasticsearch health (green, yellow or red)

is assessed [5], before injecting documents. A backoff [13] algorithm with configurable

timeout is applied by the timestream application to prevent exceptions when indexing data.

During a backoff time, which is of the order of a few seconds, timestream uses internal buffer

to temporarily absorb data from data sources.

Additional tuning is necessary to obtain the desired performance. The operating system

swapping needs to be disabled in order to avoid a swapping of the Elasticsearch process. The

Elasticsearch transaction log durability setting for each index should be set to async mode,

which instructs Elasticearch to buffer operations in memory and fsync on the regular

intervals, rather than fsyncing on each operation. By default, mapping parameters index, store

and doc_values of user data fields specified in the flashlist are disabled as they introduce

some index-time overhead. These settings can be overridden by the user by specifying the

required value in the flashlist XML file. Index option controls whether field values are

searchable. Store option needs to be enabled in cases when the value of a single field or a few

fields need to be retrieved instead of the whole document. Doc_values is needed if field

values are used for sorting or aggregations [5].

Elasticsearch bulk operations increase the efficiency and performance [5]. However, data

bulking is not always possible due to the fact that monitoring in CMS must be delivered to

monitoring clients as soon as it becomes available, that is, the latest data with the least latency

possible. Therefore, the timestream application benefits from the bulk option to improve

indexing efficiency only when multiple input sources of the same type are available within

the same process.

3 Benchmarking

Benchmarking tests were executed to measure the performance of the system in a systematic

way. A test application called loadtest was developed as an emulator of a user application.

Loadtest is able to inject data at a predefined rate and bulk sizes. Flashlists of four different

sizes and of two different data types: long and string were utilised for the measurements. The

benchmarking measurements determined the maximum rate accepted by the system for every

combination of data sizes and types (see Figure 5 and Figure 6).

Figure 5. Dependence of the maximum aggregate document indexing rate on the bulk size for the

flashlists with a different number of user defined fields (1 field (1, 5), 16 fields (2, 6), 64 fields (3, 7),

256 fields (4, 8)) of type long (1, 2, 3, 4) and string (5, 6, 7, 8).

Tests were performed using a cluster of Elasticsearch which consisted of 5 nodes. Data

were injected from 30 data sources, each running on a separate physical machine with

separate processes for timestream and loadtest applications. Before each measurement all

processes running timestream and loadtest applications were stopped and all indices and

templates were deleted from Elasticsearch. The document indexing rate was calculated by

10
2

10
3

10
4

10
5

10
6

 1 10 100

M
a

x.
 d

o
cu

m
en

t
in

d
ex

in
g

 r
a

te
 (

H
z)

Bulk size (documents)

1
2

3
4

5
6

7
8

 0.1

 1

 10

 100

 1000

 1 10 100

M
a
x.

 i
n
je

ct
io

n
 r

a
te

 (
H

z)

Bulk size (documents)

1
2

3
4

5
6

7
8

Figure 6. Dependence of the maximum injection rate from a single data source on the bulk size for the

flashlists with a different number of user defined fields (1 field (1, 5), 16 fields (2, 6), 64 fields (3, 7),

256 fields (4, 8)) of type long (1, 2, 3, 4) and string (5, 6, 7, 8).

reading two index_total values from statistics provided by Elasticsearch API. The results of

maximum aggregate document indexing rate achieved at different bulk sizes are depicted in

Figure 5. The same data were used to plot the dependence of maximum injection rate from a

single data source on the bulk size (see Figure 6).

Figure 5 shows that the highest document indexing rate can be achieved when using

bulking feature of Elasticsearch API with moderate and high bulk sizes. Smaller documents

can be indexed faster. For small documents non-systematic behaviour was observed at the

low bulk sizes and in the absence of bulking. The maximum document indexing rate was

measured equal for the smallest flashlists with fields of both long and string type. There was

a difference in maximum rate when the measurement was performed with bigger flashlists.

Maximum rate was smaller for flashlists with strings. However, from this test it is not clear

if this difference is caused by the difference in efficiency of indexing different types of data

or is it caused by the size of the document. Each value was a long of 8 bytes or a 32-character

string randomly generated for each injection. As shown in Figure 6 for the biggest documents

(with 256 user defined fields) and at the highest bulk size, the injection rate on individual

data sources had to be reduced below 1 Hz.

4 Summary

Elasticsearch was shown to be a valuable technology to support CMS DAQ monitoring.

The proposed solution is used in parallel with the existing monitoring system with

comparable performance and functionality. The measured document indexing rate for the full

CMS DAQ monitoring system generated by 265 sources in parallel is about 2 kHz with an

average document size of 26 fields of different types (813 fields in total and 31 flashlists),

bulk size varies from 1 to 180 throughout the system. This rate is about one order of

magnitude lower than the measured maximum performance and is well accepted by the

Elasticsearch cluster with no data losses with reading clients running in parallel as required

by CMS DAQ monitoring. Data persistency is implicitly provided by defining an arbitrary

value of time to live. The solution demonstrated the advantage of using a uniform protocol

for reading and writing data, which facilitated the integration of Elasticsearch into the

existing system. The use of Elasticsearch moves the problem of in-house setup and expertise

of the monitoring system to a mere system administration exercise.

References

1. The CMS Collaboration, The Compact Muon Solenoid: Technical Proposal (1994)

2. The LHC Study Group, The Large Hadron Collider: Conceptual Design (1995)

3. The CMS Collaboration, The Trigger and Data Acquisition Project (2002)

4. T. Bawej, et al., IEEE Trans. Nucl. Sc., 62(3), 1099-1103 (2015)

5. Elasticsearch, https://www.elastic.co

6. J.-M. Andre, et al., J. Phys. Conf. Ser., 664(8), 082036 (2015)

7. V. Brigljevic, et al., Using XDAQ in Application Scenarios of the CMS experiment,

Conference for Computing in High-Energy and Nuclear Physics - CHEP03 (Stanford

Linear Accelerator Center, 2003)

8. J. Gutleber, S. Murray, L. Orsini, Comp. Phys. Comm., 153(2), 155-163 (2003)

9. J. Gutleber, L. Orsini, Clust. Comp. 5(1), 55-64 (2002)

10. G. Bauer, et al., J. Phys. Conf. Ser., 219(2), 022042 (2010)

11. D. A. Chappell, Enterprise Service Bus (O’Reilly, 2004)

12. ISO 8601:2004(E), Data elements and interchange formats — Information interchange

— Representation of dates and times (2004)

13. IEEE 802.3-2015 - IEEE Standard for Ethernet (2015)

