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We observe that the three-gluon form factor of the chiral part of the stress-tensor multiplet in
planar N = 4 super-Yang-Mills theory is dual to the six-gluon MHV amplitude on its parity-
preserving surface. Up to a simple variable substitution, the map between these two quantities is
given by the antipode operation defined on polylogarithms (as part of their Hopf algebra structure),
which acts at symbol level by reversing the order of letters in each term. We provide evidence for
this duality through seven loops.

Introduction

In the study of quantum field theory, we occasionally
encounter dualities, or relations between seemingly un-
related quantities. One such example is the duality be-
tween scattering amplitudes and closed light-like polyg-
onal Wilson loops in planar maximally supersymmetric
Yang-Mills (N = 4 SYM) theory [1–7], and its extension
to a triality relating both quantities to a particular kine-
matic limit of correlation functions of the stress tensor
supermultiplet [8–12]. These types of relations provide
us with valuable new perspectives on physical quantities,
and at times reveal deep and novel types of mathemati-
cal structure. In this letter, we present a new weak-weak
duality between the maximally-helicity-violating (MHV)
three-gluon form factor of the chiral part of the stress
tensor supermultiplet in planar N = 4 SYM theory, and
a kinematic limit of the six-gluon MHV amplitude in the
same theory. This duality holds order-by-order in the
’t Hooft coupling g2 = λ

16π2 [13].
A great deal is known about both the three-gluon form

factor and the six-gluon amplitude. Their infrared struc-
ture can be understood to all orders in terms of the Bern-
Dixon-Smirnov (BDS) ansatz [14, 15], and each is known
to be dual to a polygonal Wilson loop (which, in the case
of the form factor, is periodic) [1–7, 16–20]. Moreover,
integrability techniques have been leveraged to develop
an operator product expansion (OPE) around the near-
collinear limit of each quantity [21–33], which has pro-
vided useful boundary data for bootstrap approaches,
by means of which the amplitude has been computed
through seven loops [34–42] and the form factor through
eight loops [43, 44]. As will prove important below, both
quantities are expressible in terms of multiple polyloga-
rithms. This class of functions comes equipped with a
coaction and an associated antipode (or coinverse) [45–
51]; see [52] for a review.

In this letter, we show that the antipode relates the
three-gluon form factor to the six-gluon amplitude on its
parity-preserving surface, up to a simple mapping be-

tween their respective kinematic variables. While it is
surprising for any direct relation between these quanti-
ties to exist, the fact that they are related by the antipode
map—which has no clear physical interpretation—is dou-
bly bizarre.1

In the remainder of this letter, we provide the full
statement of this relation, and present evidence that sup-
ports it through seven loops. We also discuss how this
duality is consistent with many of the known analytic
features of the six-gluon amplitude and three-gluon form
factor, and draw out the implications this relation has
for the analytic properties of the form factor, and for
bootstrapping these quantities at higher loops.

The Duality

Let us first define the specific quantities that enter the
amplitude/form factor duality that we find. On the am-
plitude side, we consider the BDS-like and cosmically-
normalized six-point MHV amplitude A6 [40, 54], which
is defined by dividing the full amplitude AMHV

6 by the
BDS-like ansatz ABDS-like

6 [55, 56] and a transcendental
function ρ̂ [54], which is independent of the kinematics
but can be perturbatively expanded in the coupling g2:

AMHV
6 = ABDS-like

6 × ρ̂×A6 . (1)

A6 is a finite polylogarithmic function2 of the three dual-
conformally-invariant cross ratios

û =
s12s45

s123s345
, v̂ =

s23s56

s234s123
, ŵ =

s34s61

s345s234
, (2)

1 At two loops, a different relation between the three-gluon form
factor and six-gluon amplitude was observed that did not involve
the antipode [15]. However, that relation does not hold beyond
two loops [43]. An antipodal relation between one-loop integrals
and Aomoto polylogarithms was found in [53].

2 In particular, A6 is the function referred to as Ecosmic in [54],
which differs from the E function defined in [41] by a different
choice for the function ρ, which we denote here by ρ̂.
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FIG. 1. Correspondence between various lines in the two-
parameter three-point form factor space (right) and their im-
ages in the three-parameter six-point amplitude kinematic
space (left) under the map (7)–(9). The white regions in the
right plot map to points outside of the region 0 < û, v̂, ŵ < 1
in the left plot.

where si...k = (pi + · · · + pk)2 are planar Mandelstam
invariants. In addition to rational functions of these cross
ratios, A6 depends on the square root of the six-point
Gram determinant, which takes the form

∆ = (1−û−v̂−ŵ)2 − 4ûv̂ŵ . (3)

Spacetime parity acts on the amplitude through the ex-
change

√
∆→ −

√
∆.

Similarly, we consider a BDS-like and cosmically-
normalized version of the three-point MHV form factor
FMHV

3 ,

FMHV
3 = FBDS-like

3 × ρ× F3 , (4)

where FBDS-like
3 was defined in [43] and ρ is re-

lated to ρ̂ via the cusp anomalous dimension Γcusp:
ρ = ρ̂× exp(−ζ2Γcusp/2). F3 is a finite polylogarithmic
function3 that depends on three ratios of Mandelstam
invariants, which are usually chosen to be

u =
s12

s123
, v =

s23

s123
, w =

s13

s123
. (5)

We make use of all three variables in order to make mani-
fest the (dihedral) symmetry of the form factor, but only
two of these variables are independent due to momentum
conservation, which implies that u+ v + w = 1.

The antipodal duality that we find between these quan-
tities can be expressed as

F
(L)
3 (u, v, w) = S

(
A

(L)
6 (û, v̂, ŵ)

) ∣∣∣
ûi→ûi(u,v,w)

, (6)

where F
(L)
3 and A

(L)
6 denote the O(g2L) contributions to

3 The function ρ× F3 was referred to as E in [43].
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FIG. 2. Schematic correspondence between various interest-
ing points and lines in the two-parameter three-point form
factor space (right) and their images in the three-parameter
six-point amplitude kinematic space (left) under the map (7)–
(9). See Table I for the coordinates of the marked points.

F3 and A6, S is the antipode map, and

û1 = û(u, v, w) =
vw

(1− v)(1− w)
, (7)

û2 = v̂(u, v, w) =
uw

(1− u)(1− w)
, (8)

û3 = ŵ(u, v, w) =
uv

(1− u)(1− v)
. (9)

The antipode map is part of the larger Hopf algebra
structure of multiple polylogarithms, which also contains
the coproduct and symbol maps [46–50]. The symbol of
a polylogarithmic function G is recursively defined via its
total differential as

dG =
∑
x∈L

Gx d lnx ⇒ S(G) =
∑
x∈L
S(Gx )⊗x , (10)

where the set of logarithmic arguments L is referred to
as the symbol alphabet, and each of the functions Gx is
also a polylogarithm.

At symbol level, the antipode map simply reverses the
order of the letters in every word of the symbol (up to a
sign) [45, 57]:

S(x1⊗x2⊗· · ·⊗xm) = (−1)m xm⊗· · ·⊗x2⊗x1 . (11)

However, we find that relation (6) also holds4 for terms
involving transcendental constants, modulo contribu-
tions proportional to iπ.

Due to the momentum conservation constraint on the
form factor variables, the substitutions (7)–(9) require
the amplitude to be evaluated on a two-dimensional sur-
face. In particular, the equation u + v + w = 1 gets
mapped to the constraint that ∆ = 0. Since parity sends√

∆ → −
√

∆, this is the surface on which the parity of
the amplitude is preserved.

4 Strictly speaking, the antipode map only makes sense on de
Rham periods, and as such is not defined on iπ.
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(û, v̂, ŵ) (u, v, w) functions

O ( 1
4
, 1
4
, 1
4
) ( 1

3
, 1
3
, 1
3
) 6

√
1

� ( 1
2
, 1
2
, 0) (0, 0, 1) Li2( 1

2
) + logs

• (1, 1, 1) limu→∞(u, u, 1−2u) MZVs
◦ (0, 0, 1) ( 1

2
, 1
2
, 0) MZVs + logs

4 ( 3
4
, 3
4
, 1
4
) (−1,−1, 3) 6

√
1

� (∞,∞,∞) (1, 1,−1) alternating sums
⊗ limv̂→∞(1, v̂, v̂) limv→∞(1, v,−v) MZVs

(1, v̂, v̂) limv→∞(u, v, 1−u−v) HPL{0, 1}
(û, û, (1− 2û)2) (u, u, 1− 2u) HPL{−1, 0, 1}

TABLE I. Kinematic points and lines as well as their images
under the map (7)–(9). The points O, �, ◦, 4 and � all lie
on the line (u, u, 1− 2u).

We depict the mapping between these kinematical
spaces in Figures 1 and 2, and give the translation for
various points and lines in Table I. In particular, Fig-
ure 2 and Table I show several interesting points and lines
on which the multiple polylogarithms simplify to mul-
tiple zeta values (MZVs), alternating sums, cyclotomic
zeta values [58] including 6th roots of unity [40, 59] (de-
noted in Table I by 6

√
1), and harmonic polylogarithms

(HPLs) [60]. At two of the points the amplitude and
form factor diverge logarithmically. Of the two HPL lines
(1, v̂, v̂) and (û, û, (1−2û)2), the former is simpler because
the HPL index −1 does not appear. In the next section,
we will check the duality at some of these points and
lines.

As can be seen in Figure 1, the line v = 0 is mapped
to the point (û, v̂, ŵ) = (0, 1, 0), while the point (u, v) =
(1, 0) is mapped to the line û = 0, v̂+ŵ = 1. These rela-
tions imply that the duality exchanges soft and collinear
limits. This exchange is related to the simplicity of the
map (7)–(9) in the OPE parametrization:

û =
1

1 + (T̂ + ŜF̂ )(T̂ + Ŝ/F̂ )
,

v̂ = ûŵŜ2/T̂ 2 , ŵ =
T̂ 2

1 + T̂ 2
,

(12)

and

u =
1

1 + S2 + T 2
, v =

T 2

1 + T 2
,

w =
1

(1 + T 2)(1 + S−2(1 + T 2))
,

(13)

see [21, 31]. Namely,

T̂ =
T

S
, Ŝ =

1

TS
, (14)

while F̂ = 1 on the ∆ = 0 surface.

Evidence

Since the six-point amplitude and three-point form
factor have been computed through seven and eight

loops [41, 43, 44], respectively, we can provide evidence
for relation (6) through seven loops. We first do so at
symbol level, where the antipode map is given by (11).

The alphabet of symbol letters of the six-point ampli-
tude can be chosen to be

L̂ = {â, b̂, ĉ, d̂, ê, f̂ , ŷu, ŷv, ŷw} , (15)

where

â =
û

v̂ŵ
, b̂ =

v̂

ŵû
, ĉ =

ŵ

ûv̂
,

d̂ =
1− û
û

, ê =
1− v̂
v̂

, f̂ =
1− ŵ
ŵ

, (16)

and the remaining variables invert under parity, for in-
stance ŷu → 1/ŷu. Hence, ŷu = ŷv = ŷw = 1 on the
∆ = 0 surface.5 An analogous alphabet can be chosen
for the three-point form factor, namely

L = {a, b, c, d, e, f} , (17)

where

a =
u

vw
, b =

v

wu
, c =

w

uv
,

d =
1− u
u

, e =
1− v
v

, f =
1− w
w

. (18)

Both A6|∆=0 and F3 are invariant under the same dihe-
dral group D3, which is generated by

cycle: {a, b, c, d, e, f} → {b, c, a, e, f, d} (19)

and

flip: {a, b, c, d, e, f} → {a, c, b, d, f, e} , (20)

and similarly in the hatted letters.
It is easy to check that the map (7)–(9) acts by swap-

ping

√
â⇔ d , d̂⇔ a , (21)

and all cyclically-related letters in the same way. No-
tably, this swaps the letters that appear in the first and
last entries of the amplitude and form factor. That is,
the letters that are allowed to appear in the first entry
of the amplitude (â, b̂, and ĉ) are mapped to the letters
that appear in the last entry of the form factor (d, e, and
f). Similarly, the first entries of the form factor (a, b
and c) are mapped to the last entries of the amplitude
(d̂, ê, and f̂). This combines with the reversal of symbol
letters entailed by the antipode map in (6) to maintain
the known first and last entry conditions [15, 34, 43, 61]
of each quantity.

5 Note that this notation differs from [40, 41], where d̂, ê, and f̂
were referred to as mu, mv and mw.
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L number of terms
1 6
2 12
3 636
4 11,208
5 263,880
6 4,916,466
7 92,954,568
8 1,671,656,292

TABLE II. Number of terms in the symbol of F
(L)
3 as a func-

tion of the loop order L.

We now check that relation (6) holds at symbol level.
For example, at two loops, the symbols S of the ampli-
tude and form factor each involve 12 terms, and are given
by

S(A
(2)
6 |∆=0) =

1

2
â⊗â⊗â⊗ê+â⊗ê⊗ê⊗ê+dihedral , (22)

S(F
(2)
3 ) = 2 a⊗a⊗a⊗e+ 4 a⊗e⊗e⊗e+ dihedral , (23)

where we sum over all dihedral images in D3 generated
by (19) and (20). Due to the square root in (21), the two
terms in (22) pick up factors of 8 and 2, which are pre-
cisely the numerical factors needed to match (23) when
the rest of the transformation in (6) is applied. We have
similarly checked that the duality holds at symbol level
through seven loops, using the expressions provided in
the ancillary files of [41] and [43, 44]. Due to the fast
growth of the number of terms in the symbol with the
loop order (see Table II), this check quickly becomes quite
involved, and extremely stringent.

The antipode map is also defined at function level [45,
57] (see also [62] for a discussion of the antipode in the
physics literature), and as such we can also check the du-
ality beyond the symbol. The simplest way to do this is
to compare the functions at a single point, for instance
at the point û = v̂ = ŵ = 1, which maps to the u, v →∞
limit of the form factor space. At these points, both func-
tions are real and are known to be expressible in terms
of MZVs, which can conveniently be expressed in terms
of the so-called f -alphabet [48, 59]; see Table I. Since we
do not know how to compute the antipode of iπ, the first
nontrivial constants appear at three loops. Through five
loops, the amplitude evaluates to [40, (A.3)–(A.5)]

A
(3)
6 (1, 1, 1) = 0f3,3 +O(π2) , (24)

A
(4)
6 (1, 1, 1) = 120f3,5 +O(π2) , (25)

A
(5)
6 (1, 1, 1) = −2688f3,7 − 1560f5,5 +O(π2) , (26)

while the form factor evaluates to [43, (5.7)–(5.9)]

F
(3)
3 (∞,∞) = 0f3,3 +O(π2) , (27)

F
(4)
3 (∞,∞) = 120f5,3 +O(π2) , (28)

F
(5)
3 (∞,∞) = −2688f7,3 − 1560f5,5 +O(π2) . (29)

Clearly, these values are related to each other by revers-
ing the order of f -alphabet letters.6 We provide further
evidence for the duality at various points up to seven
loops in an ancillary file.7

We can also check the duality on the line where û = 1
and v̂ = ŵ, where A6 can be expressed in terms of HPLs
with indices 0, 1 and argument x̂ = 1 − 1/v̂. This line
maps via (7)–(9) to the line where v →∞ (with u fixed),
where F3 can be expressed in terms of the same space
of functions, but with the arguments reinterpreted as
x = 1 − 1/u, and x̂ = 1 − x. We have checked that
these functions map to each other via relation (6) through
seven loops, up to terms proportional to π2. We then use
the duality to predict the eight-loop MHV amplitude on
the line (1, v̂, v̂), modulo π2 terms, in a second ancillary
file. Finally, we have also checked that relation (6) holds
at the level of full functions of u and v, up to three loops,
finding a complete match up to terms proportional to iπ.
While we have not detailed here how the antipode acts
in general on multiple polylogarithms, we note that it is
conveniently implemented in the Mathematica package
PolyLogTools [63].

It would be interesting to find an extension or defor-
mation of relation (6) that also relates the terms propor-
tional to iπ on both sides of the duality. This is non-
trivial, though, for two reasons. The first is that the
antipode is not defined on iπ. Second, there is a ques-
tion of the appropriate Riemann sheets. On its physical
sheet, the form factor is real when 0 < u, v, w < 1 and
complex elsewhere (except when one of these variables is
taken to infinity). For the amplitude, with û, v̂, ŵ > 0,
we could either be on the Euclidean sheet, or the 2 → 4
physical scattering sheet. Both are problematic: On the
Euclidean sheet, the amplitude is real, while the form
factor generically has imaginary parts proportional to iπ
(but at least for u, v, w < 1 both objects are real). On
the 2 → 4 physical scattering sheet, the amplitude has
imaginary parts, which blow up logarithmically as one
approaches the (1, v̂, v̂) self-crossing line [64], while the
dual form factor’s imaginary parts vanish there.

Implications

This duality has several interesting implications. The
six-point amplitude is known to obey a large set of ex-
tended Steinmann relations [40] (or cluster adjacency
conditions [65]), which tell us that certain pairs of let-

6 More generally, similar to its action on the symbol, the an-
tipode reverses the f -alphabet letters and multiplies each term
by (−1)m, where m is the number of letters.

7 This ancillary file also contains further details on the definitions
of FBDS-like

3 , ABDS-like
6 , ρ, and ρ̂.
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ters never appear in adjacent entries of the symbol:

���
���

. . . â⊗ b̂ . . . ,

���
���

. . . â⊗ d̂ . . . , ���
���

. . . d̂⊗ â . . . ,
(30)

plus all dihedral images. Importantly, these conditions all
remain nontrivial and distinct on the ∆ = 0 surface, and
can be read either backwards or forwards. As such, these
constraints are preserved by the antipode, and can be
translated directly, via (21), into constraints that should
hold for the three-point form factor:

((((
((

. . . d⊗ e . . . ,
(((

(((. . . a⊗ d . . . , (((
(((. . . d⊗ a . . . ,

(31)

plus all dihedral images. The first of these conditions was
observed in [43, 66], while the other conditions are new.8

More generally, this duality makes it possible to trans-
late knowledge about the functional form of one of these
quantities into information about the other. Most ob-
viously, the form factor can simply be ‘read off’ of the
amplitude on the ∆ = 0 surface (up to iπ contributions).
Conversely the form factor also provides an enormous
amount of boundary data for bootstrapping the ampli-
tude. In fact, we have checked that this information,
when combined with parity, is sufficient to uniquely de-
termine the symbol of the amplitude through 5 loops,
and through 7 loops when combined also with certain
conditions on the final pair of entries and the behavior
at the origin [54].

Discussion and Conclusions

In this letter, we have identified a new and unexpected
duality in planar N = 4 SYM theory between the three-
point form factor of the chiral part of the stress tensor su-
permultiplet, and a kinematic limit of the six-point MHV
amplitude. Amazingly, these quantities are related by
the antipode map, which has no clear physical interpre-
tation that we are aware of. In particular, the antipode
exchanges the first and last entries of the symbol, which
describe the discontinuities and derivatives of these func-
tions, respectively. Thus, the discontinuities of the am-
plitude seem to be encoded in the derivatives of the form
factor, and vice versa!

While we have provided evidence for this duality
through seven loops, it would be interesting to find a
physical derivation or even a proof of this relation, us-
ing for example the non-perturbative integrability-based
descriptions of both quantities ([21–30] and [31–33]). At

8 In fact, these additional relations were observed by the authors
prior to the discovery of (6), and they indeed hold through eight
loops [44].

strong coupling both quantities can also be described via
a minimal surface [1, 16] and a corresponding Y-system
[17, 67, 68], and it would be interesting to see what rela-
tion (6) implies for these formulations.

The three-point form factor is of particular interest
due to the principle of maximal transcendentality [69–72],
which states that the three-point form factor in N = 4
SYM theory provides the maximally transcendental part
of the Higgs-to-three-gluon amplitude in pure Yang-Mills
theory in the large-top-mass approximation [15, 73–76].

It would be extremely interesting to see whether a ver-
sion of the duality we present here exists for higher-point
MHV amplitudes and form factors. Since A2n and Fn
both exhibit a Dn dihedral symmetry, one might expect
these quantities to be related also for n > 3. The surface
∆ = 0 can be interpreted as ‘twisted forward scattering’
in which the 2n external momenta of the amplitude, p̂i,
are related by p̂i+n = −p̂i for i = 1, 2, . . . , n (for n = 3),
so that there are only n independent momenta, as in the
form factor. This interpretation might give further clues
for a generalization to higher n.

Moreover, it would be interesting to see whether a sim-
ilar duality exists at next-to-MHV and beyond, or for
other operators than the chiral part of the stress tensor
supermultiplet.
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