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significantly different within our precision. Chiral symmetry restoration manifests itself through
the degeneracy of the pseudoscalar and the scalar channels and of the vector and the axial ones.
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1. Introduction

QCD at finite temperature plays a crucial rôle in many fields of research, from the interpretation
of experimental results from relativistic heavy ion colliders to cosmology and astrophysics. At high
temperature, the low-energy scale ΛQCD becomes less relevant as the temperature increases and the
only relevant scale at asymptotically large temperatures is ∼ 𝑇 . At high temperatures the running
coupling is small and the scale hierarchy 𝑔2𝑇 � 𝑔𝑇 � 𝑇 arises. The lattice represents the only
theoretical framework in which the theory can be studied non-perturbatively, however up to now
most of the works on the lattice are restricted to temperatures of about𝑇 ≈ 1 GeV or below. The aim
of this study is to design a strategy to study QCD non-perturbatively, up to very high temperatures,
i.e. at the level of the electroweak scale or so. An analogous strategy has been successfully
developed in the case of the pure 𝑆𝑈 (3) gauge theory and allowed a precise determination of the
Equation of State up to two orders of magnitude the critical temperature [1]. As a first concrete
application of this strategy we present our results on the calculation of the QCD non-singlet meson
screening masses [2].

2. The QCD meson screening masses

In the framework of thermal QCD maybe the simplest class of observables one can study
are those obtained from two-point spatial correlation functions of fermionic bilinears. The large-
distance behaviour of these correlation functions is dominated by the so called screening masses,
namely the inverse of the correlation lengths, which describe the response of the quark and gluon
plasma when a meson is put in the system. In this work we are interested in flavor non-singlet
bilinear operators

O𝑎 (𝑥) = 𝜓(𝑥)ΓO 𝑇𝑎 𝜓(𝑥) , (1)

where 𝑇𝑎 are the traceless generators of 𝑆𝑈 (3) which describe the structure of the operator in flavor
space, ΓO =

{
11, 𝛾5, 𝛾𝜇, 𝛾𝜇𝛾5

}
and the corresponding operators are named O =

{
𝑆, 𝑃,𝑉𝜇, 𝐴𝜇

}
.

The spatially separated two-point correlation functions of these operators can be defined in the
continuum as

𝐶O (𝑥3) =
∫

𝑑𝑥0𝑑𝑥1 𝑑𝑥2 〈O𝑎 (𝑥)O𝑎 (0)〉 , (2)

where no summation over 𝑎 is understood. The screening masses are then defined as

𝑚O = − lim
𝑥3→∞

𝑑

𝑑𝑥3
ln

[
𝐶O (𝑥3)

]
. (3)

To date the QCD meson screening masses have been computed in perturbation theory and on
the lattice. On the one hand, the lattice calculations are restricted to temperatures below 𝑇 ≈ 1
GeV [3], on the other hand perturbation theory is expected to be reliable at asymptotically large
temperatures. In this regime the theory becomes static, the degrees of freedom in the temporal
extent can be integrated out and the calculation can be carried out in the resulting dimensional-
reduced effective theory. In the 3d theory the quark fields develop a thermal mass of about 𝜋𝑇 and
are treated as heavy, static fields [4]. In this approximation, independently of the flavor structure of
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the interpolating operators, the meson non-singlet screening masses at one-loop are

𝑚PT
O = 2𝜋𝑇 +

𝑔2
𝐸
(𝑇)

3𝜋
(
1 + 0.93878278

)
= 2𝜋𝑇

(
1 + 0.032739961 · 𝑔2

)
, (4)

where 𝑔2
𝐸

is the effective coupling of the dimensional-reduced theory as defined in Ref. [4] and its
value is fixed by matching the 3d theory with QCD.

3. Lattice setup

We regularized the theory on a 4-dimensional lattice with compact temporal extent 𝐿0. All the
fields are taken to be periodic in space while in the temporal direction they satisfy shifted boundary
conditions [5–8].

We simulated 12 values of temperature 𝑇0, ..., 𝑇11 ranging from 1 GeV up to 160 GeV. All the
simulations were performed using the Hybrid Monte Carlo algorithm in the presence of 𝑁 𝑓 = 3
flavors of quarks in the chiral limit. We discretized the fermionic sector of the action considering the
𝑂 (𝑎)-improved Wilson-Dirac operator. The gauge sector was discretized, at the highest tempera-
tures𝑇0, ..., 𝑇8, with the Wilson plaquette action while at𝑇9, 𝑇10 and𝑇11 we considered the tree-level
Symanzik improved action. The strategy proposed in this work profits from the non-perturbative
determination of the QCD running coupling which was used to fix the lines of constant physics. In
particular, these have been fixed through the Schrödinger functional (SF) finite volume coupling for
𝑇0, ..., 𝑇8 and the gradient flow (GF) coupling for 𝑇9, 𝑇10 and 𝑇11 [9, 10]. Once the lines of constant
physics have been fixed, the critical mass is obtained by requiring the PCAC mass to vanish in a
finite volume with SF boundary conditions.

The simulations were performed considering several lattice spacings so as to be able to perform
the continuum limit extrapolation with confidence. In particular, at𝑇1, ..., 𝑇8 we simulated 4 different
lattice spacings (𝐿0/𝑎 = 4, 6, 8, 10), at 𝑇9, ..., 𝑇11 we simulated 3 lattice spacings (𝐿0/𝑎 = 4, 6, 8)
and at the highest temperature 𝑇0 ≈ 160 GeV, 2 different lattice spacings have been simulated
(𝐿0/𝑎 = 4, 6).

Finite volume effects are kept under control by simulating large lattices. We considered lattices
with 𝐿/𝑎 = 288 in each spatial extent so as to keep 𝐿𝑇 between 20 and 50 for each simulation.

4. Numerical study

In the calculation of the screening correlator in eq. (2) the inversion of the Dirac operator is
required in order to estimate the quark propagator. As mentioned, at high temperature the quark fields
develop a thermal mass of about 𝜋𝑇 which provides an infrared cutoff to the quark propagator. This
leads, as a consequence, to the fact that for large source-sink separations |𝑥− 𝑦 | the quark propagator
𝐷−1(𝑥, 𝑦) is extremely suppressed. We have solved this problem by using a distance-preconditioned
version of the Dirac equation in which we factorized out the bulk of the exponentially-suppressed
behaviour of the quark propagator [11]. We then solved the distance-preconditioned equation

�̃��̃� = 𝜂 (5)

3



Computation of QCD meson screening masses at high temperature Davide Laudicina

0.9

0.95

1

1.05

1.1

1.15

1.2

0 20 40 60 80 100 120

Preliminary
0.9

0.95

1

1.05

1.1

1.15

1.2

0 20 40 60 80 100 120

Preliminary

m
/2
π
T

2πTx3

P

S

m
/2
π
T

2πTx3

V2

A2

Figure 1: The effective mass versus the separation on the lattice for the pseudoscalar and the scalar channel
(left panel) and for vector and the axial (right panel) at the physical temperature 𝑇3 = 33 GeV. The scalar and
the axial datasets are shifted by a factor of 0.5 to the right for readability.

where
�̃� = 𝑀−1𝐷𝑀 , �̃� = 𝑀−1𝜓 , 𝜂 = 𝑀−1𝜂 (6)

with the preconditioning matrix 𝑀 defined as

𝑀 (𝑥3, 𝑦3) = cosh {𝑚𝑀 (𝑥3 − 𝑦3 − 𝐿/2)} (7)

where 𝑚𝑀 has been tuned for the different lattice spacings so as to have 𝑚𝑀 ≈ 𝜋/(
√

2𝐿0).
Once the screening correlator has been computed, the screening mass on the lattice is extracted

by taking the large separation limit of the screening correlation function and its expression can be
written as

𝑚O (𝑥3) =
1
𝑎

arcosh
[𝐶O (𝑥3 + 𝑎) + 𝐶O (𝑥3 − 𝑎)

2𝐶O (𝑥3)

]
. (8)

In the whole range of temperatures explored we observe the complete degeneracy between the
pseudoscalar and the scalar masses and between the axial and the vector ones. In fig. 1, we show an
example of the effective mass at the physical temperature 𝑇3 = 33 GeV, after having symmetrized
the screening correlator with respect to 𝑥3 = 𝐿/2, for the pseudoscalar and the scalar channel
(left panel) and for the vector and the axial one (right panel). For all the other temperatures we
obtained similar plots. The degeneracy of these masses is a clear indication that chiral symmetry is
effectively restored in the entire range of temperature. For this reason in the following discussion
we restrict ourselves to the pseudoscalar and to the vector screening masses.

The analysis of finite volume effects has been carried out at 𝑇0, 𝑇1 and 𝑇11 on the volumes
corresponding to 𝐿0/𝑎 = 6, 𝐿0/𝑎 = 10 and 𝐿0/𝑎 = 8 respectively, in order to check that finite size
effects are negligible in the entire range of temperatures explored. As we can see from, e.g. fig.
2, both for the pseudoscalar and for the vector channel finite volume effects are under control and
negligible within our numerical precision.
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Figure 2: Plot of the effective mass function for the pseudoscalar and vector correlators at the physical
temperature 𝑇1 = 82 GeV. The red points are the results in a volume with 288 sites in each spatial direction,
while the blue ones in a spatial volume of 962 × 288 sites.

In order to remove the dependence on the lattice spacing we performed the continuum limit
extrapolation. To speed up the convergence to the continuum we computed analytically the free
theory contribution to the screening masses on the lattice. Then we give the tree-level improved
definition of the screening masses at finite lattice spacing

𝑚O −→ 𝑚O −
[
𝑚free − 2𝜋𝑇

]
, (9)

where 𝑚free, which is the mass in the free lattice theory computed in the infinite volume limit,
is independent of the flavor structure of the operator. This procedure allowed us to perform the
continuum limit extrapolation with confidence at a few permille accuracy. In fig. 3 we show the
extrapolations for the pseudoscalar screening mass (left panel) and for the vector screening mass
(right panel). We considered as fit ansatz a single correction proportional to (𝑎/𝐿0)2 for all the
temperatures and each extrapolation is treated as independent on the others. For 𝑇1, ..., 𝑇8 we also
performed the same kind of analysis by omitting in the extrapolation the results on the coarser
lattice spacing (𝐿0/𝑎 = 4). We fitted the data also including in the fit ansatz terms proportional to
(𝑎/𝐿0)2 ln(𝑎/𝐿0) and to (𝑎/𝐿0)4. In all the cases the additional coefficients are compatible with
zero and the intercepts are in excellent agreement with those of the previous fits. In the following
we take as best estimates of the masses the results obtained by fitting all the data available for each
temperature.

In fig. 4 we show the screening masses in the continuum limit, normalized to the free theory
result 2𝜋𝑇 , as a function of the temperature. The temperature dependence is parametrized through
the two-loop renormalized coupling in the MS scheme evaluated at the scale 𝜇 = 2𝜋𝑇 , which
expression reads

�̂�−2(𝑇) =
9

8𝜋2 ln
(
2𝜋𝑇
ΛMS

)
+ 4

9𝜋2 ln
[
2 ln

(
2𝜋𝑇
ΛMS

)]
, (10)
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Figure 3: Numerical results of the tree-level improved pseudoscalar (left) and vector (right) screening mass
at finite lattice spacing (black dots). The red and the blue lines represent the linear extrapolations in (𝑎/𝐿0)2

to the continuum limit (red and blue points); each temperature is analyzed independently on the others. The
extrapolation for a given temperature 𝑇𝑖 is shifted by 0.02 · 𝑖 downward for readability.
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Figure 4: Pseudoscalar (red) and vector (blue) screening masses versus �̂�2. The curves represent the best
fits. The dashed line is the analytically known contribution. The two points on the right hand side of the plot
represent the result at 𝑇 = 1 GeV for the pseudoscalar and for the vector screening masses obtained in Ref.
[3].

where ΛMS = 0.341 GeV [12]. We see how in the entire range of temperature the bulk of the
screening masses is described by the free theory result plus a few percent positive deviation. In
particular, we observe at most a 2% positive deviation for the pseudoscalar mass and a 4% deviation
for the vector one. By analyzing the results in more detail we see how even at the highest temperatures
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we simulated the one-loop perturbative prediction is not satisfactory within our precision, since
the pseudoscalar and the vector mass are still significantly different at the electroweak scale. By
performing a fit in the temperature with a polynomial function in �̂�2 we find that at much higher
temperature than the electroweak scale the intercept and the linear coefficient of the extrapolation
are compatible with the free theory result and with the first perturbative correction respectively. This
is a clear indication that the one-loop perturbative result gives a reliable estimate of the screening
masses only well above the electroweak scale. On the other hand, at low temperature one-loop
perturbation theory becomes unreliable. In particular, this is evident by the fact that in the low
temperature regime the pseudoscalar screening mass exhibits a negative slope in �̂�2, while the
perturbative calculation predicts a positive slope in the entire range of temperature.

5. Conclusions

In this work, as a first application of our strategy to study thermal QCD at extremely high
temperature, we computed for the first time the QCD meson screening masses on the lattice in the
range of temperature between 𝑇 ≈ 1 GeV and the electroweak scale. We simulated large volumes
to keep finite volume effects under control and different lattice spacings so as to be able to perform
the continuum limit extrapolation with confidence. This allowed us to determine the screening
masses with a few permille accuracy in the continuum limit. In the entire range of temperature
we observed chiral symmetry restoration due to the degeneracy between the pseudoscalar and
the scalar screening masses as well as the vector and the axial ones. Our results show that the
bulk of the masses is dominated by the free theory result with at most a 2% positive deviation
for the pseudoscalar screening mass and a 4% for the vector one. However, even at the highest
temperature we simulated our results cannot be explained by the one-loop perturbative result, since
at the electroweak scale the pseudoscalar and the vector mass are still significantly different within
our precision. In addition, in the low temperature regime we observe the failure of the one-loop
perturbative prediction emphasized by the negative slope of the pseudoscalar mass in �̂�2 for 𝑇 . 10
GeV.

In conclusion, the strategy proposed in this work and the results achieved in the present study
pave the way for a non-perturbative study of the fundamental properties of thermal QCD from low
to high temperature.
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