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NICPB, Rävala pst. 10, 10143 Tallinn, Estonia

bDepartamento de F́ısica Teórica, Instituto de F́ısica,
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inflation, N∗, the magnitude of the inflaton coupling to matter, y, and the reheating temperature,
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production of gravitinos and supersymmetric dark matter.
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I. INTRODUCTION

Successive releases of data on perturbations in the cos-
mic microwave background (CMB) [1] have provided in-
creasingly strong upper limits on the tensor-to-scalar ra-
tio, r, and hence sharpened focus on models of infla-
tion that favour small values of r, such as the original
Starobinsky model [2] that predicts r ∼ 0.004 for 55 e-
folds. The recent release of the BICEP/Keck [3] data has
followed this trend, imposing the bound r0.05 < 0.036
at the 95% C.L. where the subscript denotes the pivot
scale in Mpc−1. Moreover, the combination of WMAP,
Planck and BICEP/Keck data constrains the scalar tilt
to the limited range 0.958 < ns < 0.975 at the 95% C.L.
for r = 0.004. A further analysis by [4] used BB auto-
correlation data from [5] and allowed a free reionization
optical depth, and obtained a lower limit on the scalar-
to-tensor ratio to r0.05 < 0.032, with a slightly relaxed
range on the spectral tilt 0.956 < ns < 0.974 at the 95%
C.L. for r = 0.004.

The Starobinsky model is not alone in accommodating
the upper limit on r. For example, Higgs inflation pre-
dicts a similar value of r [6], and similar potentials appear
naturally in the context of supergravity, including no-
scale supergravity [7, 8]. In particular, the simplest no-
scale supergravity models characterized by a Kähler po-
tential of the form K = −3 ln

(
T + T − |φ|2/3

)
, where

T and φ are complex scalar fields, predict a Starobinsky-
like value of r [9], but the no-scale supergravity frame-
work can also accommodate other possibilities [10].

For example, generalizing −3 → −3α as the coeffi-

cient of the logarithm modifies the prediction for r by
a factor α, as was first pointed out in [11] and subse-
quently in [12]. Such a modification of the simplest no-
scale model is a natural possibility in compactified string
models, where T may be interpreted as the volume mod-
ulus [13], which is a product of three independent com-
pactification moduli Ti : i = 1, 2, 3. Models in which
inflation is driven by one (two) of these moduli corre-
spond to α = 1/3 (2/3) [11]. Larger values of α are also
possible, since string compactifications also have complex
structure moduli that can contribute to the inflationary
dynamics [14].

A common feature of these no-scale supergravity mod-
els is a quadratic singularity in the kinetic term for
the inflaton. This feature leads generically to an ef-
fective potential for the canonically normalized inflaton
field with a plateau that leads to a quasi-de Sitter in-
flationary epoch similar to that in Starobinsky inflation.
This property was abstracted from the no-scale models
in [14], where they were baptized “attractor” models.
Two specific types of attractor potential can be distin-
guished [11, 12, 15, 16]: 1

V =
3

4
λM4

P

(
1− e−

√
2
3α

ϕ
MP

)2

,

(α-Starobinsky [11, 12, 16])
(1)

1 We note that α-Starobinsky models are also known as E models
[17].
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V =
3

4
λM4

P tanh2

(
ϕ√

6αMP

)
,

(T Model [15]) (2)

where ϕ is the canonically normalized inflaton field,
MP = 1√

8πG
' 2.435 × 1018 GeV is the reduced Planck

mass, and λ is the potential scale determined from the
CMB normalization and the inflaton field value at hori-
zon crossing. 2 For the attractor models discussed here,
increasing the value of α reduces the flatness of the
plateau at the inflaton field value at the horizon crossing
of the CMB scale, ϕ∗, which affects the cosmological ob-
servables ns and r. It was argued in [10–12, 15, 16, 18]
that broad classes of attractor models lead to identical
predictions of ns and r in the limit of a large number of
e-folds, N∗.

3 In the context of supergravity, the param-
eter α determines the curvature of the internal Kähler
manifold: R = 2/α.4

In this paper we explore the impact of the latest
BICEP/Keck/WMAP/Planck constraints in the (ns, r)
plane on the α-Starobinsky and T model inflationary
attractors (see also [20]) from both [3] and [4]. From
the analysis in [3], we find that the region of CMB
parameters favoured at the 68% C.L. by the combina-
tion of CMB data favours N0.05 & 50.9 (52.6) in the α-
Starobinsky (T models), corresponding to an inflaton de-
cay coupling y & 1.7× 10−6(1.7× 10−4) for α = 1, with
an order of magnitude sensitivity to α ∈ (0.1, 5). 5 In
contrast, the analysis in [4] yields substantially weaker
bounds, N0.05 & 47.9 (49.4) in the α-Starobinsky (T
models), corresponding to an inflaton decay coupling
y & 1.9 × 10−10 (1.2 × 10−8) for α = 1 6. Additionally,
supergravity models must avoid overproducing gravitinos
and supersymmetric dark matter [21, 22]. We find that
based on [3], α-Starobinsky models that respect these
constraints fall inside the region favoured by the CMB
data at the 68% C.L. only for α ∈ (0.67, 12), and that T
models fall inside this region only for α ∈ (1.3, 5.1). At

2 The normalization of the potentials is chosen so that the infla-
ton normalization scale coincides in both cases, and is given by
Eq. (14). This choice does not affect the CMB observables ns

and r.
3 We note that the potentials (1) and (2) are identical at zeroth

and first order in e
−
√

2
3α

ϕ
MP , but differ at higher orders and so

make different predictions when ϕ/
√
α = O(MP ). One could in

principle consider other attractor potentials that are also equiva-
lent at zeroth and first order, but these are the options commonly
considered in the literature.

4 In general, the Kähler curvature R depends on the total number,
n, of chiral fields describing the theory [7, 8, 16, 19], R = n(n+
1)/3α, and this result holds for two chiral fields, which is the
minimal number needed to construct a plateau-like potential in
no-scale supergravity [11].

5 The corresponding 95% limits are N & 45.9(47.5) and y & 3.8×
10−13 (3.6× 10−11), respectively.

6 In this case, the corresponding 95% limits are N & 42.9(44.6)
and y & 2.8× 10−17(4.0× 10−15), respectively.

the 95% C.L. these range are (0, 26) and (0, 11), respec-
tively. Based on [4], the 68% C.L. range is (0.4, 12) and
(0.5, 7) for the α-Starobinsky and T models, respectively,
and the 95% C.L. ranges are (0, 24) and (0, 12). 7

II. INFLATIONARY DYNAMICS

The dynamics of the inflaton is characterized by the
action

S =

∫
d4x
√
−g
[
M2
P

2
R+

1

2
∂µϕ∂

µϕ− V (ϕ)

]
, (3)

where the effective scalar potential is given by Eq. (1)
or (2). We use for our analysis the conventional slow-roll
parameters, which are given in single-field inflationary
models by

ε ≡ 1

2
M2
P

(
V ′

V

)2

, η ≡M2
P

(
V ′′

V

)
, (4)

where the prime denotes a derivative with respect to the
inflaton field, ϕ. In the slow-roll approximation, the num-
ber of e-folds can be computed using

N∗ '
1

M2
P

∫ ϕ∗

ϕend

V (ϕ)

V ′(ϕ)
dϕ '

∫ ϕ∗

ϕend

1√
2ε

dϕ

MP
, (5)

where k∗ = 0.05 Mpc−1 is the pivot scale used in the
Planck analysis. The end of inflation occurs when ä = 0,
i.e., ϕ̇2

end = V (ϕend).

The principal CMB observables, namely, the scalar tilt,
ns, the tensor-to-scalar ratio, r, and the amplitude of
the curvature power spectrum, AS , can be expressed as
follows in terms of the slow-roll parameters:

ns ' 1− 6ε∗ + 2η∗ , (6)

r ' 16ε∗ , (7)

AS∗ '
V∗

24π2ε∗M4
P

, (8)

where V∗ = V (ϕ∗) and AS∗ ' 2.1×10−9 [1]. In the large
N∗ limit, the inflationary attractor potentials (1) and (2)
predict [11]

ns ' 1− 2

N∗
, r ' 12α

N2
∗
, (9)

where the approximation holds for α . O(1) in α-
Starobinsky models, and the full analytical expression
can be found in [22].

7 Here the lower bound α > 0 arises because α = 0 leads to a
completely flat potential that is not suitable for inflation.
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Using expression (5), we can calculate the approximate
value of the inflaton field at the horizon exit scale k∗ [23]
when α = 1,

ϕ∗
MP

'
√

3

2

[
1 +

3

4N∗ − 3

]
× ln

(
4N∗

3
+ e
√

2
3

ϕend
MP −

√
2

3

ϕend

MP

)
,

(α-Starobinsky) (10)

ϕ∗
MP

'
√

3

2
cosh−1

(
4N∗

3
+ cosh

(√
2

3

ϕend

MP

))
,

(T Model) (11)

with

ϕend

MP
'
√

3

2
ln

[
2

11

(
4 + 3

√
3
)]
,

(α-Starobinsky) (12)

ϕend

MP
'
√

3

2
ln

[
1

11

(
14 + 5

√
3
)]
, (T Model) (13)

where ϕend was calculated using the expression ε =
(1 +

√
1− η/2)2, and the full analytical approximations

for ϕ∗ and ϕend can be found in Appendix A, where they
are given by Eqs. (A.2)-(A.5). Combining the expres-
sions above with expression (8) for the curvature power
spectrum, we find that the inflaton normalization scale
is proportional to λ, which is in turn proportional to α
and given by

λ ' 24απ2AS∗
N2
∗

. (14)

We now calculate the number of e-folds, N∗, assuming
that there is no additional entropy injection between the
end of reheating and when the horizon scale k∗ reenters
the horizon [24, 25]:

N∗ = ln

[
1√
3

(
π2

30

)1/4(
43

11

)1/3
T0
H0

]
− ln

(
k∗
a0H0

)
− 1

12
ln greh

+
1

4
ln

(
V 2
∗

M4
P ρend

)
+

1− 3wint

12 (1 + wint)
ln

(
ρrad
ρend

)
,

(15)
where the present Hubble parameter and photon tem-
perature are given by H0 = 67.36 km s−1 Mpc−1 [26] and
T0 = 2.7255 K [27]. Here, ρend and ρrad are the energy
density at the end of inflation and at the beginning of the
radiation domination era when w = p/ρ = 1/3, respec-
tively, a0 = 1 is the present day scale factor, greh = 915/4
is the effective number of relativistic degrees of freedom
in the minimal supersymmetric standard model (MSSM)

at the time of reheating, and the equation of state pa-
rameter averaged over the e-folds during reheating is

wint ≡
1

Nrad −Nend

∫ Nrad

Nend

w(n) dn . (16)

Using the numerical values given above with the Planck
pivot scale k∗ = 0.05 Mpc−1, 8 we find the following
value for the sum of the first two lines in (15): N∗ '
61.04 + · · · . Mechanisms for producing a baryon asym-
metry (such as leptogenesis) are simplified when Treh &
the electroweak scale. Accordingly, we also display re-
sults for a reheating temperature Treh = TEW ∼ 100
GeV, whilst acknowledging that lower reheating temper-
atures are possible. For Treh = TEW we take the Stan-
dard Model value for greh = 427/4, and find NEW =
61.10 + · · · . The minimum reheating temperature that
is compatible with Big Bang Nucleosynthesis (BBN) is
Treh & O(1) MeV. Using TBBN = 2 MeV in our numer-
ical analysis, corresponding to greh = 10.75, the sum of
the first two lines of (15) takes the following numerical
value: NBBN ' 61.29 + · · · .

To calculate the values of N∗, NEW and NBBN nu-
merically, we use the following equations that govern the
cosmic background dynamics:

ρ̇ϕ + 3Hρϕ = −Γϕρϕ , (17)

ρ̇r + 4Hρr = Γϕρϕ , (18)

ρϕ + ρr = 3M2
PH

2 , (19)

d

dt
(Nwint) = Hw , (20)

where ρϕ and ρr are the energy densities of the infla-
ton and produced radiation, respectively, and Γϕ is the
inflaton decay rate given by

Γϕ =
y2

8π
mϕ , (21)

where y is a Yukawa-like coupling, and we find the fol-
lowing masses in the inflationary attractor potentials (1)
and (2):

mϕ =

√
λ

α
MP , (α-Starobinsky) (22)

mϕ =
1

2

√
λ

α
MP . (T Model) (23)

III. REHEATING

The reheating process occurs after the end of infla-
tion in a matter-dominated background. As the infla-
ton starts to decay, the dilute plasma reaches a maxi-
mum temperature, Tmax [28, 29], and subsequently starts

8 We note that when we calculate the tensor-to-scalar ratio r0.002
numerically, we evaluate N∗ at the pivot scale k∗ = 0.002 Mpc−1.
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falling as T ∝ a−3/8. The reheating temperature is de-
fined through [30, 31]

π2grehT
4
reh

30
=

12

25
(ΓϕMP )

2
, (24)

when the energy density of the inflaton is equal to the
energy density of radiation, corresponding to

Treh ' 1.9× 1015 GeV · y · g−1/4reh

(
mϕ

3× 1013 GeV

)1/2

.

(25)
In order to evaluate the constraint on Treh from over-
production of supersymmetric dark matter in scenarios
where the gravitino is lighter than Treh, we use the ex-
pression [29, 32]9

Y3/2(T ) = 0.00336

(
1 + 0.51

m2
1/2

m2
3/2

)(
Γϕ
Mp

)1/2

, (26)

where Y3/2 ≡ n3/2/nrad is the gravitino yield, nrad =

ζ(3)T 3/π2, m3/2 the gravitino mass, and m1/2 the gluino

mass [33–35]. Disregarding the term m2
1/2/m

2
3/2 in

(26) and using the observed dark matter density today,
ΩCDMh

2 ' 0.12, we find the following upper limit on the
Yukawa-like inflaton coupling, assuming that the grav-
itino decays after the lightest supersymmetric particle
(LSP) decouples,

|y| < 9.2× 10−8

√
MP

mϕ

(
100 GeV

mLSP

)
, (27)

where mLSP is the mass of the LSP and the inflaton
masses for the different inflationary attractor potentials
are given by Eqs. (22) and (23).10 We note that, since
mϕ ∝ 1/

√
α, |y| ∝ α1/4.11

In high-scale supersymmetry models in which the grav-
itino mass may be significantly larger than the elec-
troweak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair-produced via its longitudinal components
[37]. In such a scenario, we find [38]

Ω3/2h
2 ' 0.12

(
|y|

3.0× 10−7

)19/5(
mϕ

3× 1013 GeV

)67/10

×
(

0.1 EeV

m3/2

)3(
0.030

α3

)16/5

,

(28)

9 We use here an analytical approximation since there is only a
0.03 % difference between the analytical and fully numerical cal-
culation.

10 If the gravitino is the LSP, the second term in the brackets in
(26) must be taken into account, and the constraint on y depends
on the ratio m1/2/m3/2.

11 For another recent analysis of gravitino constraints in light of the
BICEP/Keck results, see [36].

wherem3/2 is the gravitino mass and α3 is the strong cou-
pling. Using the observed dark matter abundance today
to constrain Ω3/2h

2, we find that avoiding overproduc-
tion of dark matter imposes the following bound:

|y| < 6.6× 10−16
(
MP

mϕ

)67/38 ( m3/2

0.1 EeV

)15/19
. (29)

We note that in a non-supersymmetric theory there
would, in general, be a lower limit on y due to the fact
that it generates radiative corrections ∝ y4 in the ef-
fective inflaton potential [39]. However, this is not the
case in supersymmetric models such as those discussed
above, where these radiative corrections cancel down to
the level of the relatively small supersymmetry-breaking
effects [40].

IV. RESULTS

We solve the cosmic background equations (17)-(20)
numerically to determine the number of e-folds N∗, NEW,
and NBBN. In the α = 1 case, the procedure of calcu-
lating the analytical approximations for N∗ is given in
Appendix A (see Eqs. (A.11) and (A.12)). The full nu-
merical computation of the CMB observables is discussed
in Appendix B.

Figure 1 summarizes our numerical results based on
the analysis of [3]: those for α-Starobinsky models are
shown in the upper pair of panels and those for T mod-
els in the lower pair. For each of the two models, we
derive limits on N∗ from the requirements that Treh > 2
MeV (100 GeV) and the supersymmetric relic density
when mLSP = 100 GeV. The former gives a lower limit
to N∗, while the latter gives an upper limit. We also de-
rive the corresponding limits on y. These are compared
to the 68% and 95% C.L. limits on N and y from the
BICEP/Keck constraints on ns. For α = 1, we find the
following limits:

α-Starobinsky :

41.8(45.6) < N∗ < 51.8,

1.7× 10−18(1.6× 10−13) < |y| < 2.6× 10−5,

N68% = 50.9, N95% = 45.9,

Treh, 68% = 8.7× 108 GeV, Treh, 95% = 2.4× 102 GeV,

y68% = 1.7× 10−6, y95% = 3.8× 10−13, (30)

T Model :

42.0(45.8) < N∗ < 52.1,

2.3× 10−18(2.2× 10−13) < |y| < 3.6× 10−5,

N68% = 52.6, N95% = 47.5,

Treh, 68% = 5.9× 1010 GeV, Treh, 95% = 1.4× 104 GeV,

y68% = 1.7× 10−4, y95% = 3.6× 10−11. (31)
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We note that the first two lines do not depend on the
BICEP/Keck constraints, since these limits are derived
from the conditions Treh > 2 MeV (100 GeV) (smaller
limit) and mLSP = 100 GeV (larger limit). The dark
(light) blue regions in the left panels are the 68 (95) %
C.L. regions of the (ns, r0.002) planes favoured by a global
analysis of the CMB and BAO data.

We also show in the left panels of Fig. 1 dotted contours
corresponding to 60 and 50 e-folds, solid lines correspond-
ing to the maximum number of e-folds consistent with
y ≤ 1, and the minimum number of e-folds consistent
with Treh > TBBN and TEW, as well as the dark matter
density constraints for a LSP mass of 100 GeV. The cor-
responding limit for a gravitino mass of 108 GeV in the
high-scale supersymmetry case would lie roughly midway
between the mLSP = 100 GeV and N∗ = 50 lines. For the
α-Starobinsky (T models) we shade in red (orange) the
preferred region respecting the constraint Treh > TEW

and the relic density constraint with mLSP = 100 GeV.
In the upper left panel we also show lines correspond-
ing to α = 1 and 12, the latter being the largest value
allowed at the 68% C.L. for mLSP = 100 GeV, and
α = 26, the largest value allowed at the 95% C.L. for
mLSP = 100 GeV. We see in the lower left panel that
values of α ∈ (1.3, 5.1) are consistent with the data at
the 68% C.L. if mLSP = 100 GeV, and values of α ≤ 11
are allowed at the 95% C.L.

The right panels of Fig. 1 show the (y(Treh), N0.05(ns))
planes for the α-Starobinsky models and T models. The
left-most vertical lines (red) correspond to the minimum
values of y allowed by BBN, the middle vertical lines
(grey) correspond to Treh = TEW, and the right-most
vertical lines (purple) correspond to the maximum val-
ues allowed for mLSP = 100 GeV. We assume α = 1 when
plotting the parameters and constraints. The constraints
would each move to the right (towards larger values of
y and Treh) with decreasing values of α, though their
dependences are weak. The diagonal lines are the pre-
dictions of the α-Starobinsky and T models for α = 0.1
(dashed lines), 1 (solid lines) and 5 (dotted lines). Fi-
nally, we show as horizontal lines the lower limits on n0.05
at the 68 and 95% C.L. We see that the 68% lower limit of
N0.05 requires y > 1.7×10−6 in the α-Starobinsky model
and y > 1.7 × 10−4 for the T-Starobinsky model, both
for α = 1. This implies a lower limit to the reheating
temperature of 8.7×108 GeV and 5.9×1010 GeV for the
α-Starobinsky models and T models, respectively. This
limit is relaxed at the 95 % C.L., where the lower limit
on the reheating temperature drops to 2.4× 102 GeV in
the α-Starobinsky models and 1.4 × 104 GeV for the T
models.

We assumed in the above analysis that generation of
a factor ∆ of entropy subsequent to inflaton decay could
be neglected. However, this may not be the case, e.g., in
models with additional phase transitions at temperatures
between Treh and TEW, such as those based on flipped
SU(5) GUTs [41]. In this case there would be a modifi-

cation to the calculation of N∗ in Eq. (15) in the form of
an extra term − 1

3 ln ∆ in the right-hand side. This would
in turn modify the left panels of Fig. 1, e.g., the TBBN

and TEW constraints would move to lower ns, as would
the y = 1 line, whereas the N50 and N60 lines would
be unchanged, as would the LSP density constraint. As
entropy generation would allow a higher initial gravitino
abundance, and thus a higher reheating temperature, the
contribution toN∗ from reheating is exactly compensated
by the contribution from ∆. In addition, the lines of fixed
α are unchanged. The net result would be to expand the
favoured regions of the (ns, r0.002) planes towards lower
values of ns, while keeping the same overlaps with the
regions of the planes favoured by the BICEP/Keck and
other constraints at the 68% C.L. However, this would
require higher reheating temperatures.

Fig. 2 shows analogous results based on the analysis in
[4]. Since this work provides limits on r using 0.05 Mpc−1

for the pivot scale, we have recalculated the theory curves
accordingly, although the difference is quite small. What
is more striking is the difference in the 68% and 95%
lower limits to ns. These are shifted slightly to smaller
values and, as one can see in Fig. 2, a large portion of the
red-shaded region (between TEW and the 100 GeV relic
density limit) now overlaps the 68% C.L. observational
region (dark blue). In the right panels, we see that the
weaker lower limits on ns reduce the lower limits on N0.05

and hence allow a smaller inflaton coupling to matter
and a lower reheat temperature. However, the allowed
ranges for α are only slightly modified: (0.4, 12) and (0,
24) for the α-Starobinsky model at 68% and 95% C.L.,
respectively, and (0.5, 7) and (0, 12) for the T model.

The modified limits analogous to Eqs. (30) and (31)
for α = 1 are

α-Starobinsky :

N68% = 47.9, N95% = 42.9,

Treh, 68% = 9.8× 104 GeV, Treh, 95% = 0.031 GeV,

y68% = 1.9× 10−10, y95% = 2.8× 10−17, (32)

T Model :

N68% = 49.4, N95% = 44.6,

Treh, 68% = 4.4× 106 GeV, Treh, 95% = 2.0 GeV,

y68% = 1.2× 10−8, y95% = 4.0× 10−15. (33)

The limits on N∗ and y from limits to Treh and the
relic density are unaffected by the choice of data analysis
and are not repeated.

V. DISCUSSION

As can be seen from the left panels of Figs. 1 and 2,
the primary driver of the upper limits on α is the new
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α-Starobinsky
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FIG. 1. Illustrations of the impacts of the BICEP/Keck and other constraints on α-Starobinsky models (upper panels) and T
models (lower panels) based on the analysis of [3]. The left panels compare the observational 68% and 95% C.L. constraints in
the (ns, r) plane (using pivot scales 0.002 for r and 0.05 for ns) with the model predictions for different numbers of e-folds N50,60,
showing also the predictions for an inflaton coupling y = 1, the constraints from Treh ≥ TBBN and TEW, and the constraints
if the LSP mass is 100 GeV. The right panels display (y,N) planes (using the pivot scale 0.05), showing the relations between
y and Treh and between N and ns, and the values α = 0.1, 1, 5 (dashed, solid and dotted black lines). We also include lower
limits on y from BBN (red line), Treh = TEW (grey line), and gravitino production (purple line) for α = 1, which increase for
smaller α, and 68% and 95% C.L. lower limits on N0.05 from BICEP/Keck and other data (blue lines).

upper limit on r, whereas the constraint on ns is the
primary driver of the lower limit on the number of e-
folds. In both the α-Starobinsky and T models there is
also an upper limit on the number of e-folds due to re-
quiring the inflaton decay coupling y . O(1), namely,
N∗ . 56 as seen in the right panels of the figures, which
restricts ns to the left halves of the preferred ovals in
the left panels of Figs. 1 and 2. In both cases, cou-
plings near or at this upper limit lead to observables
closest to the central value of the confidence contours.
This indicates that the updated constraints in ns favour
scenarios for which radiation domination is almost imme-
diately reached after the end of inflation. We note that

such a thermal history is always realized regardless of the
inflaton-Standard Model couplings if the inflationary po-
tential is quartic near its minimum, as is the case of Higgs
inflation [6], WIMPflation [42] or T models of the form

V ∼ tanh4(ϕ/
√

6αMP ) [30, 43]. For quartic minima,
N∗ ' 56, independent of the reheating temperature.

The values of the effective Yukawa coupling y dis-
favoured by electroweak scale gravitino overproduction,
shown in purple in Figs. 1 and 2, correspond coinciden-
tally to the domain of non-perturbative particle produc-
tion (preheating). Indeed, for y & 10−5, efficient para-
metric resonance will be present during the early stages of
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FIG. 2. Illustrations of the impacts of the BICEP/Keck and other constraints on α-Starobinsky models (upper panels) and T
models (lower panels) based on the analysis of [4]. The left panels compare the observational 68% and 95% C.L. constraints in
the (ns, r) plane (using pivot scales 0.05 for both r and ns) with the model predictions for different numbers of e-folds N50,60,
showing also the predictions for an inflaton coupling y = 1, the constraints from Treh ≥ TBBN and TEW, and the constraints if
the LSP mass is 100 GeV. The right panels display (y,N) planes (using the pivot scale 0.05), showing the relations between y
and Treh and between Nand ns, and the values α = 0.1, 1, 5 (dashed, solid and dotted black lines). We also include lower limits
on y from BBN (red line), Treh = TEW (grey line), and gravitino production (purple line) for α = 1, which increase for smaller
α, and 68% and 95% C.L. lower limits on N0.05 from BICEP/Keck and other data (blue lines).

reheating, for either fermionic or bosonic inflaton decay
products [44–48]. However, this effect is not necessarily
reflected in the CMB observables. In the case of fermionic
preheating, the expansion history during reheating (and
hence wint and ρrad) is not affected unless y ∼ O(1). The
resulting Pauli suppression of particle production sim-
ply reduces the energy density of radiation relative to
the value predicted by (18) for a time much shorter than
the duration of reheating [48]. Hence our results for N∗
shown in the left panels of Fig. 1 would be mostly un-
changed in this fermionic case. In the case of bosonic pre-
heating, the efficiency of non-perturbative particle pro-
duction depends on the resonance band structure of the

coupling. If the backreaction regime is reached, transient
radiation-dominated stages can occur during reheating,
modifying wint and hence our predictions [48, 49]. How-
ever, we do not delve here into this model-dependent
issue. Finally, for attractors with quadratic minima,
the self-interaction of the inflaton does not disrupt the
matter-like oscillation of the inflaton condensate during
reheating [50].

Turning to the future, we note that the experiments
CMB-S4 [51] and LiteBIRD [52] will target primarily the
search for B-modes in the CMB and will impose strong
constraints on r, with the potential to reduce substan-
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tially the uncertainty in r, by a factor O(2). Such a
measurement will reduce the uncertainty in α to a sim-
ilar value, constraining significantly string models of in-
flation. Unfortunately, the ability of these experiments
to constrain ns is limited. However, this is an important
objective for the future, as ns is related directly to the
magnitude of the coupling between the inflaton and mat-
ter, whose understanding will be key for connecting the
theory of inflation to laboratory physics.
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APPENDICES

A. Analytical approximations

As stated in the main text, the power spectrum and
reheating constraints summarized in Fig. 1 have been ob-
tained numerically. In this Appendix we provide analyt-
ical approximations to the relevant inflationary quanti-
ties.

The end of inflation corresponds to the end of the
epoch of accelerated expansion, i.e., ä = 0 or εH = 1,
where εH = −Ḣ/H2 is the first Hubble flow function.
In terms of the potential slow-roll parameters (4), it can
be shown that the end of inflation occurs approximately
when [23]

ε ' (1 +
√

1− η/2)2 . (A.1)

This expression can be used to obtain the following
closed-form estimates for the value of the inflaton field

at the end of inflation for α-Starobinsky models,

ϕend

MP
'
√

3α

2
ln

[
2(6α+ 3

√
3α− 2)

12α− 1

]
, (A.2)

and for T models,

ϕend

MP
'
√

3α

2
ln

[
4− 6

√
α(5 + 4α)

1− 12α

+

√
75

5 + 68α+ 16
√
α(5 + 4α)

]
.

(A.3)

As expected, for α = 1, we recover Eqs. (12) and (13).
Compared to the exact values, the analytic approxima-
tions have errors of 2% (2%, 4%) for α = 1 (0.1, 10) in
the case of α-Starobinsky models, and of 5% (3%, 5%)
for α = 1 (0.1, 10) for T models.

The value of the inflaton field at the moment when
the pivot scale crosses the horizon can be estimated by
integrating Eq. (5). In the case of α-Starobinsky models,

ϕ∗
MP

'
√

3α

2

[
1 +

3α

4N∗ − 3α

]
× ln

(
4N∗
3α

+ e
√

2
3

ϕend
MP −

√
2

3

ϕend

MP

)
, (A.4)

and for T models,

ϕ∗
MP

'
√

3α

2
cosh−1

[
4N∗
3α

+ cosh

(√
2

3α

ϕend

MP

)]
.

(A.5)

For 40 < N∗ < 60 the relative errors are at most 0.3%
(0.3%, 3%) for α = 1 (0.1, 10) in the α-Starobinsky case,
and 0.5% (0.4%, 0.7%) for α = 1 (0.1, 10) in the case of
T model inflation.

The logarithm of the so-called reheating parame-
ter [25],

lnRrad ≡ ln

[
aend
arad

(
ρend
ρrad

)1/4
]

(A.6)

=
1− 3wint

12(1 + wint)
ln

(
ρrad
ρend

)
, (A.7)

may be estimated by noting that the energy density of the
relativistic inflaton decay products, assuming a constant
decay rate Γϕ, can be written as [23]:

ρrad = ρend

(
aend
arad

)4 ∫ vrad

0

(
a(u)

aend

)
e−udu , (A.8)

where v ≡ Γϕ(t − tend). Approximating the equation-
of-state parameter as w ' 0 during reheating, we can
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further write

a(t)

aend
'

(√
3

4
ρend

t− tend
MP

) 2
3

=

(
3Hendv

2Γϕ

) 2
3

. (A.9)

Substitution of (A.9) into (A.8) and subsequently into
(A.6) results in the following simple approximation for
the reheating parameter,

lnRrad '
1

6
ln

(
Γϕ
Hend

)
. (A.10)

This result allows us to write simple analytical expres-
sions for the number of e-folds after horizon crossing as
functions of the effective Yukawa coupling responsible for
reheating. As an example for α = 1, substitution of
(A.2), (A.4) and (A.10) into (15) gives

N∗ ' 57.68− 1

2
lnN∗ +

1

3
ln y − 1

12
ln greh , (A.11)

for α-Starobinsky models at the pivot scale k∗ =
0.05 Mpc−1, and for T models

N∗ ' 57.82− 1

2
lnN∗ +

1

3
ln y − 1

12
ln greh . (A.12)

In the range of values shown in the left panels of Fig. 1,
the maximum differences of these approximations from
the full numerical results are 0.2% (0.1%) for the α-
Starobinsky models (T models).

For other analyses of reheating in attractor models, see
[45, 53].

B. Computing the CMB observables

In order to compute accurately the inflationary observ-
ables, in particular the scalar tilt ns, we have integrated
the linear equations for the curvature fluctuation numeri-
cally. To calculate the gauge-invariant Mukhanov-Sasaki
variable Q,12 we integrate the equation of motion [54, 55],

Q̈+ 3HQ̇+

[
k2

a2
+ 3ϕ̇2 − ϕ̇4

2H2
+ 2

ϕ̇Vϕ
H

+ Vϕϕ

]
Q = 0 ,

(B.1)
with the Bunch-Davies initial condition Qk�aH =
e−ikτ/a

√
2k, where dτ = dt/a is the conformal time. The

corresponding metric fluctuation and its power spectrum
are in turn given by

R =
H

|ϕ̇|
Q , (B.2)

〈R(k)R∗(k′)〉 =
2π2

k3
PRδ(k − k′) . (B.3)

12 In the Newtonian gauge, Q = δϕ+ ϕ̇
H

Ψ, where δϕ and Ψ denote
the field and the metric perturbations, respectively.

The scalar tilt is then computed using its definition,

ns = 1 +
d lnPR
d ln k

, (B.4)

and the tensor-to-scalar-ratio is

r =
PT
PR

, (B.5)

where in the case of the tensor spectrum we take the
horizon-crossing value PT = 2H2/π2.

Comparing the numerical results obtained by the pro-
cedure above with the slow-roll approximations (6) and
(7) we find a discrepancy & 1 e-fold for N∗ = N∗(ns), see
the dashed line in Fig. 3. This difference can be reduced
if, instead of the potential slow-roll parameters (4) one
uses the Hubble slow-roll parameters,

εH = −Ḣ
H
, ηH = 2εH −

˙εH
2εHH

, (B.6)

see the dotted line in Fig. 3.

40 45 50 55 60

0.950

0.955

0.960

0.965

FIG. 3. The scalar tilt ns as a function of the number of e-
folds after horizon crossing, N∗, for the α-Starobinsky model
with α = 1. The continuous blue line is the numerical solu-
tion of Eqs. (B.1)-(B.4). The dotted grey line is the slow-roll
approximation (6) with the Hubble parameters εH , ηH defined
in (B.6). The dashed black line is the slow-roll approximation
(6) calculated using the potential parameters ε, η defined in
(4).

This difference remains even when the higher-order
slow-roll corrections are included. Ultimately, it is due
to the fact that curvature modes do not immediately
freeze upon leaving the horizon, which corresponds to
the condition k = aH. Hence there is always a shift
between the approximate horizon-crossing value, used in
our semi-analytical estimates, and the final “freeze-out”
values used in our full numerical results, in particular in
Fig. 1.
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[38] M. A. G. Garćıa and M. A. Amin, Phys. Rev. D 98,

no.10, 103504 (2018) [arXiv:1806.01865 [hep-ph]].
[39] M. Drees and Y. Xu, JCAP 09 (2021), 012

[arXiv:2104.03977 [hep-ph]].
[40] J. R. Ellis, D. V. Nanopoulos, K. A. Olive and K. Tam-

vakis, Phys. Lett. B 118 (1982), 335; Nucl. Phys. B 221
(1983), 524-548; Phys. Lett. B 120 (1983), 331-334.
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