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Abstract

We explore the sensitivity to new physics (NP) in the associated production of top-quarks with leptons 
pp → t t̄�+�−, which leads to the multi-leptons signals pp → n� +jets+ �ET , where n = 2, 3, 4. The NP 
is parameterized via 4-Fermi effective t t̄�+�− contact interactions of various types, which are generated 
by multi-TeV heavy scalar, vector or tensor exchanges in t t̄ → �+�−; we focus on the case of � = e, μ. 
We match the 4-Fermi t t�� terms to the SMEFT operators and also give examples of specific underlying 
heavy physics that can generate such terms. Analysis of the SM signals and corresponding backgrounds 
shows that the di-lepton and tri-lepton channels are much better probes of the effective t t̄ �+�− 4-Fermi 
terms than the four-lepton one at the 13 TeV LHC. Therefore, the best sensitivity is obtained in the di-
and tri-lepton channels, for which the dominant background pp → t t̄ and pp → WZ, respectively, can be 
essentially eliminated after applying the 2� and 3� selections and a sufficiently high invariant mass selection 
for the opposite sign same flavor (OSSF) lepton-pair. We explore two cases: lepton flavor universal (LFU) 
NP where the t tee and t tμμ contact interactions are of same size and LFU violating (LFUV) NP, where 
the scale of the t tμμ terms is assumed to be much lower. We show that in both cases it is possible to obtain 
new 95% CL bounds on the scale of the t t�� contact interactions at the level � � 2 − 3 TeV, which are 
considerably tighter than the current bounds on these 4-Fermi terms.

* Corresponding authors.
E-mail addresses: yoavafik@gmail.com (Y. Afik), shaouly@physics.technion.ac.il (S. Bar-Shalom), 

kpal002@ucr.edu (K. Pal), adlersoni@gmail.com (A. Soni), jose.wudka@ucr.edu (J. Wudka).
https://doi.org/10.1016/j.nuclphysb.2022.115849
0550-3213/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2022.115849&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2022.115849
http://www.elsevier.com/locate/nuclphysb
mailto:yoavafik@gmail.com
mailto:shaouly@physics.technion.ac.il
mailto:kpal002@ucr.edu
mailto:adlersoni@gmail.com
mailto:jose.wudka@ucr.edu
https://doi.org/10.1016/j.nuclphysb.2022.115849
http://creativecommons.org/licenses/by/4.0/


Y. Afik, S. Bar-Shalom, K. Pal et al. Nuclear Physics B 980 (2022) 115849
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Matching: SMEFT and the underlying new physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Current bounds on t t�� 4-Fermi operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5. Signal and background analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1. Calculation setup and numerical session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2. Simulated event samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3. Event selection and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4. Domain of validity of the EFT setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1. Cut-and-count study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2. Ratio observables and LFUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Appendix A. Cut-flow tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1. Introduction

Third generation fermions are a promising window to potential new physics (NP) that under-
lies the Standard Model (SM). This is best manifested for the 3rd generation quark doublet and, 
in particular the top-quark, which is significantly heavier than all other quarks and is, therefore, 
expected to be the most sensitive to NP of a higher scale, such as new flavor physics [1–18]
and CP-violation beyond the SM [19]. For this reason, model independent studies in the Ef-
fective Field Theory (EFT) approach have been widely applied to top physics in the past two 
decades [20–52]. Global and comprehensive EFT studies of various types of higher dimensional 
operators involving the top-quark field(s) can be found in [21–23,26–30,52–54]. The effects of 
(2-quarks)(2-leptons) 4-Fermi operators (which are of interest in this study) had been recently 
studied also in [21,51,52,55–64]; the t t�� class of operators is, however, poorly bounded as will 
be further discussed below.

Furthermore, persistent hints for NP involving the 3rd generation quark-doublet and lepton 
flavor universality violation (LFUV) have been emerging in the past decade in B-decays [65–
67]. Some of the notable ones are the ratios �(B → K(∗)μμ)/�(B → K(∗)ee) (= RK(∗) ) and 
to some degree the decay B0

s → μ+μ−, all associated with b → sμ+μ− transitions, as well 
as the ratio RD(∗) which occurs in the SM via tree-level b → c�−ν� (see also [68–89]). These 
LFUV signals may also imply that lepton flavor violation (LFV) effects can be sizable, i.e., 
much larger than expected in the SM [90]. In addition, the recently confirmed [91] muon g − 2
anomaly and also recent interesting measurements (although with less statistical significance) 
that have been reported by ATLAS [92,93] and CMS [94] in unequal production of di-muons 
2
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versus di-electrons, provide further hints for possible NP involved in high-pT lepton production, 
and may also indicate that LFUV NP may be mediated by new TeV-scale states of the underlying 
heavy theory; potentially in interactions between the 3rd generation quarks and the electrons and 
muons.

Indeed, in previous recent papers [55–58] we have explored the NP effects of higher-
dimensional 4-Fermi interactions involving 3rd generation quarks and a pair of electrons and/or 
muons, on scattering processes at the LHC which lead to multi-leptons final states in asso-
ciations with the 3rd generation quarks. In particular, the flavor changing bs�� leading to 
pp → �+�− + jb (jb = b-jet) [55], the SU(2) related tc�� (and also tu��) leading to e.g., 
pp → �+�− + t [58] as well as the flavor diagonal bb�� leading to e.g., pp → �+�− + jb or 
pp → �+�− + 2jb [56,57].

In this paper we expand these studies and consider the effects of the (poorly constrained - see 
below) t t�� 4-Fermi contact terms on multi-lepton production in association with a top-quark 
pair (or a single-top) at the LHC. We note (as further discussed below) that one-loop effects 
of higher-dimensional 4-Fermi operators involving the top-quark, in particular the t t�� ones, 
can also address the g − 2 [95,96] and possibly the B-physics anomalies [97–100] when the 
NP scale is O(TeV), potentially open to direct observation. In contrast, tree-level contributions 
from effective operators (e.g., operators generating a b → s�� vertex) require a NP scale in the 
20 − 40 TeV range. Indeed, we find that the multi-lepton signals which we study in this paper 
are sensitive to the t t�� contact interactions if their scale is � ∼ few TeV.

Finally, we emphasize that while we are, to some degree, motivated by the above mentioned 
few σ deviations seen in B-physics lepton universality tests and also in muon (g − 2) anomaly 
as hints of NP, our collider based search for beyond the SM (BSM) physics in multi-lepton final 
states is cast in more general terms. In particular, this search is designed for both lepton flavor 
diagonal as well as off-diagonal final states, but restricted in this study to comparing muons with 
electrons only. In fact such comparisons have been of interest for a very long time (see e.g. [101]).

2. Theoretical framework

We adopt the parameterization used in [58,102] and [103,104] for the effective Lagrangian of 
the flavor changing (FC) t ū�+�− and flavor diagonal t t̄�+�− contact terms, respectively:

Lt t�� = 1

�2
�

∑
i,j=L,R

[
V �

ij

(
�̄γμPi�

) (
t̄γ μPj t

) + S�
ij

(
�̄Pi�

) (
t̄Pj t

)

+ T �
ij

(
�̄σμνPi�

) (
t̄σμνPj t

)]
, (1)

where PL,R = (1 ∓ γ5)/2 and V �
ij , S�

ij , T �
ij are the dimensionless couplings of the vector, scalar 

and tensor 4-Fermi interactions, respectively. As mentioned before throughout this work we will 
focus only on the NP involving electrons and muons, i.e., the t tμμ and t tee terms, and assume 
that the scale of the corresponding LFV, off-diagonal in flavor, 4-Fermi interactions, t tμe, is 
much higher so that the effects of such LFV 4-Fermi operators can be neglected.

The scale of the underlying NP involving electrons and muons may be different; a lower scale 
for the NP involving muons provides a very reasonable interpretation of the above mentioned 
anomalies in B-decays and the muon g − 2. Thus, in what follows, we will explore two cases: 
LFU NP where �e = �μ and LFUV muon-filic NP where �μ � �e, for which case the leading 
effect of the tree-level exchanges of the heavy states is manifest in the t tμμ contact terms.
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Fig. 1. Representative lowest-order SM Feynman diagrams for top-quark pair + di-lepton production, pp → t t̄�+�− .

We will consider below the effects of these new t t�� contact interactions (� = μ, e) in top-
quark pair production in association with a pair of opposite-sign (OS) leptons (see Figs. 1 and 2
for representative SM and NP diagrams for these processes, respectively)1:

pp → t t̄�+�− ,

pp → t (t̄)�+�− + jb + j , (2)

leading to the following di-lepton, tri-lepton or four-leptons signals (j = light-jet and jb = b-jet):

(t t��)2� ≡ pp → �+�− + 2 · jb + 4 · j ,

(tt��)3� ≡ pp → �′±�+�− + 2 · jb + 2 · j + �ET ,

(tt��)4� ≡ pp → �′±�′′∓�+�− + 2 · jb + �ET ,

(t��)2� ≡ pp → �+�− + 2 · jb + 3 · j ,

(t��)3� ≡ pp → �′±�+�− + 2 · jb + j + �ET , (3)

depending on the top-quarks decay channels: (t t��)2� when the t t̄ pair decay hadronically via 
t t̄ → bb̄W+W− → 2jb + 4j , (t t��)3� when one top decays leptonically via t → bW → jb +
�′ + �ET and (t t��)4� when both tops decay leptonically t t̄ → bb̄W+W− → 2jb + �′±�′′∓ + �ET . 
Similarly, in the single-top channels: (t��)2� when the top (or anti-top) decays hadronically and 
(t��)3� when it decays leptonically. For example, in the LFUV muon-filic NP case we have 
2� = μ+μ−, 3� = μ±μ+μ−, e±μ+μ− and 4� = μ+μ−μ+μ−, e+e−μ+μ−, e±μ∓μ+μ−. We 
note that the di-lepton channel was extensively studied in the past few years as a potential 
probe of high-pT NP and LFUV effects at the LHC, both experimentally [92–94] and theo-
retically [55–58,63,67,105–110]. Furthermore, the tri- and four-leptons channels were recently 
analyzed in searches for the classic t t̄Z, t t̄W [111,112] and t t̄H [113,114] top signals, as well 
as the interesting 4-tops (pp → t t t̄ t̄) signal [115,116]. They are also useful for generic NP 

1 The single-top production channel in association with di-leptons: pp → t�+�− + jb + j (and the charged conjugate 
channel) via the underlying Wb scattering process Wb → t → t�+�− , is also generated by the new t t�� interactions 
in Eq. (1) and are included in our analysis, although their relative contribution to the di- and tri-leptons signals considered 
here is considerably smaller.
4
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Fig. 2. Representative Feynman diagrams of O(1/�2) for top-quark pair + di-lepton production pp → t t̄�+�− . The 
dimension six 4-Fermi interaction is marked by a heavy dot.

searches [117,118] and, although they are flavor-blind, they can also be very effectively used 
to search for FCNC physics in the top sector [50,58].

We find that (at least at the 13 TeV LHC) the four-leptons channel, (t t��)4�, is significantly 
less sensitive to the NP effect generated by the t t�� 4-Fermi interactions than the di- and tri-
lepton channels, (t t��)2� and (t t��)3�, respectively. Indeed, as will be shown below, the new 
4-Fermi t t�� interactions can be very efficiently isolated from the SM background as well as from 
other potential sources of NP in the di- and tri-leptons channels (t t��)2� and (t t��)3� in Eq. (3), 
by selecting exactly 2� and 3� charged leptons in the final state and looking at the off-Z peak 
behavior of the OSSF di-leptons in pp → t t̄�+�− along with extra selections on the accompanied 
high-pT b-tagged and light-jets.

3. Matching: SMEFT and the underlying new physics

The dimension six 4-Fermi operators in Eq. (1) can be matched to the so-called SM Effective 
Field Theory (SMEFT) framework [119–123], where the higher dimensional effective operators 
are constructed using the SM fields and their coefficients are suppressed by inverse powers of the 
NP scale �:

L = LSM +
∞∑

n=5

1

�n−4

∑
i

αiO
(n)
i , (4)

so that n is the mass dimension of the operators O(n)
i , which equals the canonical dimension for 

a decoupling and weakly-coupled heavy NP and αi are the (Wilson) coefficients which depend 
on the details of the underlying heavy theory (we give below an example of matching of the EFT 
setup to a specific underlying heavy NP scenario). The relevant SMEFT operators, which are 
related to our t t�� 4-Fermi operators in Eq. (1), are (p, r, s, t are flavor indices):

O(1)
lq (prst) = (l̄pγμlr )(q̄sγ

μqt ) ,

O(3)
lq (prst) = (l̄pγμτ I lr )(q̄sγ

μτ I qt ) ,

Oeu(prst) = (ēpγμer)(ūsγ
μut ) ,
5
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Olu(prst) = (l̄pγμlr )(ūsγ
μut ) ,

Oqe(prst) = (ēpγ μer)(q̄sγμqt ) ,

O(1)
lequ(prst) = (l̄

j
per )εjk(q̄

k
s ut ) ,

O(3)
lequ(prst) = (l̄

j
pσμνer )εjk(q̄

k
s σμνut ) . (5)

The correspondence to this parameterization to that in Eq. (1) is given by2:

VLL = α
(1)
�q − α

(3)
�q , VLR = α�u, VRR = αeu, VRL = αqe ,

SRR = −α
(1)
�equ, SLL = SLR = SRL = 0 ,

TRR = −α
(3)
�equ, TLL = TLR = TRL = 0 . (6)

The heavy physics processes that can generate the above dimension six effective operators at 
tree-level consists of exchanges of heavy vectors and scalars or their Fierz transforms. Interesting 
examples are the scalar S1, S3, R2 and vector U1 leptoquarks,3 which transform, respectively, as 
(3̄, 1, 1/3), (3̄, 3, 1/3), (3, 2, 7/6) and (3, 1, 2/3) under the SU(3) × SU(2) × U(1) SM gauge 
group. These leptoquarks are particularly interesting, as they can address the persistent RK(∗) , 
RD(∗) anomalies as well as the muon g − 2 anomaly: both RK(∗) and RD(∗) can be explained by a 
single U1 vector leptoquark [124–134], or by the scalar leptoquark pairs S1, S3 and S3, R2 [135–
141], which can also address the muon g − 2 discrepancy [95,96], see also [142–151]. These 
leptoquarks have the following couplings to a quark-lepton pair [152]4:

LS1
Y = wLq̄i,C�j εij S1 + wRūCeS1 + h.c. ,

LS3
Y = zq̄i,C�j (ετ I )ij S

I
3 + h.c. ,

LR2
Y = yqq̄ieRi

2 + yuū�j εijR
i
2 + h.c. ,

LU1
Y ⊃ xq̄γμU

μ
1 � + h.c. , (7)

where i, j are SU(2) indices and flavor indices are not specified.
Tree-level exchanges of S1, S3, R2 and U1 among the lepton-quark pairs induce (after a Fierz 

transformation) some of the dimension six 4-Fermi operators in Eq. (5) and, therefore, the scalar, 
vector and tensor operators of Eq. (1) (see Eq. (6)). In Table 1 we give the expressions of the 
operator coefficients in terms of those in Eq. (7).5 We note the following:

• Tree-level exchanges of the leptoquarks S1 and R2 (if they couple to a top-lepton pair) can 
generate both the scalar and tensor t t�� operators, i.e., those with SRR and TRR couplings. 
In addition, S1 can also generate the VLL and VRR vector operators, and R2 the VRL and 
VLR ones.

2 Note that no LL tensor or LL, LR and RL scalar terms are generated at dimension 6; they can, however, be generated 
by dimension 8 operators and thus have coefficients suppressed by ∼ (v2/�4), where v = 246 GeV is the Higgs vacuum 
expectation value.

3 Note that R2 is the only scalar leptoquark that does not induce proton decay.
4 The vector leptoquark U1 can have additional dRγμeR and uRγμνR couplings, which are not relevant for our t t��

operators.
5 A compilation of the various additional types of NP that can induce the dimension six 4-Fermi interactions in Eq. (5)

can be found in [63].
6
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Table 1
Matching leptoquarks exchanges to the 4-Fermi operators of Lt t��(V , S, T ) in Eq. (1) and to the SMEFT operators 
in Eq. (5). See also text and Eq. (7).

t t�� coupling S1 S3 R2 U1

α
(1)
�q

|wL|2/4M2 3|z|2/4M2 / −|x|2/2M2

α
(3)
�q

−|wL|2/4M2 |z|2/4M2 / −|x|2/2M2

VLL = α
(1)
�q

− α
(3)
�q

|wL|2/2M2 |z|2/2M2 / /

VLR = α�u / / −|yu|2/2M2 /
VRL = αqe / / −|yq |2/2M2 /
VRR = αeu |wR |2/2M2 / / /

SRR = −α
(1)
�equ

−wRw�
L
/2M2 / −yqy�

u/2M2 /

TRR = −α
(3)
�equ

wRw�
L
/8M2 / −yqy�

u/8M2 /

• A vector leptoquark U1 does not generate any of the scalar, vector and tensor 4-Fermi 
t t�� operators in Eq. (1), even though it contributes to the operators O(1,3)

�q . The reason 

is that VLL = α
(1)
�q − α

(3)
�q (see Eq. (6)) and α(1)

�q = α
(3)
�q if O(1,3)

�q are generated by U1. 
Note, though, that it will generate the VLL terms for the corresponding down-quark oper-
ators, e.g., 

(
�̄γμPi�

) (
b̄γ μPjb

)
and/or the flavor changing 

(
�̄γμPi�

) (
b̄γ μPj s

)
, for which 

VLL = α
(1)
�q + α

(3)
�q , see e.g., [67].

• The scalar leptoquark S1 has the same quantum numbers as the right-handed sbottom and its 
couplings to a quark-lepton pair are, therefore, the same as in the R-parity violating (RPV) 
superpotential. Indeed, the RPV setup involving the 3rd generation quarks (the so called 
RPV3 of [153]) is a natural and well motivated RPV setup (see also [154,155]) which is also 
an interesting candidate for addressing the B-physics and muon g − 2 anomalies [142,153,
156,157]. Note, though, that in this RPV3 framework the favored resolution to the muon g −
2 anomaly arises from 1-loop sneutrino exchanges [157]; the sneutrino does not, however, 
couple to up-quarks and therefore cannot generate our t t�� 4-Fermi operators.

It is interesting to note that the tensor 4-Fermi operator TRR

(
μ̄σμνPRμ

) (
t̄σμνPRt

)
is the only

t tμμ operator which can explain the muon g − 2 anomaly if � ∼ O(few TeV), its contribution 
is [95,96]:

�aμ ∼ C · TRR · 3

π2

mμmt

�2 log

(
m2

t

�2

)
(8)

where C ∼ O(0.1) if the tensor operator is generated from a tree-level exchange of the scalar 
leptoquark S1 (see Table 1).

Finally, some of the vector t tμμ operators, i.e., O�u and Oeu, involving right-handed top-
quarks and corresponding to our VLR

(
μ̄γμPL�

) (
t̄γ μPRt

)
and VRR

(
μ̄γμPR�

) (
t̄γ μPRt

)
oper-

ators, respectively, can contribute at 1-loop to the b → s�� transitions and through RGE effects 
in the SMEFT framework [99,100]. This result is of particular interest because it requires the NP 
scale to be � ∼ O(TeV) for natural couplings VLR, VRR ∼ O(1) in order to address the anoma-
lies measured in the RK(�) observables [99,100]. This suggests that the scale of these vector t tμμ

4-Fermi operators may be within the reach of the current LHC energies, in contrast to the case 
where the NP effect in b → s�� is generated at tree-level by 4-Fermi bs�� operators where the 
NP scale required to address the B-anomalies is � ∼ 40 TeV.
7
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Taking in earnest the above arguments in favor of the existence of TeV-scale scalar, tensor 
and vector t t�� 4-Fermi interactions involving right-handed top-quarks, we will focus in the rest 
of this work on the SRR , TRR and VRR tt�� operators of Eq. (1). We note that the VRR operator, 
i.e., constructed from the SU(2) singlet fields, is the only vector 4-Fermi which does not directly 
contribute to b/B-physics, see [58] and discussion below.

4. Current bounds on tt�� 4-Fermi operators

As mentioned earlier, the t t�� 4-Fermi operators of Eq. (1) are in general poorly bounded, 
primarily since they are not accessible to the “classic” signals of the top-quark: top decays and 
t t̄ pair-production which was not accessible to LEP2 energies and at the LHC is driven by gg-
and qq̄-fusion. An exception is for the operators involving left-handed quark isodoublets for 
which gauge invariance relates the t t�� and bb�� 4-Fermi FC interactions. In particular, among 
the operators in Eq. (5), the (L̄L)(L̄L) operators O(1)

lq , O(3)
lq and the (L̄R)(R̄L) one Oqe, in-

clude both the t t�� and bb�� interactions. Thus, referring to Eq. (1), it then follows that the VLL

and VRL couplings for the t and b quarks are related: VLL(tt��) = α
(1)
�q (��33) − α

(3)
�q (��33), 

VLL(bb��) = −α
(1)
�q (��33) − α

(3)
�q (��33) and VRL(tt��) = VRL(bb��) = αqe(��33), and the cor-

responding scales � are, therefore, the same.6 Thus, gauge invariance can be used to cast 
limits on the VLL and VRL tt�� operators from B-decays [158] and from high-pT di-lepton 
searches [105]: � � 1.5 − 2 TeV for the t tee and t tμμ 4-Fermi VLL and VRL terms in Eq. (1), 
for natural O(1) corresponding Wilson coefficient, see also [27,52].

A recent interesting search for top-quark production with additional leptons was preformed by 
CMS in [118], and was used to constrain several types of dimension six operators involving the 
top-quark, including the 4-Fermi t t�� ones. The typical sensitivity that they obtained is � � 500
GeV for the scalar (with SRR = 1) and vector (with Vij = 1) t t�� operators in Eq. (1) and � � 1
TeV for the tensor one (with TRR = 1).

Finally, we have performed a re-interpretation of the recent ATLAS measurements of the 3�

and 4� signals in [117] to obtain bounds on our t t�� 4-Fermi terms. In particular, we have applied 
the same set of selections and kinematic cuts that was used in this search to our NP signals in 
these multi-lepton categories, using MADGRAPH5_AMC@NLO [159] at LO parton-level as our 
events generator and DELPHES for detector simulation (see below for a detailed description of 
our simulated event samples). We then obtain the best sensitivity using their “3�, off-Z, �ET > 50
GeV” selection in the m3� > 600 GeV bin, for which ATLAS obtained a 95% CL upper limit 
on the NP event yield of N95(obs.) = 14 (see Table 5 in [160]). Thus, for example, our expected 
NP signal yield for the tensor operator with �/

√
TRR = 1 TeV (i.e., after applying exactly the 

ATLAS set of cuts and selections and with L = 140 fb−1), is NNP (�/
√

TRR = 1 TeV) = 20, so 
that, in this case also, we obtain a bound of � � (20/14)1/4 ∼ 1.1 TeV for the tensor operator 
with TRR ∼ 1 and sub-TeV level bounds for the scale of the scalar and vector operators with 
natural O(1) couplings. Note that the NP effects which we study here (from the t t�� 4-Fermi 
operators) have not been considered in these recent CMS and ATLAS searches. Indeed, as we 
show below, a significantly better sensitivity to these t t�� 4-Fermi terms can be obtained from 
a search of the pp → t t̄�+�− process with the di-, tri-lepton and four-leptons selections and 

6 Note that the correlation between operators involving the top-quark and operators involving the b-quark should be 
taken with caution, since sign differences can lead to e.g., a cancellation of effects for operators involving bL and an 
enhancement for those involving tL (or vice-versa).
8
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with proper jets multiplicity selections, as well as dedicated selections on the minimum of the 
invariant mass of the hard di-leptons from the t t�� vertex.

5. Signal and background analysis

5.1. Calculation setup and numerical session

For the cross-sections of the multi-lepton processes in Eq. (3) we will use an mmin
�� cumulative 

cross-section, selecting events with mOSSF(nt)
�� > mmin

�� :

σcum
n� ≡

∫

m
OSSF(nt)
�� ≥mmin

��

dm��

dσn�

dm��

, (9)

where mOSSF(nt)
�� is the invariant mass of the “none-top” OSSF di-leptons of the underlying hard 

process, which are produced from the t t�� vertex and not from the top-quark decays (see also 
below), and σn� is the cross-section of the n-leptons final state, e.g., σ3� corresponds to the tri-
lepton signal. In particular, mmin

�� will be selected later on to optimize the sensitivity to the NP.
The generic form of the cumulative cross-section for the multi-leptons single-top and top-pair 

production processes, in the presence of the t t�� 4-Fermi operators, is:

σcum
n� = σ

cum,SM
n� + cINT · σcum,INT

n� + cNP · σcum,NP
n� , (10)

where σcum,SM
n� , σcum,INT

n� and σcum,NP
n� are the cumulative SM, SM×NP interference and NP2

terms, respectively, and cINT, cNP are the corresponding dimensionless NP couplings, given by:

cINT cNP

scalar 0 S2
RR/�4

TeV ,

tensor 0 T 2
RR/�4

TeV ,

vector Vij /�
2
TeV V 2

ij /�
4
TeV .

(11)

In particular, no interference terms are generated for the scalar and tensor operators, while both 
constructive and destructive interference is possible for the vector operators (i.e., depending on 
the sign of Vij in Eq. (1)). As mentioned above, in the following we will study the sensitivity only 
to the SRR, VRR and TRR 4-Fermi interactions; the sensitivity and reach for the other 4-Fermi 
vector currents, VLL, VRL and VLR is similar to that of the VRR operator. We recall that the scalar 
leptoquarks S1 and R2 can generate both SRR and TRR terms, while S1 can also generate the VRR

term in Eq. (11). Also, as indicated in Table 1, the vector leptoquark U1 cannot generate any of 
the NP terms in Eq. (11).

5.2. Simulated event samples

All event samples were generated using MADGRAPH5_AMC@NLO [159] at LO parton-
level and a dedicated universal FeynRules output (UFO) model for the EFT framework was 
produced using FEYNRULES [161]. The 5-flavor scheme was used for the generation of all 
samples, both signal and background, with the NNPDF30LO PDF set [162]. The default MAD-
GRAPH5_AMC@NLO LO dynamical scale was used, which is the transverse mass calcu-
lated by a kT -clustering of the final-state partons. The events were then interfaced with the
PYTHIA 8 [163] parton shower. Events of different jet-multiplicities were matched using the 
9
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Table 2
Selections for the tri- and four-lepton events. mOSSF(nt)

��
refers to the invariant mass of the “none-top” OSSF muon 
pair, which are selected to be the OSSF di-muons with the 
smallest angular separation between them, �R. See also 
text.

Selection 2� 3� 4�

Number of leptons: exactly 2 exactly 3 exactly 4
Jet multiplicity: ≥ 3 ≥ 2 ≥ 2
Number of b-jets: ≥ 1 ≥ 1 ≥ 1

m
OSSF(nt)
��

: > mmin
��

MLM scheme [164] with the default MADGRAPH5_AMC@NLO parameters and all samples 
were processed through DELPHES 3 [165], which simulates the detector effects, applies sim-
plified reconstruction algorithms and was used for the reconstruction of electrons, muons and 
hadronic jets.

For the leptons (electrons and muons) the reconstruction was based on transverse momentum 
(pT)- and pseudo-rapidity (η)-dependent efficiency parametrization and an isolation from other 
energy-flow objects was applied in a cone of �R = 0.4 with a minimum pT requirement of 
25 GeV for each lepton. Jets were reconstructed using the anti-kt [166] clustering algorithm 
with radius parameter of R = 0.4 implemented in FastJet [167,168], and were required to have 
transverse momentum of pT > 30 GeV and pseudo-rapidity |η| < 2.4. In cases where a selection 
of a b-jet was used, the identification of b-tagged jets was done by applying a pT-dependent 
weight based on the jet’s associated flavor, and the MV2c20 tagging algorithm [169] in the 70% 
working point.

The dominant types of background processes were considered, depending on the number of 
leptons in the final state as well as the irreducible SM background from pp → t t̄Z/γ ∗ for all 
channels. In particular, we found that the dominant background for the (t t��)2� sample is pp →
t t̄ (where both top-quarks decay hadronically), for the (t t��)3� sample it is pp → WZ (where 
both vector-bosons decay leptonically) and for the (t t��)4� sample it is pp → ZZ followed by 
ZZ → 4� (see e.g., [117,118]). All other SM backgrounds (e.g., Z+jets production in the case 
of the di-lepton signal and t t̄ production in the tri-lepton channel as well as t t̄W for both the 
di- and tri-leptons channels) were found to be negligible given the selections of the analysis, as 
described next.7

5.3. Event selection and background

As noted before, in order to optimize the sensitivity to our t t ll 4-Fermi operators, we will iso-
late the NP signals in the 2�, 3� and 4� categories using a set of selections which are summarized 
in Table 2, for both the SM background and the NP signals. In particular, an important discrim-
inating variable is the invariant mass of the “none-top” OSSF muon pair mOSSF(nt)

�� , where the 
“none-top” leptons are selected to be the ones with the smallest angular separation between them, 
�R. As mentioned above, we then use a minimum value of mOSSF(nt)

�� , noted as mmin
�� , and select 

7 We note that the background from the t tW channel is comparable to the SM irreducible background from t t̄Z in the 
case of the 3� and 2� signals. However, both the t tW and the t t̄Z backgrounds are much smaller than the leading WZ

and t t̄ ones for these channels.
10



events only if mOSSF(nt)
�� ≥ mmin

�� , see also Eq. (9). For the tri-lepton and four-lepton channels, 
we also tested the invariant mass of all three and four leptons, respectively, as the discriminating 
variable, but found a reduced sensitivity to the NP in these cases, as can be seen from the lower 
plots of Fig. 3. This is because the leptons from the top-quark decay are considerably softer than 
the leptons from the “hard-process” (i.e., from the t tμμ vertex), so that the invariant mass spec-
trum of all three or four-leptons is significantly milder and is, therefore, not as effective as the 
none-top di-muons for isolating the NP signal from the SM background.

Finally, as indicated in Table 2, we require a minimum number of jets and b-tagged jets. 
For the 3� and 4� channels, we require at least two jets with at least one b-tagged jet; requiring a 
higher value of b-tagged jets in these samples was found to reduce the sensitivity due to selection 
efficiency effects. For the 2� channel, we select at least three jets, with at least one b-tagged 
jet. Here, the selection of at least three jets was found to significantly reduce the di-leptonic t t̄
background, while keeping a large fraction of the signal, as it involves a fully-hadronic top-pair 
decay.

In Fig. 3 we plot the resulting di-, tri- and four-leptons event yields for the SM irreducible 
contribution and dominant backgrounds (t t̄ , WZ and ZZ, respectively), as well as for the NP 
contributions, i.e., from the interference and pure NP parts of the cross-sections (see Eqs. (10) and 
(11)), after applying the jet selections of Table 2 and for an integrated luminosity of 3000 fb−1. 
The event yields are plotted for the cumulative cross-section of Eq. (9), as a function of the 
lower cut on invariant mass of the none-top di-muons, mmin

μμ . To demonstrate the effectiveness of 
the lower cut selection on the invariant mass of the none-top di-muons, mmin

μμ , we also show in 
Fig. 3 the event yields in the tri- and four-leptons channels, as a function of the lower cut on the 
invariant mass of all 3-leptons and 4-leptons, respectively.

We see that in all multi-lepton channels the SM irreducible part and background sharply drop 
with mmin

μμ . In particular, we find that the SM cross-section is very sensitive to the mmin
μμ selection, 

while the sensitivity of the various backgrounds (from pp → t t̄ , WZ, ZZ) to the mmin
μμ selection 

arises mainly due to our additional jet selections of Table 2.

5.4. Domain of validity of the EFT setup

The basic assumption underlying the EFT approach is that the mass of the lightest heavy 
particle from the underlying heavy theory is larger than �, so that none of these particles can 
be directly produced in the processes being investigated. This leads to the requirement �2 � ŝ, 
where 

√
ŝ is the center-of-mass energy of the hard process. Alternatively, it is required that the 

NP cross-sections do not violate tree-level unitarity bounds, which leads to similar constraints 
(for the case at hand the t t�� 4-Fermi operators generate a cross-section that grows with energy 
σNP

t t̄��
∝ ŝ). These criteria, however, are not precise enough for our purposes for the following 

reasons:

• The 4-fermion operators that we consider can be generated either by a Z-like heavy particle 
coupling to lepton and quark pairs (e.g. t t → X → ��), or by a leptoquark coupling to quark-
lepton pairs (e.g. t� → LQ→ t�). In the first case the EFT is applicable when � > mmax

�� and 
in the second case when � > mmax

t� , where mt� is the invariant mass of the top-lepton pair 
from the t t�� contact interaction.

• The constraints we derive will be on the effective scale �eff = �/
√

f , whence the EFT 
applicability conditions become �eff > mmax

�� /
√

f or �eff > mmax
q� /

√
f . Thus, the EFT 

approach remains applicable even for situations where �eff is of the same order, or even 
Y. Afik, S. Bar-Shalom, K. Pal et al. Nuclear Physics B 980 (2022) 115849
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Fig. 3. Expected number of SM, NP and Background event yields for the di-, tri- and four-leptons signals at the HL-
LHC with an integrated luminosity of L = 3000 fb−1. The event yields are plotted as a function of the lower cut on the 
invariant mass of the none-top di-muon pair mmin

2�
(upper plots) and as a function of the lower cut on the invariant mass 

of all leptons in the final state in the tri-lepton and four-leptons channels (lower plot), mmin
3�

and mmin
4�

, respectively. The 
jet selections of Table 2 for each channel are applied. See also text.
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somewhat smaller than mmax
q�, ��. This corresponds to NP scenarios with f > 1 (while still 

remaining perturbative). Note for example that applying the naive EFT validity criteria, s <

�2
eff, to the Fermi theory of weak interactions would give s < (246 GeV)2 if f = 1, but in 

reality f ∼ 0.3 and therefore s � (100 GeV)2.

Based on this we can define the region of applicability by demanding � > mmax
�� or � > mmax

q� , 
and allow �eff to be smaller than mmax

q�, �� by an O(1) factor.
To close this section we note that dimension 8 operators that interfere with the SM also gen-

erate O(�−4) contributions to the pp → t t̄�+�− cross section. These, however, can be ignored 
compared to the O(�−4) NP(dim.6)×NP(dim.6) terms that we keep, because the SM amplitude 
is much suppressed for the high mmin

�� selections that we use (see below).

6. Results

6.1. Cut-and-count study

The sensitivity to the t t�� 4-Fermi NP operators is estimated using a “cut and count” analysis, 
as described below, for the di-lepton, tri-lepton and four-lepton signals. The methods used here 
are similar to the ones used in our previous works [56,58]. For definiteness we will assume here 
that the NP couples only to muons, i.e. that the effect of the t tμμ operator dominates, but it 
should be kept in mind that a similar analysis for NP which couples to electrons will only differ 
in selection efficiency and detector acceptance effects. If the NP is LFU and couples equally 
to both electrons and muons, then we expect a slightly improved sensitivity when applying our 
analysis to the corresponding final states containing both electrons and muons.

We calculate the expected Z-value, which is defined as the number of standard deviations 
from the background-only hypothesis given a signal yield and background uncertainty, using 
the BinomialExpZ function by RooFit [170]. We then find an optimized selection mmin

μμ by 
maximizing the expected Z-value for each signal hypothesis, where at least one expected event 
was demanded for the signal. An example of the expected Z-value from the tri-lepton signal 
is plotted in Fig. 4, as a function of � for the case of the tensor t tμμ operator (TRR = 1) and 
for several values of the relative overall background uncertainty, σB = 25%, 50% and 100%, 
with the currently available integrated luminosity of 140 fb−1. Clearly, the sensitivity to the NP 
depends on the relative uncertainty. Keeping that in mind, we analyze below all signal channels 
with a benchmark value of σB = 25% (see e.g., [56,58]), assuming that the signal uncertainty is 
included within σB .

In order to set the expected bound on the scale of NP, we calculated the p-value for each 
signal and background hypothesis using the BinomialExpP function by RooFit [170]. In 
particular, we calculate the p-value of the background-only and background+signal hypotheses 
for each point and then perform a CLs test [171] to determine the 95% Confidence Level (CL) 
exclusion values for �.

In Table 3 we summarize our results for the expected 95% CL bounds on the scale � of 
the scalar, vector and tensor t tμμ operators, with natural couplings of: SRR = 1, VRR = ±1
and TRR = 1, respectively, and for three integrated luminosity scenarios of L = 140, 300 and 
3000 fb−1, which correspond to the data collected so far, the data expected to be available at 
the end of Run-3, and the data expected to be recorded at the HL-LHC. We also depict in Fig. 5
the 95% CL bounds on the scale of the scalar, vector and tensor t tμμ operators, obtained via the 
13
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Fig. 4. Expected Z-value (defined as the number of standard deviations from the background-only hypothesis given 
a signal yield and background uncertainty) for the signal hypotheses varied with respect to the scale � of the t tμμ

tensor operators with TRR = 1, for a selection of three leptons with mmin
μ+μ− = 0.5 TeV and an integrated luminosity of 

140 fb−1.

Fig. 5. Expected 95% CL upper limit on �, �min(95% CL), of the t tμμ operator for 3 signal scenarios: SRR = 1, 
TRR = 1 and VRR = 1, with a selection of three leptons, what a total integrated luminosity of 3000 fb−1 and with the 
optimized mmin

μ+μ− > 0.8 TeV selection (see also Table 3). For all cases the overall uncertainty is chosen to be 25% at 
1σ , as explained in the text.

tri-lepton channel at the HL-LHC with L = 3000 fb−1, for the optimized mmin
μ+μ− selection which 

yields the best expected limit for this case, along with the ±1σ and ±2σ band.
Evidently, the optimized (best) mmin

μ+μ− selection is considerably milder in the tri- and four-
lepton channels, since in these cases the signal rates are reduced (partly due to the smaller 
branching ratio for the top to decay to leptons). We also see that the sensitivity to the NP in the di-
and tri-lepton channels is comparable with a slight advantage for the tri-lepton signal in the cases 
of the tensor and vector operators, where it is possible to reach a sensitivity of up to � ∼ 2(3)

TeV with L = 300(3000) fb−1 for the tensor case and � ∼ 1.3(2) TeV with L = 300(3000) fb−1

for the vector case. Finally, notice the rather negligible sensitivity to interference term in the vec-
14
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erator, obtained via the di-, tri- and four-leptons channels 
1, TRR = 1, VRR = ±1. See also text.

selections: Nj ≥ 2,Nb ≥ 1

pp → μ+μ−�±�′∓ + X

L) [TeV] mmin
μ+μ− [GeV] �min(95% CL) [TeV]

0.4
300 1.0

0.7 (0.7)

0.5
300 1.1

0.8 (0.7)

0.8
500 1.8

1.3 (1.2)

15
Table 3
Expected maximum 95% CL sensitivity ranges to the scale � (denoted as �min(95% CL)), of the t t̄μμ 4-Fermi op
with the corresponding optimal mmin

μ+μ− selection. Results are shown for the 3 signal scenarios of each operator: SRR =
Jet selections: Nj ≥ 3,Nb ≥ 1 Jet

Final State pp → μ+μ− + X pp → μ+μ−�± + X

Coupling mmin
μ+μ− [GeV] �min(95% CL) [TeV] mmin

μ+μ− [GeV] �min(95% C

SRR = 1 0.8 0.7
L= 140 fb−1 TRR = 1 1400 1.6 500 1.8

VRR = 1(−1) 1.0 (1.0) 1.1 (1.1)

SRR = 1 0.9 0.8
L= 300 fb−1 TRR = 1 1400 1.8 500 2.0

VRR = 1(−1) 1.1 (1.1) 1.3 (1.2)

SRR = 1 1.4 1.3
L= 3000 fb−1 TRR = 1 1600 2.8 800 2.9

VRR = 1(−1) 1.8 (1.7) 2.0 (1.9)
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tor 4-Fermi case (σcum,INT
n� in Eq. (10)), which is due to our set of selections that are designed to 

minimize the SM contribution/amplitude.
Finally, we note that, in the di-lepton channel, the optimized mmin

μ+μ− values exceed �min/
√

f

for f ∼ 1, where f = VRR, SRR, TRR (see Table 3). While this might still be within the validity 
regime of the EFT setup, as explained in section 5.4 above, the results obtained in this channel 
may be “questionable” in that respect. Therefore, the better sensitivities that we obtain in the 3�

channel are also more reliable, since in this case (and also in the 4� case) mmin
μ+μ− < �min.

In the next section we will perform a sensitivity analysis which combines the information 
from all three channels, i.e., the di-, tri- and four-leptons channels and which focuses on LFUV 
signals of the t tμμ 4-Fermi operators.

6.2. Ratio observables and LFUV

As mentioned earlier, the 4-Fermi operators of Eq. (1) may generate LFUV effects, in partic-
ular, asymmetric rates of the multi-lepton signals in Eq. (3) involving muons versus electrons, 
which are otherwise (i.e., within the SM) expected to be equal.

It is, therefore, useful to define generic LFU tests for multi-lepton production at the LHC, 
which are sensitive to the new t t�� 4-Fermi interactions and which can measure the differences 
between muons/electrons-asymmetric final states. For this purpose we define the following ratio 
observables of cross-sections:

R2l
μ/e = σ(pp → μ+μ− + X)

σ(pp → e+e− + X)
, (12)

R3l
μ/e =

∑
�=e,μ σ (pp → �±μ+μ− + X)∑
�=e,μ σ (pp → �±e+e− + X)

, (13)

R4l
μ/e =

∑
�,�′=e,μ σ (pp → �±�′∓μ+μ− + X)∑

�=e,μ σ (pp → �±�′∓e+e− + X)
, (14)

where �, �′ = e, μ and X contains the accompanied jets and missing energy, which depends on 
the various underlying processes that contribute to these ratios. As described above, X is different 
for the NP signals and for the background and this will be used here also by applying the channel-
dependent jet selections of Table 2 on X and using, as well, a lower cut on the invariant mass of 
the “none-top” OSSF di-leptons to further isolate the signals from the background, as described 
below.

These ratio observables are particularly useful and reliable probes of LFUV NP, since they 
potentially minimize the effects of the theoretical uncertainties involved in the calculation of the 
corresponding cross-sections (see e.g., [57]) as well as the experimental systematic uncertain-
ties.8 In particular, the new t tμμ 4-Fermi terms contribute only to the numerators of the ratios 
in Eq. (12), Eq. (13) and Eq. (14), thus leading to Rnl

μ/e �= 1. On the other hand in the SM, de-
viations from unity for all these ratio observables, e.g., through the non-universal Higgs-lepton 
Yukawa couplings to leptons, are much smaller than the expected experimental accuracy – as is 

8 Lepton flavor independent uncertainties from NLO QCD effects, loop corrections from EFT operators (see e.g., 
[172]) as well as PDF uncertainties are expected to be canceled to a large extent in such ratio observables. Even so, the 
impact of the theoretical uncertainties is accounted for in our analysis, as a part of the total overall uncertainties that we 
consider below.
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Table 4
The luminosity and channel dependent mmin

��
se-

lections on the invariant mass of the “none-top” 
OSSF di-lepton, i.e., m

OSSF(nt)
��

> mmin
��

, that 
were used in the χ2-like test of Eq. (17), for the 
different multi-lepton channels. See also text.

L [fb−1] mmin
��

[GeV]

2� 3� 4�

140 1000 200 100
300 1100 200 100
3000 1400 500 300

the case, in particular, for high pT events which are our primary interest in this work. Effects of 
non-universal reconstruction efficiencies and acceptance for the different leptonic final states will 
be included in the overall uncertainty assumed below for the measurement of Rnl

μ/e in Eq. (12) -
Eq. (14).

For each ratio observable in Eq. (12) - Eq. (14) we have (this holds also in the case of NP 
scenarios that are universal in lepton flavors)

Rnl
μ/e ∼ 1 + δ(�) , (15)

where the NP effect is contained in δ(�) and, using the cumulative cross-section of Eq. (10), we 
have:

δ(�) ∝ cINT · σINT
n� + cNP · σNP

n�

σSM
n�

, (16)

where cINT and cNP are the NP couplings of the interference and NP2 terms, respectively, as 
given in Eq. (11).

To study the sensitivity to the potential LFUV signal we then define the following χ2-like test 
(dropping the subscript μ/e hear after):

χ2 =
∑

n=2,3,4

[
Rnl(�) − Rnl(exp)

]2

(
δRnl

)2 , (17)

where Rnl(exp) is the expected experimental measured value of the ratio (see discussion below) 
and δRnl denotes the corresponding overall (experimental plus theoretical) statistic + systematic 
1σ uncertainty.

Then, based on the expectation from the corresponding irreducible SM + background cross-
sections (i.e., assuming no NP in the data), we use in our χ2-like test a lower cut (mmin

�� ) on the 

invariant mass of the “none-top” OSSF di-leptons, i.e., mOSSF(nt)

�+�− > mmin
�� , that ensures at least 

five event in each channel for a given luminosity, e.g., (σ SM + σWZ) · L > 5 in the tri-lepton 
case. The resulting channel and luminosity dependent mmin

�� cuts are listed in Table 4.
For the purpose of extracting a bound on � we assume that, on average, no NP is observed. In 

this case we expect the experimental values Rnl(exp) to be normally distributed with unit mean 
and standard deviation δRnl . Thus, if P3l

exp denotes the probability distribution function (PDF) 
for Rnl(exp), then
17
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Fig. 6. An example of the normalized distribution of the inverse value for the best fitted � of the TRR tensor operator, 
that minimizes the χ2-like test. The distributions are given for the cases L = 140 and 3000 fb−1 and for δRn� = 50%. 
See also text.

Pnl
exp = N

(
1,

(
δRn�

)2
)

, (18)

where N (a, s2) denotes the normal distribution for average a and standard deviation s.
We don’t know the actual uncertainties of the experiment and we, therefore, choose two po-

tentially realistic benchmark values for the overall uncertainties δRn� of the data samples (see 
e.g., [94]): δRn� = 15%, 25% for all channels, i.e., assuming for simplicity a common overall 
uncertainty in the di-, tri- and four-leptons ratios. We assume that these benchmark uncertainties 
account for both the experimental and the theoretical systematic uncertainties, where the latter is 
expected to be minimized due to the use of ratio observables (see also discussion above). More-
over, we assume in Eq. (17) that the systematic uncertainties in each channel are uncorrelated, 
since the information about the correlation matrix of the uncertainties is not yet available for the 
measurements/channels used in our χ2-like test.9

The expected bounds on � are then obtained by first generating O(104) values of Rnl(exp)

distributed according to Pnl
exp in Eq. (18). Then, for each of these O(104) realizations of 

Rnl(exp) we determine the value of � that minimizes χ2 in Eq. (17), which we denote as 
�min; the distribution of the �min is also expected to be Gaussian, an example is shown in 
Fig. 6. Finally, the expected bounds on � are extracted from this Gaussian distribution of �min. 
The resulting bounds on the scale of the scalar, vector and tensor 4-Fermi operators are given in 
Table 5 for three LHC integrated luminosity scenarios: L = 140, 300, 3000 fb−1, corresponding 
to the currently accumulated LHC luminosity, the RUN-3 projections and the planned HL-LHC 

9 In the general case, where the correlation matrix for the systematic uncertainties is provided, the χ2-test reads instead: 
χ2 = ∑

ij

(
Rn�(�) − Rn�(exp)

)
σ−2
nm

(
Rm�(�) − Rm�(exp)

)
, where n, m denote the different multi-lepton chan-

nels, σ−2
nm =

(
δRn�ρnmδRm�

)−1
and ρnm is the correlation matrix provided by the experiment. Correlations among the 

systematic uncertainties in the various channels used below will degrade the sensitivity to the NP, since they effectively 
reduce the number of observables/channels.
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Table 5
Expected bounds on the scale of the 4-Fermi t tμμ with SRR = 1, TRR = 1, VRR =
±1, obtained from the χ2-like test of Eq. (17), using the ratios Rn�

μ/e (n = 2, 3, 4) 
of Eqs. (12) - (14) for the di-, tri- and four-leptons signals. Results are shown for 
integrated luminosities of L = 140, 300 and 3000 fb−1 and for two choices of the 
overall uncertainty δRn� = 15% and δRn� = 25%, assuming a common uncertainty 
for all channels n = 2, 3, 4. See also text.

L [fb−1] 95% bounds on � [TeV]

NP ⇓ δRn� = 25% δRn� = 15%

SRR = 1 0.9 1
140 TRR = 1 2.1 2.3

VRR = 1(−1) 1.3(1.2) 1.6(1.3)

SRR = 1 0.9 1.1
300 TRR = 1 2.2 2.4

VRR = 1(−1) 1.4(1.2) 1.6(1.4)

SRR = 1 1.7 1.9
3000 TRR = 1 3.7 4.2

VRR = 1(−1) 2.5(2.2) 2.9(2.4)

luminosity, respectively. We see that the sensitivity obtained on the scale of the t tμμ 4-Fermi 
operators using our LFUV χ2-like test NP is slightly better than those obtained using the “cut 
and count” method of the previous chapter; this is because the χ2-like test of Eq. (17) is using 
all the three multi-lepton channels, thus exploiting the fact that these channels are theoretically 
correlated, i.e., that the NP signals in the di-, tri- and four-leptons channels that we considered 
are sourced from the same underlying heavy physics - same 4-Fermi operator.

7. Summary

We have studied the effects of new 4-Fermi t t�� flavor diagonal interactions, which can 
be generated from different types of underlying heavy physics containing e.g. heavy scalars 
and/or vectors. We showed that these higher-dimensional t t�� contact interactions can lead to 
new high-pT events of opposite-sign same-flavor (OSSF) di-leptons in multi-lepton produc-
tion accompanied by high jet-multiplicity at the LHC, in the di-, tri- and four-lepton channels: 
pp → t t̄�+�− → n · � + m · jb + p · j + �ET , where n = 2, 3, 4, m = 1, 2, p = 1 − 4 and j (jb) =
light(b)-jet.

We have studied in some detail the SM background to these multi-leptons signatures and 
showed that a very efficient separation between the NP signals and the background can be 
obtained with an optimal jet-multiplicity selection and, in addition, a selection of events with 
high invariant mass of the OSSF di-leptons, e.g., mmin

�+�−(OSSF) > 500(1500) TeV in the tri-
lepton(di-lepton) channels at the LHC RUN3 with L = 300 fb−1.

We have shown that the current bounds on the scales of the tensor t t�� operator, �(tensor) � 1
TeV, and the scalar and vector ones, �(scalar/vector) � 0.5 TeV, can be improved by a factor of 
2-3, using our “cut and count” analysis. For example, 95% CL bounds of � � 1.8(1.1) TeV are 
expected on the scale of a tensor (vector) t tμμ interaction, already with the current ∼ 140 fb−1

of LHC data, via the tri-lepton pp → �±μ+μ− +2 ·jb +2 ·j +�ET signal; this is an improvement 
by a factor of ∼ 2 with respect to the current bounds on these operators. The expected reach at 
the HL-LHC with 3000 fb−1 of data is � � 3(2) TeV for the tensor (vector) t t�� operators.
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We furthermore explored potential searches for lepton flavor universal universality violation 
(LFUV) effects from the higher dimensional t t�� 4-Fermi operators, that can be detected via 
our multi-lepton signals. In particular, we have defined ratio observables for all three di-, tri-
and four-lepton channels, which can be used to search for new LFUV effects via a χ2-like test 
that exploits the theoretical correlation between the LFUV signals in these three multi-lepton 
channels. We find that the sensitivity to the scale of the LFUV t t�� operators is comparable to 
that obtained with the “cut and count” search, using our χ2-like test. For example, it is possible 
to obtain 95% CL bounds on the LFUV tensor t t�� interactions of � � 2 TeV with the current 
LHC data of L = 140 fb−1 and of � � 3.5 TeV at the HL-LHC with 3000 fb−1.

Finally, we believe that the sensitivity obtained in this paper to the new t t�� 4-Fermi operators 
using the di-, tri- and four-leptons signals from the underlying pp → t t̄�+�− process, can be 
improved with further optimization of the selections that isolate the NP signals in these channels 
from the SM background.
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Appendix A. Cut-flow tables

We present below cut-flow tables of the number of events for the signals and the dominant 
backgrounds considered in this work, in the di-, tri- and four-lepton channels, in Tables 6, 7, 8.

Table 6
Cut-flow table for the selection of 2 leptons. The number of events appears after each selection is for an integrated 
luminosity of L = 300 fb−1.

Cuts Background events Signal events

Process t t̄Z (irreducible) t t̄ TRR = 1 VRR = 1 (−1) SRR = 1

mmin
μ+μ− = 300 GeV 9.1 6221.4 379.0 44.7 (33.4) 9.2

mmin
μ+μ− = 1400 GeV 0.0 1.1 36.8 4.4 (4.2) 2.0

Nj ≥ 3, Nb ≥ 1 0.0 0.5 22.7 3.4 (3.3) 1.4

Table 7
Cut-flow table for the selection of 3 leptons. The number of events appears after each selection is for an integrated 
luminosity of L = 300 fb−1.

Cuts Background events Signal events

Process t t̄Z (irreducible) WZ TRR = 1 VRR = 1 (−1) SRR = 1

mmin
μ+μ− = 300 GeV 4.8 45.5 91.4 13.5 (10.2) 2.1

mmin
μ+μ− = 500 GeV 0.8 12.5 52.4 8.2 (7.1) 1.5

Nj ≥ 2, Nb ≥ 1 0.4 0.2 35.8 6.1 (5.4) 1.1
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Table 8
Cut-flow table for the selection of 4 leptons. The number of events appears after each selection is for an integrated 
luminosity of L = 300 fb−1.

Cuts Background events Signal events

Process t t̄Z (irreducible) ZZ TRR = 1 VRR = 1 (−1) SRR = 1

mmin
μ+μ− = 300 GeV 0.8 3.5 5.7 1.2 (0.9) 0.2

Nj ≥ 2, Nb ≥ 1 0.0 0.0 3.6 0.8 (0.6) 0.1

In all cases we assume an integrated luminosity of L = 300 fb−1 and start with a baseline 
value of mmin

μ+μ− = 300 GeV for the di-muon invariant mass lower cut. Then, for each case we 
list the number of events after imposing the optimal di-muon invariant mass lower cut and the 
chosen jet selections (see main text for further details).
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the mass matrices constraints, J. High Energy Phys. 11 (2013) 084, arXiv :1306 .6493.

[145] Yasuhito Sakaki, Minoru Tanaka, Andrey Tayduganov, Ryoutaro Watanabe, Testing leptoquark models in B̄ →
D(∗)τ ν̄, Phys. Rev. D 88 (9) (2013) 094012, arXiv :1309 .0301.

[146] Suchismita Sahoo, Rukmani Mohanta, Scalar leptoquarks and the rare B meson decays, Phys. Rev. D 91 (9) (2015) 
094019, arXiv :1501 .05193.

[147] Chuan-Hung Chen, Takaaki Nomura, Hiroshi Okada, Explanation of B → K(∗)�+�− and muon g − 2, and impli-
cations at the LHC, Phys. Rev. D 94 (11) (2016) 115005, arXiv :1607 .04857.

[148] Ujjal Kumar Dey, Deepak Kar, Manimala Mitra, Michael Spannowsky, Aaron C. Vincent, Searching for lepto-
quarks at IceCube and the LHC, Phys. Rev. D 98 (3) (2018) 035014, arXiv :1709 .02009.
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