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Abstract We show how to deal with uncertainties on the
Standard Model predictions in an agnostic new physics
search strategy that exploits artificial neural networks. Our
approach builds directly on the specific Maximum Likeli-
hood ratio treatment of uncertainties as nuisance parameters
for hypothesis testing that is routinely employed in high-
energy physics. After presenting the conceptual foundations
of our method, we first illustrate all aspects of its imple-
mentation and extensively study its performances on a toy
one-dimensional problem. We then show how to implement
it in a multivariate setup by studying the impact of two typ-
ical sources of experimental uncertainties in two-body final
states at the LHC.
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1 Introduction

Experimental results in the last several decades consolidated
our knowledge of fundamental physics as described by “stan-
dard” theoretical models such as the Standard Model (SM) of
particle physics or the �CDM model of cosmology. On the
other hand we lack understanding of the microscopic origin
of several ingredients of these models, such as the Dark Mat-
ter and Dark Energy densities in �CDM, the electroweak
scale and the Yukawa couplings structure in the SM. These
considerations, as well as the theoretical incompleteness of
our current theory of gravity, guarantee the existence of new
fundamental laws waiting to be discovered, but do not sharply
outline a path towards their actual experimental discovery.

One can take the incompleteness of the standard models
as guidance to formulate putative “new physics” models or
scenarios that complete the standard models in one or several
aspects. Then one can organize the exploration of new funda-
mental laws as the search for the experimental manifestations
of such models. We call these searches “model-dependent”
as they target the signal expected in one specific model and
have poor or no sensitivity to unexpected signals. The prob-
lem with this strategy is that each new physics model only
offers one possible solution to the problems of the standard
models. Even searching for all of them experimentally, we
are not guaranteed to achieve a discovery, as the actual solu-
tion might be one that we have not yet hypothesized. This
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possibility should be taken seriously also in light of the lack
of discovery so far in the vast program of model-dependent
searches carried out at past and ongoing experiments.

The development of “model-independent” strategies to
search for new physics emerges in this context as a priority
of fundamental physics. We dub model-independent those
strategies that aim at assessing the compatibility of data with
the predictions of a Reference theoretical Model, to be inter-
preted as one of the “standard” models previously discussed,
rather than at probing the signatures of a specific alterna-
tive model, as in traditional model-dependent searches. It
should be noted on the one hand that testing one Reference
hypothesis with no assumption on the set of allowed alter-
native hypotheses is an ill-defined statistical concept. On the
other hand, it is often trivial in practice to tell the level of
compatibility of the Reference Model with the data of an
experiment whose outcome consists of a single or a few mea-
surements. The statistical distribution of the measurements
is known and can be compared with the one predicted by
the Reference Model. Combining a limited number of mea-
surements does not spoil the sensitivity even if the departure
from the Reference Model is present in one single measure-
ment. However the problem becomes practically and con-
ceptually non-trivial in modern fundamental physics exper-
iments where the data are extremely rich and the number
of possible measurements is essentially infinite. In model-
dependent strategies one restricts the set of measurements to
those where the specific new physics model is expected to
contribute significantly, and/or one exploits the correlation
between the outcome of different measurements predicted
by the new physics model. Obviously this is not an option in
the model-independent case.

We consider here the model-independent method that we
proposed and developed in Refs. [1,2] for data analysis at
particle colliders such as the Large Hadron Collider (LHC).
In this case the data D = {x1, . . . , xND } consist of ND inde-
pendent and identically-distributed measurements of a vec-
tor of features x . The physical knowledge of the Reference
Model (the SM) can be used to produce a synthetic set of
Reference data R = {x1, . . . , xNR}, whose elements follow
the probability distribution of x in the Reference hypothe-
sis “R”. In general, R could be a weighted event sample.
The Reference Model can also predict the total number of
events N(R) expected in the experiment, around which the
number of observations ND is Poisson-distributed. Model-
independent search strategies aim at exploiting these ele-
ments for a test of compatibility between the hypothesis R
and the data.1 In order to be useful, the test should be capable
to detect “generic” departures of the data distribution from

1 A concise overview of the fast-growing literature on model-
independent LHC searches and a categorization of the different
approaches is reported in Appendix A. In particular the origin and the

the Reference expectation. Moreover it should target “small”
departures in the distribution. The significance of the discrep-
ancy can be large, but the signal can be sizable (i.e., given
by a number of events that is large, relative to the Reference
model expectation) only in a small (low-probability) region
of the features space, or its significance emerge from corre-
lated small differences in a large region. This is because pre-
vious experiments and theoretical considerations generically
exclude the viability of new physics models that produce a
radical deformation of the LHC data distribution, which are
furthermore easier to detect.

As said, the Reference sample R consists of synthetic
instances of the variable x that follow the distribution pre-
dicted by the Reference Model. It plays conceptually the
same role as the background dataset in regular model-
dependent searches and it can be obtained either by a first-
principle Monte Carlo simulation based on the fundamental
physical laws of the Reference Model, or with data-driven
methods. In the latter case, one could extrapolate the back-
ground from data measured in a control region, using transfer
functions that are extracted from Monte Carlo simulations.
In both cases, R results from a knowledge of the Reference
Model that is unavoidably imperfect. Therefore it provides
only an approximate representation of the data distribution
in the Reference (or background) hypothesis. Uncertainties
emerge from all the ingredients of the simulations such as
the value of the Reference Model input parameters, of the
parton distribution functions and of the detector response, as
well as from the finite accuracy of the underlying theoretical
calculations. The impact of all these uncertainties must be
assessed and included if needed in any LHC analysis. In this
paper we define a strategy to deal with them in our framework
for model-independent new physics searches.2

1.1 Overview of the methodology

In this work we develop a full treatment of systematic uncer-
tainties within a model-independent search. Our treatment
follows closely the canonical high-energy physics profile
likelihood approach, reviewed in Ref. [13]. Each source
of imperfection in the knowledge of the Reference Model
is associated with a nuisance parameter ν. Its (true) value
is unknown but statistically constrained by an “auxiliary”
datasetA, which produces a ν-dependent multiplicative term
in the likelihood, L(ν|A). The Reference Model prediction
for the distribution of the variable x depends on the nui-

Footnote 1 continued
role played by the Reference data set R in each type of approach is
discussed there.
2 Previous attempts to include systematic uncertainties in Machine
Learning applications [3–12] mainly focused on modeling nuisance
parameters in more traditional setups, e.g., on classifiers for tagging.
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sance parameters, which we collect in a vector ν. The Ref-
erence Model is thus interpreted as a composite (parameter-
dependent) statistical hypothesis Rν , to be identified with
the null hypothesis H0 of the statistical test. The alternative
hypothesis H1 is defined as a local (in the features space)
rescaling of the Reference distribution by the exponential
of a neural network function f (x; w). The H1 hypothesis is
clearly also a composite one. We denote it as Hw,ν , where
w represents the trainable parameters of the neural network.
Our strategy consists of performing a hypothesis test, based
on the Maximum Likelihood log-ratio test statistic [14–16],
between the Rν and Hw,ν hypotheses. Namely our test statis-
tic t (see Eq. (8)) is twice the logarithm of the ratio between
the likelihood of Hw,ν given the data (times the auxiliary like-
lihood L(ν|A)), maximized over w and ν, and the likelihood
of Rν (times L(ν|A)) maximized over ν.

The concept is literally the same as in Refs. [1,2], with the
difference that the Reference hypothesis is now composite
rather than simple (i.e., ν-independent) and the H1 hypothesis
also depends on the nuisances and not only on the neural
network parameters w. As in Refs. [1,2], the choice of a
neural network model for H1 is motivated by the quest for an
unbiased flexible approximant that can adapt itself to generic
departures of the data from the Reference distribution, in
order to maximize the sensitivity of the hypothesis test to
generic new physics.

The first goal of the present paper is to construct a practical
algorithm that computes the Maximum Likelihood log-ratio
test statistic as defined above, including the effect of nuisance
parameters. The basic idea is to normalize the Hw,ν and Rν

likelihoods to the likelihood of the “central-value” Reference
hypothesis R0, namely the one where the nuisance parame-
ters are set to their central value (ν = 0) that maximizes the
observed auxiliary likelihood. In this way we divide the cal-
culation of the test statistic t in the evaluation of two separate
terms. One of them merely consists of the likelihood log-ratio
between the nuisance-dependent Rν likelihood maximized
over ν, and the likelihood of the central-value R0 hypothesis.
Maximizing the background-only likelihood as a function
of the nuisance parameters is a necessary step of any LHC
analysis. It serves in the first place to quantify the pull of the
best-fit values of the nuisances, that maximize the complete
likelihood (including the likelihood of the data of interest and
of the auxiliary data, A), relative to their central value esti-
mates and uncertainties as obtained from the auxiliary like-
lihood alone. Therefore the determination of the first term in
t does not pose any novel challenge, and could be in prin-
ciple performed with the standard strategy of employing a
binned approximation of the likelihood after modeling the
dependence of the cross section in each bin on the nuisances.
For the specific applications studied in this paper we have
found more effective and more easy to employ an un-binned
likelihood reconstructed by neural networks [17–23].

The other term required for the determination of the test
statistic t involves the neural network and requires the maxi-
mization over the neural network parameters w (and over ν).
It will be obtained by neural network training (with simul-
taneous minimization over ν), with a strategy that is a rela-
tively straightforward generalization of the one we already
employed [1,2] in the absence of nuisance parameters. As in
Refs. [1,2], the training data are the observed dataset D and
the Reference dataset R. The Reference data are supposed to
represent the distribution in the central-value hypothesis R0,
therefore they are obtained fixing each nuisance parameter to
its central value. They do not contain any information on the
variability of the Reference distribution due to the nuisances,
which is taken into account by the first term of the test statis-
tic. This avoids employing in the training Reference samples
with multiple values of the nuisance parameters. The algo-
rithm is thus not more computationally expensive than the
one in the absence of nuisances.

Like any other frequentist hypothesis test, the practical
feasibility of our strategy is linked to the validity of asymp-
totic formulae for the distribution of the test statistic t in the
null hypothesis Rν , P(t |H0) = P(t |Rν). In particular the
asymptotic formulae are needed to ensure the independence
of P(t |Rν) on the nuisance parameters ν [13,24]. The Wilks–
Wald Theorem [15,16] predicts a χ2 distribution for t in the
asymptotic (infinite sample) limit, but it gives no quantitative
information on how “large” the dataset should be, in order
for P(t |Rν) to be similar to a χ2. Furthermore there is obvi-
ously no universal lower threshold on the data statistics after
which the asymptotic result starts applying. The threshold
depends on the problem and, crucially, on the complexity of
the statistical model that is being considered. For instance if
a simple one-parameter linear model was used for the numer-
ator hypothesis instead of a neural network, a statistics of a
few data events might suffice to reach the asymptotic limit
accurately. Larger and larger datasets will be needed if the
expressivity of the model is increased using neural networks
of increasing complexity. One can of course also adopt the
opposite viewpoint, which is more convenient in our case
where the statistics of the data is fixed, and consider the upper
threshold for the model complexity below which the asymp-
totic limit is reached and the distribution of t starts following
the χ2 distribution.

We need the asymptotic formula to hold in order to elimi-
nate or mitigate the dependence of P(t |Rν) on ν. On the other
hand, we would like our model to be as complex and expres-
sive as possible in order to be sensitive to the largest possible
variety of putative new physics effects. Therefore the optimal
complexity for the neural network model is right at the thresh-
old of loosing the χ2 compatibility. In Ref. [2] we already
advocated this χ2 compatibility criterion for the selection of
the neural network model, with the motivation that the t dis-
tribution not following the asymptotic formula signals that
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t is sensitive to low-statistics regions of the dataset, a fact
which in turn can be interpreted as “overfitting” in our con-
text. This heuristic motivation remains, but it is accompanied
by the stronger technical argument associated with the feasi-
bility of the hypothesis test including nuisance parameters.

1.2 Structure of the paper

The rest of the paper is organized as follows. In Sect. 2 we
describe the statistical foundations of our method. Namely
we show how to turn the mathematical definition of the Max-
imum Likelihood ratio test statistic into a practical algorithm
for its evaluation along the lines described above. The imple-
mentation of the algorithm in all its aspects, including the
selection of the neural network hyperparameters by the χ2

compatibility criterion, is described in Sect. 3 for an illus-
trative univariate problem. In that section we will obtain a
first validation of our method by studying how it reacts to
toy datasets generated with values of the nuisance parame-
ters that are different from the central values employed for
the Reference training set. We will see that the term in t com-
ing from the neural network is typically large, its distribution
over the toys shifts to the right and gets strongly distorted
with respect to the distribution one obtains when the toy data
are instead generated with central-value nuisances. The other
term in t , associated with the Rν/R0 likelihood ratio as pre-
viously described, engineers a non-trivial cancellation on the
total value of t for each individual toy. A χ2 distribution is
eventually recovered for the total t distribution, compatibly
with the Wilks–Wald Theorem, regardless of the value of ν

used in the generation of the toy data. Similar tests are per-
formed in Sect. 4 in a slightly more realistic problem with
five features (kinematical variables) that represent a dataset
that one might encounter in the study of the production of
two particles at the LHC. Two common sources of uncer-
tainties are included, and their impact on the sensitivity of
our strategy to benchmark putative signals is quantified. We
report our Conclusions in Sect. 5. Appendix A provides an
overview of model-independent strategies in connection and
comparison with ours.

2 Foundations

2.1 Hypothesis testing

As explained in Sect. 1, our method consists of a hypothesis
test between a null hypothesis H0 = Rν and an alternative
H1 = Hw,ν . We now characterize the two hypotheses in turn,
starting from the null Rν Reference (i.e., the SM) hypothesis.
The data collected in the region of interest for the analysis are
denoted as D = {x1, . . . , xND } and consist of ND instances
of a multi-dimensional variable x . For instance, the region

of interest for the analysis could be defined as the subset of
the entire experimental dataset where a given experimental
signature (e.g., two high-pT muons reconstructed within a
certain detector acceptance) has been observed. The features
x would then consist of the reconstructed momenta of these
particles. The region of interest might be further restricted
by selection cuts that define the region X of the phase space
(x ∈ X ) to which the particle momenta belong. Each instance
of x in D is thrown with a probability distribution that we
denote as P(x |Rν) in the Reference hypothesis Rν . The total
number of instances of x , ND, is Poisson-distributed with a
mean N(Rν) that equals the total cross section in the region
X times the integrated luminosity. The likelihood of the Rν

hypothesis, given the observation of the dataset D, is thus
provided by the extended likelihood

L(Rν |D) = N(Rν)
ND

ND! e−N(Rν )
∏

x∈D
P(x |Rν)

= e−N(Rν )

ND!
∏

x∈D
n(x |Rν). (1)

In the previous equation we defined for shortness

n(x |Rν) = N(Rν)P(x |Rν). (2)

We will denote n(x |H), in different hypotheses H , the “dis-
tribution” of the variable x .

The Reference hypothesis distribution for x depends on
a set of nuisance parameters ν. They model all the imper-
fections in the knowledge of the Reference Model, ranging
from theoretical uncertainties like those in the determination
of the parton distribution functions, to the calibration of the
detector response. The nuisance parameters are (often, see
below) statistically constrained by “auxiliary” measurements
performed using data sets independent of D, that we collec-
tively denote asA. The Rν hypothesis provides a ν-dependent
prediction also for the statistical distribution of the auxiliary
measurements. The total likelihood of Rν , given the obser-
vation of both the data of interest and of the auxiliary data,
thus reads

L(Rν |D,A) = L(Rν |D) · L(ν|A), (3)

where we denoted, for brevity, L(Rν |A) as L(ν|A).
We now turn to the alternative hypothesis H1 = Hw,ν .

This hypothesis should include potential departures in the
distribution of the variable x from the Reference (i.e., SM)
expectation. As anticipated in Sect. 1, we parametrize these
departures as a local rescaling of the Reference distribution
by the exponential of a single-output neural network. Fol-
lowing the approach of Refs. [1,2] we postulate

n(x |Hw,ν) = e f (x;w)n(x |Rν), (4)

where f is the neural network and w denotes its train-
able parameters. The neural network architecture and hyper-
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parameters are problem-dependent. The general criteria for
their optimization are discussed in Sect. 2.5 and illustrated
in Sects. 3.1 and 4.1 in greater detail.

We further postulate that new physics is absent in the aux-
iliary data. Namely that the distribution of the auxiliary data
in the Hw,ν hypothesis is the same one as in hypothesis Rν

L(Hw,ν |A) = L(Rν |A) = L(ν|A). (5)

Therefore the total likelihood of Hw,ν is

L(Hw,ν |D,A) = L(Hw,ν |D) · L(ν|A), (6)

where L(Hw,ν |D) is the extended likelihood

L(Hw,ν |D) = e−N(Hw,ν )

ND!
∏

x∈D
n(x |Hw,ν), (7)

with n(x |Hw,ν) as in Eq. (4). The total number of expected
events N(Hw,ν) is the integral of n(x |Hw,ν) over the features
space. A discussion of the implications of postulating the
absence of new physics in the auxiliary data as in Eq. (5),
and of related aspects, is postponed to Sect. 2.6.

The test statistic variable we aim at computing and
employing for the hypothesis test is the Maximum Likeli-
hood log ratio [13,14,24]

t (D,A) = 2 log
max
w,ν

[L(Hw,ν |D,A)
]

max
ν

[L(Rν |D,A)]
. (8)

Notice that this definition of the test statistic, and in turn its
properties [15,16], assumes that the composite hypothesis in
the denominator (H0) is contained in the numerator hypoth-
esis (H1). This holds in our case since the neural network
function in Eq. (4) is equal to zero when all its weights and
biases w vanish. Therefore (Hw,ν)|w=0 = Rν . Also notice
that the test statistic variable t depends on all the data that
are employed in the analysis. In particular it depends on the
auxiliary data A as well as on the data of interest D. We now
address the problem of evaluating t , once the data are made
available either from the actual experiment or artificially by
generating toy datasets.

2.2 The central-value reference hypothesis

In order to proceed, we consider the special point in the space
of nuisance parameters that corresponds to their central-value
determination as obtained from the auxiliary data alone. If we
call A0 the observed auxiliary dataset, namely the one that
is observed in the actual experiment, the central values of
the nuisance parameters are those maximizing the auxiliary
likelihood function L(ν|A0). It is always possible to choose
the coordinates in the nuisance parameters space such that
the central values of all the parameters sit at ν = 0. So we
have, by definition

max
ν

[L(ν|A0)] = L(0|A0). (9)

We stress again that A0 represents one single outcome of
the auxiliary measurements (the one observed in the actual
experiment), unlike A (and D) that describe all the possible
experimental outcomes. ThereforeA0, and in turn the central
value of the nuisance parameters that we have set to ν = 0,
is not a statistical variable and therefore it will not fluctuate
when we will generate toy experiments, unlike A and D.

The central-value Reference hypothesis R0 predicts a dis-
tribution for the variable x , n(x |R0), that can be regarded as
the “best guess” we can make for the actual SM distribution
of x before analyzing the dataset of interest D. Correspond-
ingly, ν = 0 is the best prior guess for the value of the
nuisances. The likelihood of R0, given by

L(R0|D,A) = L(R0|D) · L(0|A)

= e−N(R0)

ND!
∏

x∈D
n(x |R0) · L(0|A), (10)

is thus conveniently used to “normalize” the likelihoods at the
numerator and denominator in Eq. (8). Namely we multiply
and divide the argument of the log by L(R0|D,A) and we
obtain

t (D,A) = τ(D,A) − �(D,A), (11)

where τ involves the maximization over the neural network
parameters w and over ν

τ(D,A) = 2 max
w,ν

log

[L(Hw,ν |D)

L(R0|D)
· L(ν|A)

L(0|A)

]
, (12)

while the “correction” term � does not contain the neural
network and involves exclusively the Reference hypothesis

�(D,A) = 2 max
ν

log

[L(Rν |D)

L(R0|D)
· L(ν|A)

L(0|A)

]
. (13)

Both τ and � are positive-definite. Since they contribute
with opposite sign, the test statistic t will emerge from a
cancellation between these two terms. The cancellation is
more and more severe the more the data happen to favor a
value of ν that is far from the central value. In Sect. 2.5 we
will describe the nature and the origin of this cancellation in
connection with the asymptotic formulae for the distribution
of t . Below we outline our strategy for computing τ and �,
starting from the latter term.

2.3 Learning the effect of nuisance parameters

The correction term � in Eq. (13) is the log-ratio between
the likelihood of the Reference hypothesis evaluated with
best-fit values of the nuisance parameters, and the one with
central-value nuisance parameters. This object is of interest
for any statistical analysis to be performed on the dataset D,
as it provides a first indication of the data compatibility with
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the Reference hypothesis. In particular a sizable departure
of the best-fit nuisance parameters from the central values
should be monitored as an indication of a mis-modeling of
the Reference hypothesis or possibly of a new physics effect.

In order to introduce our strategy for the evaluation of �, it
is convenient to first recall the standard approach, employed
in most LHC analyses, based on a binned Poisson likelihood
approximation of L(Rν |D). In this approach, the dataset gets
binned and the observed counting in each bin is compared
with the corresponding ν-dependent cross section prediction.
The predictions are obtained by computing each cross section
for multiple values of the nuisance parameters and interpolat-
ing with a polynomial (or with the exponential of a polyno-
mial, to enforce cross section positivity) around the central
value ν = 0. A simple polynomial is sufficient to model
the dependence of the cross section on the nuisances if their
effect is small. The polynomial interpolation produces ana-
lytic expressions for the cross sections as a function of ν,
which are fed into the Poisson likelihood. Clearly, if the ana-
lytic dependence of the cross section on one or more nuisance
parameters is known then the polynomial approximation is
not needed and the exact form can be used. The maximization
over ν in Eq. (13) is then performed with standard computer
packages.

In principle we could proceed to the evaluation of �

exactly as described above. However we found it simpler and
more effective to employ an un-binned L(Rν |D) likelihood,
obtained by reconstructing the ratio between the n(x |Rν)

and n(x |R0) distributions locally in the feature space. This is
achieved by a rather straightforward adaptation of likelihood-
reconstruction techniques based on neural networks devel-
oped in the literature [17–23]. In particular, our implementa-
tion (briefly summarized below) closely follows Refs. [21–
23] to which we refer the reader for a more in-depth expo-
sition. As for the regular binned approach, the basic idea is
to employ a polynomial approximation for the dependence
of the distribution on the nuisances. The polynomial coef-
ficients, functions of the input x , are expressed as suitably
trained neural networks. For instance, in the case of a single
nuisance parameter ν we would write

r(x; ν) ≡ n(x |Rν)

n(x |R0)
= exp

[
ν δ1(x) + 1

2
ν2 δ2(x) + · · ·

]
,

(14)

with the Taylor series expansion in the exponent truncated at
some finite order. Clearly the truncation is justified only if the
effect of the nuisance is a relatively small correction to the
central-value distribution. More precisely, nuisance effects
must be small when ν is in a “plausibility” range around 0,
compatibly with the shape of the auxiliary likelihoodL(ν|A).
For instance, if the auxiliary likelihood is Gaussian with stan-
dard deviation σν , we should worry about the validity of

the approximation in Eq. (14) only for ν within few times
±σν . Larger values are not relevant for the maximization in
Eq. (13) because they are suppressed by L(ν|A). Notice that
in Eq. (14) we might have opted for a polynomial approxi-
mation of the ratio r rather than of its logarithm. However
the latter choice guarantees the positivity of r even when the
numerical minimization algorithm is led to explore regions
where ν is large. Furthermore working with log r(x; ν) is
more convenient for our purposes, as we will readily see. The
polynomial expansion in Eq. (14) can be straightforwardly
generalized to deal with several nuisance parameters, includ-
ing if needed mixed quadratic terms to capture the correlated
effects of two different parameters.

Approximations δ̂(x) of the δ(x) coefficient functions are
obtained as follows. Consider a continuous-output classifier
c(x; ν) ∈ (0, 1) defined as

c(x; ν) ≡ 1

1 + r̂(x; ν)
, (15)

where r̂ has the same dependence on the nuisance parameter
as the true distribution ratio r . For instance in the case of
a single nuisance parameter, and truncating Eq. (14) at the
quadratic order, we have

r̂(x; ν) = exp

[
ν δ̂1(x) + 1

2
ν2 δ̂2(x)

]
, (16)

where δ̂1,2(x) represents two suitably trained single-output
neural network models.3

The training is performed on a set of data samples S0(νi )

that follow the distribution of x in the Rν hypothesis at dif-
ferent points ν = νi �= 0 in the nuisance parameters space.
Two distinct νi points are sufficient to learn the two coeffi-
cient functions associated to a single nuisance parameter at
the quadratic order. Employing more points is possible and
typically convenient for the accuracy of the coefficient func-
tions reconstruction. Data samples produced in the central-
value Reference hypothesis ν = 0 are also employed, one
for each S0(νi ) sample. These central-value Reference sam-
ples are denoted as S1(νi ), in spite of the fact that they all
follow the R0 hypothesis. Each event “e” in the samples has
a weight we, normalized such that the sum of the weights
in each sample equals the total number of expected events
in the corresponding hypothesis (i.e., N(Rνi ) for S0(νi ) and
N(R0) for S1(νi )). The loss function is

L [̂δ(·)] =
∑

νi

⎧
⎨

⎩
∑

e∈S0(νi )

we[c(xe; νi )]2

3 Alternatively, the δ̂1,2,(x) coefficient functions might be described by
a single network with two outputs. The choice between the two options,
as well as the choice of the neural networks hyper-parameters, obviously
depends on the specific problem. Other models could also be considered
for δ̂ in alternative to neural networks.
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+
∑

e∈S1(νi )

we[1 − c(xe; νi )]2

⎫
⎬

⎭ . (17)

It is not difficult to show [21] that the δ̂ networks trained with
the loss in Eq. (17) converge to the corresponding coefficient
function δ in the limit where the samples are large, provided
of course the true distribution ratio is in the form of Eq. (14).

The basic strategy outlined above can be improved and
refined in several aspects [22,23], whose detailed description
falls however outside the scope of the present paper. For our
purposes it is sufficient to know that the coefficient functions
in Eq. (14) can be rather easily and accurately reconstructed.
As such, the dependence on ν of the distribution ratio r(x; ν)

is known analytically at each point x of the features space.
This solves our problem of evaluating the correction term �

in Eq. (13), because � is

�(D,A) = 2 max
ν

{
∑

x∈D
log[r(x; ν)] − N(Rν) + N(R0)

+ log

[L(ν|A)

L(0|A)

]}
. (18)

Thanks to the fact that we adopted an exponential parametriza-
tion for r (14), the first term in the curly brackets is a poly-
nomial in ν. The constant term of the polynomial vanishes.
The higher degree terms are the sum over x ∈ D of the cor-
responding δ(x) coefficients, approximated with the recon-
structed δ̂(x) that are provided by the trained neural networks.
The second term, N(Rν), is proportional to the total cross sec-
tion in the Rν hypothesis. It can be approximated with a poly-
nomial or with the exponential of the polynomial as in regular
binned likelihood analyses. Finally, N(R0) is a constant and
the log ratio between the ν and the 0 auxiliary likelihoods is
also known in an analytical form. Actually in most cases the
auxiliary likelihood is Gaussian and log[L(ν|A)/L(0|A)] is
merely a quadratic polynomial. In summary, all the terms in
the curly brackets of Eq. (18) are known analytically. The
maximization required to evaluate � is thus a trivial numer-
ical operation for dedicated computer packages.

2.4 Maximum likelihood from minimal loss

We now turn to the evaluation of the τ term defined in
Eq. (12). This term involves the Hw,ν hypothesis, which fore-
sees possible non-SM effects (i.e., departures from the Ref-
erence Model) in the distribution of x . Non-SM effects are
parametrized by the neural network f (x; w) as in Eq. (4).
The calculation of τ involves the maximization over the neu-
ral network weights and biases, w, and over the nuisance
parameters ν. The maximization will be performed by run-
ning a training algorithm, treating both w and ν as trainable
parameters. The algorithm will exploit the knowledge of the
δ coefficient functions that is provided by the δ̂ neural net-

works as explained in the previous section. However the latter
networks are pre-trained. Therefore their parameters are not
trainable during the evaluation of τ , even if they do appear
in the loss function as we will readily see.

In order to turn the evaluation of τ into a training problem,
the first step is to combine Eq. (4) with the definition of r in
Eq. (14), obtaining

n(x |Hw,ν) = e f (x;w)r(x; ν) n(x |R0). (19)

We then rewrite τ in the form

τ(D,A) = 2 max
w,ν

{
∑

x∈D

[
f (x; w) + log(r(x; ν))

]

−N(Hw,ν) + N(R0) + log

[L(ν|A)

L(0|A)

]}
. (20)

The first, third and fourth terms in the curly brackets are eas-
ily available. The first one depends on the neural network
f (x; w), as well as on the coefficient functions δ (approxi-
mated by the neural networks δ̂) through r(x; ν) in Eq. (14).
The second term is the total number of events in the Hw,ν

hypothesis, given by

N(Hw,ν) =
∫

X
dx n(x |Hw,ν) =

∫

X
dx n(x |R0)

· exp
[
f (x; w) + log(r(x; ν))

]
. (21)

Clearly N(Hw,ν) is not easily available because n(x |R0) is
not known in closed form and even if it was, computing the
integral as a function of w and ν is numerically unfeasible.

Evaluating N(Hw,ν) requires us to employ a Reference
data set R = {x1, . . . , xNR}. As described in Sect. 1, R
consists of synthetic instances of the variable x that follow
the Reference Model distribution. The R set plus the data
D constitute the sample that we will employ for training the
neural network f (x; w). Notice that theR dataset follows, by
construction, the central-value distribution n(x |R0). It might
result from a first-principle Monte Carlo simulation, or have
data-driven origin. In both cases it might take the form of a
weighted event sample. 4 We choose the normalization of the
weights such that
∑

e∈R
we = N(R0). (22)

If the R sample is “unweighted”, all the weights are equal,
and equal to we = N(R0)/NR, with NR the Reference
sample size. The Reference sample plays conceptually the
same role as the central-value in regular model-dependent
LHC searches. Its composition and origin is the same one of
the samples S1(νi ) employed to learn the effect of nuisance
parameters with the strategy outlined in the previous section.

4 For instance, a data-driven background sample could be obtained from
a MC-assisted reweighting of control region data as it is often done in
SUSY searches.
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With the normalization (22), the weighted sum of a func-
tion of x over the Reference sample approximates the integral
of the function with integration measure n(x |R0)dx . There-
fore

N(Hw,ν) �
∑

e∈R
we exp

[
f (xe; w) + log(r(xe; ν))

]
, (23)

where the accuracy of the approximation improves with
(square root of) the size of the Reference sample. In what
follows we are going to assume an infinitely abundant Refer-
ence sample and turn the approximate equality above into a
strict equality. Clearly in so doing we are ignoring the uncer-
tainties associated with finite statistics of R. This is justified
if NR � N(R0) ∼ ND, because in this case the statisti-
cal variability of τ is expectedly dominated by the statistical
fluctuation of the data sampleD. All the results of the present
paper are compatible with this expectation for NR a few times
larger than ND.

By combining Eqs. (20) and (23) (and (22)) and by fac-
toring out a minus sign to turn the maximization into a min-
imization, we express

τ(D,A) = −2 min
w,ν

{
L

[
f (·; w), ν; δ̂(·)]} , (24)

where L has the form of a loss function for a supervised
training between the D and R samples

L
[
f (·; w), ν; δ̂(·)] = −

∑

x∈D

[
f (x; w) + log(r(x; ν))

]

+
∑

e∈R
we

[
e f (xe;w)+log(r(xe;ν)) − 1

]

− log

[L(ν|A)

L(0|A)

]
. (25)

The loss depends on the neural network function f (·; w) and
in particular on its trainable parameters w. It also depends on
the nuisance parameters ν, through the ratio r and through
the auxiliary likelihood ratio term. The minimization over
the nuisances is requested by Eq. (24), therefore the nui-
sances should be treated as trainable parameters on the same
footing as the neural network parameters w. This is relatively
straightforward to implement in standard deep learning pack-
ages, provided the loss depends on ν through analytically
differentiable functions. This is the case for r(x; ν), and typ-
ically also for the auxiliary likelihood ratio. The loss also
depends on the reconstructed coefficient functions δ̂. How-
ever this dependence is purely parametric and the param-
eters of the δ̂ networks are fixed at their optimal values,
opportunely determined in a previous training as described
in Sect. 2.3. After training, τ is obtained as minus two times
the minimal loss owing to Eq. (24).

Our strategy to evaluate τ is a relatively straightforward
extension of the one developed in Refs. [1,2]. In the absence
of nuisance parameters, namely in the limit where r(x; ν)

is independent of ν and identically equal to one, the loss in
Eq. (25) reduces to the one of Refs. [1,2], plus the auxiliary
log likelihood ratio that carries all the dependence on ν and
can be minimized independently. The latter term however
cancels in the test statistic t when subtracting the correction
term � (18) and the results of Refs. [1,2] are recovered in
the absence of nuisances, as it should be.

2.5 Asymptotic formulae

We now discuss the actual feasibility of a frequentist hypoth-
esis test based on our variable t (8). The generic problem with
frequentist tests stems from the determination of the distri-
bution of the t variable in the null hypothesis, P(t |H0), out
of which the p-value of the observed data is extracted. If the
null hypothesis is a simple one, this can be obtained rigor-
ously by running toy experiments, with a procedure that is
computationally demanding but not unfeasible, especially if
one does not target probing the extreme tail of the t distri-
bution. If instead the null hypothesis H0 = Rν is composite
as in this case, due to the nuisances, and if P(t |Rν) (and
in turn the p-value) depends on the value of ν, the prob-
lem becomes extremely hard as one should in principle run
toy experiments and compute P(t |Rν) for each value of ν.
Indeed in frequentist statistics there is no notion of probabil-
ity for the parameters. Consequently each value of ν defines
an equally “likely” hypothesis in the null hypotheses set Rν .
We can thus quantify the level of incompatibility of the data
with the null hypothesis only by defining the p-value as the
maximum p-value that is obtainable by a scan over the ν

parameters in their entire allowed range. Since this is not
feasible, the only option is to employ a suitably-designed
test statistic variable, such that P(t |Rν) is independent of ν

to a good approximation.
The considerations above are deeply rooted in the stan-

dard treatment of nuisance parameters. They actually consti-
tute the very reason for the choice, in LHC analyses [24], of
a specific Maximum Likelihood ratio test statistic, whose
distribution is in fact independent of ν in the asymptotic
limit where the number of observations is large. Specifi-
cally, P(t |Rν) approaches a χ2 distribution with a number
of degrees of freedom equal to the number of free parame-
ters in the “numerator” hypothesis Hw,ν , minus the number
of parameters of the “denominator” hypothesis Rν , owing
to the Wilks–Wald Theorem [15,16]. In a regular model-
dependent search [24], the number of degrees of freedom
of the χ2 equals the number of free parameters of the new
physics model that is being searched for (i.e., the so-called
“parameters of interest”). The exact same asymptotic result
applies in our case because our test statistic is also defined
and rigorously computed as a Maximum Likelihood ratio. Its
distribution in the null hypothesis will thus be independent
of ν and approach the χ2. The number of degrees of freedom
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is given in this case by the number of trainable parameters w
of the neural network.

As already stressed in Sect. 1, however, asymptotic for-
mulae such as the Wilks–Wald Theorem only hold in the
limit of an infinitely large data set and therefore they offer
no guarantee that P(t |Rν) will resemble a χ2 (and be inde-
pendent of ν) in concrete analyses where the dataset has a
finite size. At fixed dataset size, whether this is the case or not
depends on the complexity (or expressivity) of the parameter-
dependent hypothesis that is being compared with the data.
When fitted by the likelihood maximization, an extremely
flexible hypothesis will adapt its free parameters to repro-
duce (overfit) the observed data points individually. There-
fore the value of t that results from the maximization can
be driven by low-statistics portions of the dataset and thus
violate the asymptotic condition even if the total size of the
dataset is large. The expressivity of our hypothesis is driven
by the architecture (number of neurons and layers) of the
neural network f (x; w), and by the other hyper-parameters
(a weight clipping, in our implementation) that regularize the
network preventing it from developing overly sharp features.
We can thus enforce the validity of the asymptotic formula,
i.e. ensure that P(t |Rν) is close to a χ2 and independent of ν,
by properly selecting the neural network hyper-parameters.

For the selection of the hyper-parameters according to the
χ2 compatibility criterion we proceed as in Ref. [2], where
this criterion had been already introduced on a more heuristic
basis, unrelated with nuisance parameters. We generate toy
datasets following the central-value hypothesis R0, we com-
pute t and we compare its empirical distribution with a χ2

with as many degrees of freedom as the number of parameters
of the neural network. We select the largest neural network
architecture and the maximal weight clipping for which a
good level of compatibility is found. Notice that whether or
not a given neural network model is sufficiently “simple”
to respect the asymptotic formula is conceptually unrelated
with the presence of nuisance parameters. Furthermore our
goal is to show that the presence of nuisances does not affect
the distribution of t . Therefore when we enforce the χ2 com-
patibility, with the strategy outlined above, we compute t as if
nuisance parameters were absent. After the model is selected,
based on the Wilks–Wald Theorem we expect that the distri-
bution of t will be a χ2 with the same number of degrees of
freedom even in the presence of nuisance parameters. This
can be verified by recomputing the distribution of t , including
this time the effect of nuisances, on the R0 toys and on new
toy samples generated according to Rν with different values
ν �= 0 of the nuisance parameters. Explicit implementations
of this procedure, and confirmations of the validity of the
asymptotic formulae, will be described in Sects. 3 and 4.

The Wilks–Wald Theorem also enables us to develop a
qualitative understanding of the interplay between the τ and
� terms in the determination of t (Eq. (11)). Both τ (Eq. (12))

and � (Eq. (13)) are Maximum Likelihood log-ratios, with
the simple hypothesis R0 playing the role of the denomi-
nator hypothesis. Therefore τ and � are also distributed as
a χ2

d with d degrees of freedom, if the data follow the R0

hypothesis itself. In the case of τ , d is the number of neural
network parameters plus the number of nuisance parame-
ters. The number of degrees of freedom of � is instead given
by the number of nuisance parameters. The test statistic t ,
whose value emerges from a cancellation between τ and �,
has d equal to the number of neural network parameters, as
previously discussed. The cancellation is not severe in this
case, because the number of nuisance parameters is typi-
cally smaller than the number of neural network parameters.
Namely the values of τ and � for each individual toy will not
be, on average, much larger that t = τ −�. Suppose instead
that the data follow Rν with some ν �= 0. This hypothesis
belongs to the numerator (composite) hypothesis in the def-
initions of τ and �. The Wilks–Wald Theorem predicts in
this case non-central χ2 distributions [15], with increasingly
large non-centrality parameters as we increase the distance
between ν and 0. Therefore when we compute P(t |Rν) with
larger and larger ν, the τ and � distributions shift more and
more to the right and their typical value over the toys becomes
large. The typical value of t is instead given by the number
of neural network parameters, because t follows a central χ2

distribution independently of ν. A sharp correlation between
τ and � will thus engineer a delicate cancellation on toys
generated with very large values of the nuisance parameters.
The occurrence of the cancellation amplifies the uncertain-
ties in the calculation of τ and � that emerge (dominantly)
from the imperfect modeling of the δ(x) coefficient func-
tions. Obtaining a χ2 for the distribution of t is thus increas-
ingly demanding at large ν, as we will see more quantitatively
in Sects. 3 and 4.

2.6 New physics in auxiliary measurements or in control
regions

The step we took in Eq. (5) of postulating the absence of
new physics in the auxiliary data deserves further comments.
In regular model-dependent searches for new physics the
alternative hypothesis H1 is a physical model that accounts
for new phenomena in addition to the SM ones. One can
thus assess whether or not these new phenomena can man-
ifest themself in the auxiliary data. If they do not, Eq. (5)
is justified. The situation is different in model-independent
searches. On one hand, there is no way to tell if Eq. (5)
holds because the new physics model is not given. On the
other hand, in our framework we are always free to postulate
Eq. (5). In a model-dependent search Eq. (5) could be wrong,
in our case it is a restriction on the set of new physics models
that we are testing.
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Still it is interesting to discuss how the model-independent
strategy that we are constructing would react to the presence
of new physics effects in the auxiliary data. New (or mis-
modeled) effects in auxiliary data could in general reduce the
sensitivity of the test to new physics, however it is not obvious
that this reduction will be significant. Consider the extreme
case in which new physics is absent from the dataset of inter-
est, and is present only in the auxiliary measurements. The
new physics effects make the true auxiliary likelihood func-
tion different from the postulated one, L(ν|A). Therefore, in
the likelihood maximization, the L(ν|A) term will push ν to
values that are different from the true values of the nuisance
parameters. This will occur both in the maximization of the
L(Rν |D,A) and of the L(Hw,ν |D,A) likelihoods. For these
incorrect values of the nuisance parameters, n(x |Rν) does
not provide a good description of the distribution of the data
of interest D. Therefore the maximal likelihood of Rν will be
small, due to the mismatch between the data and the Refer-
ence distribution estimated from the “signal-polluted” auxil-
iary dataset. The Hw,ν hypothesis instead possesses enough
flexibility to adapt n(x |Hw,ν) according to the data of inter-
est, thanks to the flexibility of the neural network (4). The
likelihood of Hw,ν will thus possess a high maximum, in the
configuration where ν maximizes the auxiliary likelihood and
the neural network accounts for the discrepancy between the
x distribution at that value of ν and the true x distribution at
the true value of the nuisance parameters. This can enable our
test to reveal a tension of the data with the Reference Model
even in this limiting configuration, as we will see happen-
ing in Sect. 3.5 in a simple setup. New physics effects in the
auxiliary data might thus not spoil the potential to achieve
a discovery. On the other hand, they would complicate its
interpretation.

Similar considerations hold for possible new physics con-
taminations in the Reference dataset R employed for train-
ing. These contaminations emerge if R has a data-driven
origin, and if new physics affects the distribution of the data
control region. Since the control region data are transferred
to the region of interest by assuming the validity of the Ref-
erence Model, the net effect is a mismatch between the true
distribution of x in the (central-value) Reference Model and
the actual distribution of the instances of x in the Reference
sample. As for auxiliary measurements, new physics in con-
trol regions does not necessarily spoil the sensitivity to new
physics. Indeed our test is sensitive to generic departures of
the observed data distribution with respect to the distribution
of the Reference dataset. Departures which are due to a mis-
modeling of the Reference induced by new physics in the
control region, rather than to new physics in the data of inter-
est, could still be seen. Our strategy would instead completely
loose sensitivity if new physics affects the control region and
the data of interest in the exact same way, because in this case

there would be strictly no difference between the distribution
of the data and the one of the Reference dataset.

3 Step-by-step implementation

The present section describes the detailed implementation of
our strategy and its validation in a simple case study that will
serve as an explanatory example throughout the presentation
of the algorithm. In particular, we consider a one-dimensional
feature x ∈ [0,∞) with exponentially falling distribution in
the Reference hypothesis. We assume that our knowledge
of the Reference hypothesis is not perfect and that our lack
of knowledge is described by a two-dimensional nuisance
parameters vector ν = (νn, νs). The two parameters account,
respectively, for the imperfect knowledge of the normaliza-
tion of the distribution (i.e., of the total number of expected
events N(Rν) ≡ eνnN(R0)) and of a multiplicative “scale”
factor (defined by x = xmeas. = eνsxtrue) in the measurement
of x . The Reference Model distribution of x reads

n(x |Rν) = n(x |Rνn,νs) = N(R0) exp
[−x e−νs − νs + νn

]
,

(26)

with the total number of expected events in the central-value
hypothesis, N(R0), fixed at N(R0) = 2 000. As discussed
in Sect. 2.2, the central-value Reference hypothesis R0 is
defined to be at the point (νn, νs) = (0, 0) in the nuisances’
parameter space. We have parametrized the normalization,
eνn , and the scale factor, eνs , so that they are positive in the
entire real plane spanned by (νn, νs).

We suppose that the normalization and the scale nuisances
are measured independently using an auxiliary set of data
A. The estimators of the measurements central values are
denoted as ν̂n = ν̂n(A) and ν̂s = ν̂s(A). We assume that
these estimators are unbiased and Gaussian-distributed with
standard deviations σn and σs. The auxiliary likelihood log-
ratio thus reads

2 log

[L(ν|A)

L(0|A)

]
= −

(
ν̂n − νn

σn

)2

+
(

ν̂n

σn

)2

−
(

ν̂s − νs

σs

)2

+
(

ν̂s

σs

)2

. (27)

It should be noted that ν̂n and ν̂s are statistical variables,
owing to their dependence on the auxiliary dataA. Therefore
we must let them fluctuate when generating the simulated
experiments (toys) that we employ to validate the algorithm.
Namely, denoting as ν∗ = (ν∗

n, ν
∗
s ) the true value of the nui-

sance parameter vector, the estimators ν̂n and ν̂s are thrown
from Gaussian distributions with standard deviations σn and
σs, centered ν∗

n and ν∗
s , respectively. This mimics the statis-

tical fluctuations of the auxiliary data A, out of which the
estimators ν̂n,s are derived in the actual experiment. The true
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value of the nuisance parameters ν∗ is unknown, and the
validation of the method consists in verifying that the distri-
bution of the test statistic is independent on ν∗. We will verify
this on toy datasets generated with ν∗

n,s at the central value
(ν∗

n,s = 0), and at plus and minus one standard deviation
(ν∗

n,s = ±σn,s).

The rest of this section is structured as follows. In Sect. 3.1
we describe the selection of the neural network model and
regularization parameters based on the χ2 compatibility cri-
terion introduced in the previous section (and in Ref. [2]),
and in particular in Sect. 2.5. Next, in Sect. 3.2, we illustrate
the reconstruction of the coefficient functions that model the
dependence of the Reference Model distribution on the nui-
sance parameters, following Sect. 2.3. In Sect. 3.3 we present
our implementation of the calculation of the test statistic as
in Sect. 2.4. In Sect. 3.4 we validate our strategy by verifying
the asymptotic formulae of Sect. 2.5 and in turn the indepen-
dence of the distribution of the test statistic on the true value
of the nuisance parameters. Finally, in Sect. 3.5 we study the
sensitivity to putative “new physics” signals that distort the
distribution of x relative to the Reference Model expectation
in Eq. (26). It should be emphasized that this latter study has
a merely illustrative purpose. All the steps that are needed to
set up our strategy, from the model selection to the evaluation
of the distribution of the test statistic, are performed based
exclusively on knowledge of the Reference Model and not
on putative new physics signals, as appropriate for a model-
independent search strategy.

While presented in the context of a simple univariate prob-
lem that is rather far from a realistic LHC data analysis prob-
lem, the technical implementation of all the steps described
in the present section is straightforwardly applicable to more
complex situations. The application to a more realistic prob-
lem will be discussed in Sect. 4.

3.1 Model selection

The first step towards the implementation of our strategy is
to select the hyper-parameters of the neural network model
“ f (x; w)”, which we employ to parametrize possible new
physics (or Beyond the SM, BSM) effects as in Eq. (4). We
restrict our attention to fully-connected feedforward neural
networks, with an upper bound on the absolute value of each
weight and bias. The upper limit is set by a weight clipping
regularization parameter that needs to be selected. The other
hyper-parameters are the number of hidden layers and of
neurons per layer that define the neural network architecture.

According to the general principles outlined in Sect. 2.5,
the model selection results from two competing principles.
The first one is that the model should have the highest com-
plexity that can be handled by the available computational
resources in a reasonable amount of time. This maximizes the

model’s capability to fit complex departures from the Ref-
erence Model expectation, making it sensitive to the largest
possible variety of putative new physics signals. On the other
hand, the model should be simple enough for the distribu-
tion of the associated test statistic to be in the asymptotic
regime, given the finite amount of training data. This condi-
tion is enforced by monitoring the compatibility with the χ2

asymptotic formula for the test statistic distribution.
As explained in Sect. 2.5, the χ2 compatibility condition

that underlies the selection of the neural network hyperpa-
rameters will be enforced in the limit where the nuisance
parameters do not affect the distribution of the variable x
or, equivalently, in the limit where the auxiliary measure-
ments of the nuisance parameters are infinitely accurate (i.e.,
σn,s → 0). It is easy to see from the results of Sect. 2, or
from Refs. [1,2], that the test statistic in this limit becomes

t(D) = 2 max
w

log

[L(Hw|D)

L(R0|D)

]
= −2 min

w

{
L̄ [ f (·; w); ]

}
. (28)

The minimization is performed by training the network f
with the loss function

L̄ [ f (·; w)] = −
∑

x∈D
[ f (x; w)] +

∑

e∈R
we

[
e f (xe;w) − 1

]
. (29)

The asymptotic distribution of t is a χ2 with a number of
degrees of freedom which is equal to the number of train-
able parameters of the neural network. The χ2 compatibility
of a given neural network model will be monitored by gen-
erating toy instances of the dataset D in the R0 hypothesis,
running the training algorithm on each of them, computing
the empirical probability distribution of t and comparing it
with the χ2.

We first discuss how to select the weight clipping reg-
ularization parameter for a given architecture of the neural
network. We consider for illustration, in the simple univari-
ate example at hand, a network with four nodes in the hidden
layer (and one-dimensional input and output). We refer to
this architecture as (1, 4, 1), for brevity. This network has a
total of 13 trainable parameters, therefore the target t distri-
bution is a χ2

13 with 13 degrees of freedom. We generated
a Reference sample R, with NR = 200 000 = 100 N(R0)

entries, following the R0 distribution of the variable x as
given by Eq. (26) for νn,s = 0. The sample is unweighted,
therefore the weights in the sample are all equal and we =
N(R0)/NR = 0.01. We also generate 400 toy instances of the
dataset D in the same hypothesis. The number of instances
of x in D, ND, is thrown from a Poisson distribution with
mean N(R0) = 2 000 in accordance with the R0 expectation.
For different values of the weight clipping parameter, rang-
ing from 1 to 100, we train the neural network with the loss
in Eq. (29) and we compute t(D) on the toy datasets using
Eq. (28). The empirical P(t |R0) distributions obtained in this
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Fig. 1 Empirical distributions of t after 300 000 training epochs for
different values of the weight clipping parameter, compared with the
χ2

13 distribution expected in the asymptotic limit for the (1, 4, 1) net-
work. The evolution during training of the t distribution percentiles,

compared with the χ2
13 expectation, is also shown. Only 100 toy datasets

are employed to produce the results shown in the figure, except for the
ones for weight clipping equal to 9 where all the 400 toys are used

way after 300 000 training epochs, and some of its percentiles
as a function of the number of epochs, are reported in Fig. 1.

We see that for large values of the weight clipping param-
eter the distribution sits slightly to the right of the target χ2

with 13 degrees of freedom. Furthermore the training is not
stable and significant changes in the t percentiles (especially
the 95% one) occur even after 150 000 epochs. Very small
values of the weight clipping make the distribution stable
with training, but push it lower than the χ2

13 expectation. A
good compatibility is instead obtained for intermediate val-
ues of the weight clipping parameter. We see that a weight
clipping equal to 9 reproduces the χ2

13 formula quite accu-
rately.

The strategy to find the value of the weight clipping param-
eter that best complies with the χ2 compatibility criterion can
be refined and optimized. We can start from one small and
one large value of the weight clipping, for which we expect

that the distribution of t will, respectively, undershoot and
overshoot the χ2 expectation, and compute t by running the
training algorithm on a limited number n of toy datasets. The
average of t over the n toys will be below (above) the mean
of the target χ2 distribution (i.e., 13, in the case at hand)
for the small (large) value of the weight clipping. We thus
obtain a window of values where the optimal weight clipping
sits, which can be further narrowed by applying a standard
root finding algorithm on the average t compared with the
expected mean. Clearly the average t will be affected by a
relatively large error if n is small. Therefore after a few itera-
tions of the root finding algorithm, it will become compatible
with the expected mean, preventing us from further restrict-
ing the weight clipping compatibility window.

Rather than looking at the compatibility of the average, a
more powerful compatibility test should be employed at this
stage in order to pick up the optimal weight clipping value
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Table 1 Kolmogorov–Smirnov p-value and average t (minus the expected mean of 13) for the (1, 4, 1) network trained over samples of 40, 100
and 400 toy datasets, for different values of the weight clipping regularization parameter

Weight clipping 40 toys 100 toys 400 toys

KS p-value 〈t〉 − 13 KS p-value 〈t〉 − 13 KS p-value 〈t〉 − 13

35 0.10 1.0 ± 0.7 < 10−5 2.6 ± 0.6

15 0.09 2.0 ± 1.5 0.01 1.5 ± 0.7

11 0.36 1.0 ± 0.8 0.01 1.2 ± 0.5

10 0.86 0.6 ± 0.9 0.56 0.9 ± 0.6 0.78 0.4 ± 0.3

9 0.68 0.5 ± 0.9 1.0 0.0 ± 0.5 0.93 0.0 ± 0.3

8 0.44 0.3 ± 0.7 0.53 −0.4 ± 0.4 0.42 −0.3 ± 0.2

7 0.40 −0.6 ± 0.8 0.21 −0.8 ± 0.4 0.02 −0.7 ± 0.2

4 0.11 −1.4 ± 0.7 < 10−5 −2.7 ± 0.4

inside the window. Furthermore this test should be sensitive
to the entire shape of the distribution and not only to its
central value. One can consider for instance a Kolmogorov–
Smirnov (KS) test and maximize, in the window, the p-value
for the compatibility with the target χ2 of the empirical t
distribution.5

It is advantageous to implement the strategy described
above using a rather small number n of toy datasets, because
training could become computationally demanding in real-
istic applications of our strategy. On the other hand, if n is
small the KS compatibility test has limited power, leaving
space for considerable departures from the target χ2 of the
true distribution of t , even with the value of the weight clip-
ping that has been selected as “optimal”. A more accurate
determination of the optimal weight clipping could however
be obtaining by increasing n and repeating the previous opti-
mization step. Clearly at this stage one could restrict to the
much narrower window obtained at the end of the previous
step, and benefit from the previous determination of the opti-
mal weight clipping in order to speed up the convergence.
The entire procedure could be further repeated with an even
larger n, until a certain compatibility goal is achieved. For
instance, one might require a KS p-value larger than some
threshold, at the optimal weight clipping point, with a rela-
tively large number n (say, 400) of toy experiments.

The results reported in Table 1 illustrate the weight clip-
ping optimization strategy described above for the (1, 4, 1)

network in the univariate problem under consideration. Actu-
ally a systematic optimization strategy is not needed to deal
with the simple problem at hand, because training is suffi-
ciently fast to test many points in the weight clipping parame-
ter space with a large number of toys. Furthermore the depar-
tures from the χ2 of the empirical t distribution are rather
mild, as shown by Fig. 1, in a rather wide range of weight

5 Other compatibility tests can be adopted as well. For instance, one
could minimize pdf-distance metrics such as the Kullback–Leibler
divergence or the Earth Mover distance.

clipping values. We will instead need the optimization strat-
egy in order to deal with the more realistic five-features prob-
lem of Sect. 4 where training is longer and the distribution is
more sensitive to the weight clipping parameter.

Up to now we have considered a single architecture,
and found one choice of the weight clipping parameter that
ensures a good level of χ2 compatibility. According to gen-
eral principles of model selection, we should now switch to
more complex architectures, with more neurons and/or hid-
den layers, aiming at selecting the most complex network that
respects the asymptotic formula and that can be practically
handled by the available computational resources. We saw
in Ref. [2] that computational considerations play an impor-
tant role in the selection, however the univariate problem at
hand is not sufficiently demanding to illustrate this aspect.
Indeed we have found χ2-compatible networks with up to
one hundred neurons, which are clearly an overkill for the
univariate problem. Therefore, we will not describe the pro-
cess of architecture optimization in the univariate example
and postpone the discussion to a more realistic context in
Sect. 4. The (1, 4, 1) network, with weight clipping equal to
9, will be employed in the rest of the present section.

3.2 Learning nuisances

We now turn to the problem of learning the effect of the nui-
sance parameters on the distribution of the variable x , fol-
lowing the methodology described in Sect. 2.3. In the simple
univariate problem at hand, we have access to the distribution
in closed form (Eq. (26)), and in turn to the exact analytic
expression for the log distribution ratio

log r(x; ν) = log
n(x |Rν)

n(x |R0)
= νn + x (1 − e−νs) − νs. (30)

The dependence on the normalization nuisance νn is trivial
and it can be incorporated analytically, both in the univari-
ate problem and in realistic analyses. The dependence on
the scale nuisance νs is more complex, and not analytically
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available in realistic problems. We thus approximate it by a
Taylor series as in Eq. (14). Namely we define

log r̂(x; ν) = νn + νs δ̂1(x) + 1

2
ν2
s δ̂2(x) + · · · . (31)

Truncations of the νs series at the first and at the second order
will be considered in what follows.

We model each δ̂a(x) coefficient function (with a rang-
ing from 1 to the desired order of the series truncation in
Eq. (31)) with fully-connected (1, 4, 1) neural networks with
ReLU activation functions, trained with the loss function in
Eq. (17). The training samples S1(νi ) and S0(νi ) contain
20 000 events each. The events in S1(νi ) are thrown accord-
ing to the probability distribution of x in the R0 hypothesis.
The ones in S0(νi ) are thrown according to the Rν hypothesis
at selected points νi = (0, νs,i ) in the nuisance parameters
space. The choice of the νs,i values used for training has a
considerable impact on the quality of the reconstruction of
the δ̂a(x) functions. They should be such as to expose the
dependence of the distribution ratio on each monomial of
the expansion. For instance, when dealing with the quadratic
approximation one would employ a relatively small value
of νs, for which the linear term dominates, in order to learn
δ̂1(x), and a relatively large one for the reconstruction of
δ̂2(x). At least one additional value of νs would be needed in
order to go to the cubic order. This value would be taken even
larger, namely in the regime where the quadratic approxima-
tion starts becoming insufficient and the dependence of the
distribution ratio on the cubic term plays a role. Employing
a redundant set of νs,i ’s (for instance, 4 points rather than
2 at the quadratic order) is beneficial. In general it is conve-
nient to pick up the νs,i ’s in pairs of opposite sign, symmetric
around the origin.

The set of νs,i ’s that duly captures all the terms in the Tay-
lor expansion can be determined by inspecting the depen-
dence on νs of the distribution integrated in bins, and identi-
fying the points on the νs axis where a change of regime
(say, from linear to quadratic) is observed. This is illus-
trated in Fig. 2, where we plot the dependence on νs of
log Nb(νs)/Nb(0), with Nb the integral of the distribution
in selected bins of the variable x . The points represent the
true value of the log ratio as obtained from the distribution
in Eq. (26). The dot-dashed, dashed and continuous lines are
the fit to these points with polynomials of order 1, 2 and
4, respectively. More precisely the first-order polynomial fit
only employs the points in the interval νs ∈ [−0.1, 0.1],
the second-order one employs the range νs ∈ [−0.3, 0.3],
while the fourth-order polynomial fit is performed on all the
points. Compatibly with Eq. (30), we see that the behavior
is almost exactly linear when x is very small. Considerable
departures from linearity are instead present, for bigger x ,
when νs is as large as 0.3 in absolute value. Based on these
plots, for training the linear order we selected the set of values

νs,i ∈ {±0.05,±0.1}, for which the linear approximation is
valid.6 The set νs,i ∈ {±0.05, ±0.3} was instead employed
for the quadratic order approximation. The figure also sug-
gests that the quadratic order truncation in Eq. (31) should
be sufficient to model the dependence of log r(x; ν) on νs in
the entire phase-space of x , at least if we limit ourselves to
the range νs ∈ [−0.6, 0.6].

The quality of the reconstruction of the log-ratio is dis-
played in Fig. 3 for the two different polynomial orders (linear
and quadratic) that we have considered for the truncation of
the series in Eq. (31). The exact analytic log-ratio in Eq. (30)
is represented as dashed lines, to be compared with the recon-
structed ratio reported as empty dots. The different colors
correspond to different values of νs. As expected, the first-
order truncation is accurate only if νs is small. The accuracy
improves with the quadratic truncation, for which the recon-
structed log-ratio is essentially identical to the exact log-ratio.
It should be kept in mind that, as explained in Sect. 2.3, the νs
range where an accurate reconstruction is needed depends on
the allowed range of variability of νs, namely on its standard
deviation σs. From the figure we see that the linear poly-
nomial modeling is adequate only if σs is below around 0.3,
while with the quadratic one σs could be as large as 0.6.7 The
figure also reports the binned prediction for the log-ratio, as
obtained from the quartic fit to log Nb(νs)/Nb(0) previously
described and displayed in Fig. 2. In realistic examples where
the analytic log-ratio is not available, the binned prediction
can be employed to monitor the quality of the reconstruc-
tion provided by the δ̂a(x) networks. A more stringent test
of the accuracy of the distribution log-ratio approximation,
connected with the final validation of our strategy and its
robustness to nuisances, will be discussed in Sect. 3.4.

3.3 Computing the test statistic

We finally have at our disposal all the ingredients to compute
the test statistic t (D,A). This consists of the τ term, sub-
tracted by the correction �. We now illustrate the evaluation
of the two terms in turn, as implemented in the TensorFlow
[25] package. The implementation is schematically repre-
sented in Fig. 4, and the corresponding code is available at
[26].

6 Obviously the linear approximation is also valid for even smaller νs.
However, very small νs,i ’s reduces the impact of the nuisance parame-
ters of the distribution of S0(νi ) relative to the one of S1(νi ), making
training harder. The best option is to employ the largest νs,i ’s for which
the linear approximation is still satisfactory.
7 If σs was even larger, additional polynomial orders would be needed
up to the point where the convergence of the Taylor series breaks down.
After that, the only way to proceed would be to replace the Taylor series
with a more rapidly convergent expansion of the log-ratio, if it exists,
or to employ a parametric neural network [18].
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Fig. 2 The dependence on νs of log Nb(νs)/Nb(0) in selected bins. The dots represent the true value of the log-ratio. The linear, quadratic and
quartic fits are performed using a subset of the true values points as explained in the main text

Fig. 3 The reconstructed distribution log-ratio (empty dots) for different values of νs, compared with the exact log-ratio and with the fourth-order
binned approximation described in the main text. The two panels correspond to truncations of the series in Eq. (31) at linear and at the quadratic
order

Fig. 4 Schematic representation of the TensorFlow implementation of our algorithm

As described in Sect. 2.4, computing τ requires the simul-
taneous optimization of the parameters w of the neural net-
work model f (x; w) (dubbed “BSM network” in the figure)
and of the nuisance parameters ν. The loss function is the one
of Eq. (25). It depends on ν through the distribution ratio r , or
more precisely through its estimate r̂(x; ν) as in Eq. (16). The
estimated r̂ ratio is implemented as a TensorFlow “λ-layer”
(denoted as “r layer” in the figure) that takes as input the
output of the δ̂ networks and builds the required polynomial
function of ν. Notice that the parameters of the δ̂ networks
are “fixed” parameters during training, namely they are not

optimized. Indeed, the δ̂ networks have been trained at a pre-
vious stage of the implementation, as described in Sect. 3.2.
The evaluation of τ thus proceeds as shown in the left panel
of Fig. 4. The inputs are the Reference sample, the (observed
or toy) Data and the central value of the auxiliary likelihood
ν̂(A). Notice that ν̂(A) = 0 by construction in the true exper-
iment, but it fluctuates in the toy experiments as discussed
at the beginning of the present section. As in the figure, the
Reference data feed only the BSM network, while the Data
feed both the BSM and the r -layer, after passing through
the pre-trained δ̂ networks. The loss function takes as input
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the BSM network, the r -layer output and ν̂(A), which enters
in the auxiliary term of the Likelihood. The only trainable
parameters are the ones of the BSM network and of the r -
layer, namely w and ν. The loss at the end of training, times
−2, produces the τ term.

The evaluation of the � term, depicted on the right panel of
Fig. 4, follows the strategy described in Sect. 2.3. It has been
implemented in TensorFlow employing the same building
blocks used for the evaluation of τ , apart from the BSM
network that does not participate in the evaluation of �. The
Reference dataset is similarly not employed at this step. The
loss function is merely given by minus the argument of the
maximum in Eq. (18), so that � is the minimal loss at the end
of training, times −2. For the evaluation of �, the parameters
ν of the r -layer are the only ones to be optimized by the
training algorithm.

The TensorFlow modules described above are also
employed for the preliminary steps of the algorithm described
in Sects. 3.1 and 3.2. In the latter, the δ̂ networks are trained
using the loss function in Eq. (29) and the relevant datasets.
In the former step, namely the selection of the BSM net-
work hyper-parameters, the r -layer and the δ̂ networks are
not employed and the loss function is replaced with the one,
in Eq. (29), where the effect of nuisance parameters is not
taken into account.

3.4 Validation

As previously emphasized, it is vital for the applicability of
our strategy that the distribution P(t |Rν) of the test statistic
is nearly independent of ν. This is ensured in line of principle
by the asymptotic formulae described in Sect. 2.5. Verifying
in practice the validity of the asymptotic formulae is thus the
crucial validation step, which we will perform by comput-
ing the empirical P(t |Rν) distribution on toy experiments.
Toy datasets are generated according to the Rν hypothesis,
at different points ν = ν∗ = (ν∗

n, ν
∗
s ) of the nuisances’

parameter space. Each toy dataset D is accompanied by one
instance of the nuisance parameters estimators ν̂ = (̂νn, ν̂s).
As explained at the beginning of the present section, the esti-
mators are thrown as Gaussians with standard deviations σn,s

centered at ν∗
n,s. They appear in the auxiliary likelihood log-

ratio as in Eq. (27).
We start by setting σn = σs = 0.15, and from central-

value nuisance parameters (ν∗
n, ν

∗
s ) = (0, 0), obtaining the

results on the left panel of Fig. 5. The plot shows the empir-
ical τ distribution in green and, in blue, the distribution of
t = τ − �. In spite of the fact that the toys are generated
according to the central-value Reference hypothesis, which
is the same hypothesis under which we enforced compati-
bility with the χ2

13 by choosing the weight clipping param-
eter in Sect. 3.1 (see Fig. 1), the distribution of τ is slightly
different from the χ2

13. This is not surprising because the

χ2-compatibility was enforced on the variable t (28), which
does not account for the presence of nuisances and is differ-
ent from τ . The distribution of τ is instead quite close to the
χ2 with a number of degrees of freedom equal to 15, which
is the number of parameters of the neural network plus the
number of nuisance parameters. This is compatible with the
asymptotic expectation as discussed in Sect. 2.5. Again com-
patibly with the asymptotic formulae, we see in the figure that
the distribution of t = τ −� is instead a χ2 with 13 degrees
of freedom.

The left panel of Fig. 5 provides a first confirmation of the
validity of the asymptotic formula for P(t |Rν), thought not
a particularly striking one because the τ distribution is not
vastly different from the one of t , meaning that the correction
term � does not play an extremely significant role in this
case. A more interesting result is obtained when setting ν∗

n or
ν∗
s one σ away from the central value, as shown in the four

plots in the right panel of the figure. In this case, as expected
from the asymptotic formulae, the τ distribution is radically
different from the one of t . It is expected to follow a non-
central χ2 with a non-centrality parameter that is controlled
by the departure of the true values of the nuisances from the
central values. The correction term � has a big impact on
the distribution of t , bringing it back to the expected χ2

13.
The effect is due to a strong correlation between the τ and �

distribution over the toys, which engineers a cancellation in
t = τ − �.

A more quantitative and systematic validation of the com-
patibility of t with the χ2

13 can be obtained by computing
the Kolmogorov–Smirnov test p-value as in Sect. 3.1. The
results are reported in Table 2. The “w/o correction” columns
report the p-value obtained by comparing the distribution of
τ (i.e., without the � correction term) with the χ2

13. The “w/
correction” columns report the p-value for the distribution
of t , including the correction. The table contains the results
obtained for σn,s = 0.15, as well as those for lower values
of the nuisances’ standard deviations σn,s = 0.10, 0.05.

The above results establish the validity of the asymptotic
formulae when the standard deviation of the nuisance param-
eters is of order 15% or less. Notice that it is increasingly sim-
ple to deal with smaller standard deviations (i.e., with more
precisely measured nuisances), merely because when ν is
small the ratio r̂(x; ν) approaches 1 becoming independent
of ν, regardless of the accuracy with which it is reconstructed
by the δ̂a(x) networks. Consequently the maximization over
w in τ (24) tends to decouple from the maximization over ν

and the cancellation between τ and � in the determination of
t is guaranteed. On the contrary, larger standard deviations
are more difficult to handle. Indeed, as explained in Sect. 2.5,
larger values of ν push the τ distribution away from the tar-
get χ2, forcing the correction term to engineer an increas-
ingly delicate cancellation. This enhances the impact of all
the imperfections that are present in the implementation of
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Fig. 5 The empirical distribution of τ (in green) and of t (in blue) computed by 100 toy experiments performed in the Rν hypothesis at different
points in the nuisances’ parameters space. The χ2

13 distribution is reported in blue in all the plots. The χ2
15 distribution is shown in green on the left

plot

Table 2 Kolmogorov–Smirnov p-value for the compatibility of the τ (“w/o correction” columns) and of the t (“w/ correction” columns) distributions
with the χ2

13. The KS test is based 100 toy experiments performed in the Rν hypothesis at different points in the nuisance parameters space
(

νs
σs

, νn
σn

)
σs = 5%, σn = 5% σs = 10%, σn = 10% σs = 15%, σn = 15%

KS p-value KS p-value KS p-value

w/o correction w/ correction w/o correction w/ correction w/o correction w/ correction

(0, 0) < 10−5 0.33 < 10−5 0.49 < 10−5 0.08

(+1, 0) < 10−5 0.41 < 10−5 0.55 < 10−5 0.72

(0,+1) < 10−5 0.80 < 10−5 0.86 < 10−5 0.45

(−1, 0) < 10−5 0.33 < 10−5 0.88 < 10−5 0.37

(0,−1) < 10−5 0.47 < 10−5 0.82 < 10−5 0.36

the algorithm, and in particular of the ones related with the
quality of the reconstruction of r̂ that is achieved by the δ̂a(x)
networks. The results presented up to now (namely, Fig. 5 and
Table 2) are obtained by employing the linear-order recon-
struction for log r̂ . The good observed level of compatibility
with the asymptotic formula thus shows that the linear-order
reconstruction is sufficiently accurate in order to deal with
σn,s ≤ 15%. However the accuracy is expected to become
insufficient for larger σn,s, owing to the considerable depar-
tures of the exact log r from linearity described in Sect. 3.2.

We illustrate this aspect by computing the empirical t dis-
tribution for σn,s = 0.6 and setting (ν∗

n, ν
∗
s ) = (0,−0.6).8

The result reported in the left panel of Fig. 6 employ the
linear-order approximation of log r̂ . The ones in the middle
panel are obtained with the quadratic order approximation
while the exact log r (30) is employed in the right panel. The
figure shows that the linear-order approximation is insuffi-
cient, while a good compatibility with the target χ2

13 is found

8 We set ν∗
n = 0 for this study because non-vanishing values of ν∗

n
are easy to deal with, since the dependence of r on the normalization
nuisance is known exactly.

with the quadratic approximation and with the exact log-
ratio.

A similar test performed with (ν∗
n, ν

∗
s ) = (0,+0.6) pro-

duced however a non-satisfactory level of compatibility as
shown on the left panel of Fig. 7. The reason is that for
positive and relatively large ν∗

s = +0.6, the scale factor
eνs � 1.8 is considerably larger than one and pushes the
Reference Model distribution (26) towards large x . There-
fore, toy data generated with positive and large ν∗

s can often
display instances of x that fall in a region that is not popu-
lated by the Reference sample. The “new physics” network
f identifies these instances as highly anomalous, since they
do not have any counterpart in the Reference sample, pro-
ducing outliers in the τ distribution and in turn in the one of
t . An illustration of this behavior is displayed on the right
panel of the figure. For the toy experiment under consider-
ation, the large observed t = 217 is due to the data points
at x � 13, which falls well above the largest instance of x
(� 11) that is present in the Reference sample. Such problem-
atic outliers with no counterpart in the Reference sample can
not occur if ν∗

s is sufficiently small, such that the n(x |Rν∗)
distribution is similar to the central-vale n(x |R0) distribu-
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Fig. 6 The empirical distribution of t computed with 100 toy experiments for (ν∗
n, ν∗

s ) = (0,−0.6). Increasingly accurate modelings of log r̂(x; ν)

are employed in the three panels, namely the linear- and quadratic-order approximations and the analytic log-ratio in Eq. (30)

Fig. 7 Left panel: the empirical distribution of t computed with 100 toy experiments for (ν∗
n, ν∗

s ) = (0, 0.6). Right panel: neural network
reconstruction of the x variable distribution (using Eqs. (4) and (26)) of a single toy experiment for which the test statistic output is an outlier
(t � 217)

tion according to which the Reference sample is generated,
because the Reference sample is more abundant (100 times,
in the case at hand) than the data. But they can occur if, as
for |ν∗

s | = 0.6, the nuisance parameters are so large that they
modify the central-value distribution at order one and, as for
ν∗
s = +0.6, they push it towards phase-space regions that are

particularly rare in the central-value hypothesis. This poten-
tial issue should be kept in mind when dealing with nuisance
parameters that are poorly constrained by the auxiliary mea-
surements. Similar problems occur in traditional analyses,
whenever the reference control sample statistics is insuffi-
cient. A typical mitigation of this effect is obtained binning
the dataset with larger binwidths on distribution tails. For our
method, which in its generic formulation does not make use
of bins, possible solutions are either to restrict the variables
to a region that is well-populated by the available Reference
sample, or to produce a Reference sample that populates the
tail of the features distribution more effectively. Further dis-
cussion on this point is postponed to Sect. 4.2, where we will
see the same issue emerging again in a more realistic context.

3.5 Sensitivity to new physics

We conclude the discussion of the univariate example by
testing its sensitivity to putative new physics effects. We con-

sider three New Physics (NP) scenarios that foresee, respec-
tively, the presence of a resonant bump in the tail of the
x distribution, a non-resonant enhancement and a resonant
peak in the bulk of the distribution. Following Ref. [1], we
consider

NP1: a peak in the tail of the exponential Reference distri-
bution, modeled by a Gaussian

n(x |NP1;ν) = n(x |Rν) + N1
1√

2πσ
e− (x−x̄1)2

2σ2 , (32)

with x̄1 = 6.4, σ = 0.16 and N1 = 10.
NP2: a non resonant effect in the tail of the Reference dis-

tribution

n(x |NP2;ν) = n(x |Rν) + N2
x2

2
e−x , (33)

with N2 = 180.
NP3: a peak in the bulk, again modeled by a Gaussian shape

n(x |NP3;ν) = n(x |Rν) + N3
1√

2πσ
e− (x−x̄3)2

2σ2 , (34)

with x̄3 = 1.6, σ = 0.16 and N3 = 90.

123



Eur. Phys. J. C           (2022) 82:275 Page 19 of 37   275 

All our putative new physics scenarios give a positive con-
tribution to the Reference distribution. As such, they can be
interpreted as an additional “signal” component in the dis-
tribution of the data, on top of the “background” Reference
distribution. This is obviously not necessary for our method,
which can equally well be sensitive to new physics effects that
interfere quantum-mechanically with the Reference Model
producing a non-additive contribution. Also notice that we
decided not to include nuisance parameters in the new physics
term, which is thus assumed to be perfectly known. Also this
assumption is not crucial for the sensitivity since a modeling
of the signal is not required in our method. Nuisance param-
eters related to the signal come at play whenever one wants
to interpret the outcome of the method as a bound on the
theoretical parameters of a specific scenario.

We quantify the potential of our strategy to detect depar-
tures from the Reference Model, if one of the three NP1,2,3

models is present in the data, in terms of the median Z -
score Z obtained by running our algorithm on toy datasets
generated according to the n(x |NP) distribution. For each
NP-hypothesis toy we repeat the exact same operations we
described in Sect. 3.3 to obtain the test statistic t , in the exact
same configuration (architecture, weight clipping, etc.) we
used in Sect. 3.4 for validation on the Reference-hypothesis
toy datasets. The linear-order reconstruction of log r̂ is
employed for the modeling of the nuisance parameters effect.
We saw in Sect. 3.4 that this modeling is sufficiently accurate
if we limit our analysis to the regime σn,s ≤ 15%. The value
of t on each NP toy is compared with the χ2

13 distribution
and converted to a p-value by exploiting the asymptotic for-
mulae we verified Sect. 3.4. For each NP1,2,3 new physics
scenario, the median p-value is computed using 100 NP toy
datasets, obtaining Z = �−1(1 − p), with � the cumula-

tive of the Standard Gaussian. The results are reported in
Fig. 8 under multiple assumptions (σn,s = 5, 10, 15%) for
the nuisance parameters standard deviations and for differ-
ent choices (ν∗

n,s = 0, ±σn,s) of the true values of the nui-
sance parameters that underly (through the Rν component of
n(x |NP)) the generation of the NP toys.

The figure also reports a “reference” median Z -score Z ref ,
that quantifies the sensitivity of a model-dependent data anal-
ysis strategy targeted and optimized for the detection of each
individual NP hypothesis. A model-dependent search is nec-
essarily more powerful than a model-independent one for the
detection of the NP signal it is designed for. Correspondingly,
Z ref must be significantly larger than Z by consistency and
the two quantities should not be compared directly. As in
Refs. [1,2], we use Z ref to quantify how “difficult” or “easy”
the NP1,2,3 signals are to detect in absolute terms, and we
report the ratio Z/Z ref < 1 as a measure of the degradation
in sensitivity of our model-independent strategy relative to
dedicated searches.

As a “reference” model-dependent search strategy we con-
sider a hypothesis test based on the profile likelihood ratio,
and more precisely on the test statistic “q0” for the discovery
of positive signals defined in Ref. [24]. Namely, we extend
the NP hypothesis by a “signal strength” parameter μ ≥ 0
that rescales Ni → μ Ni (for i = 1, 2, 3) in Eqs. (32)–(34).
Denoting as μ̂ the value of the signal strength parameter that
maximizes the likelihood of the NP hypothesis, and ν̂ the
maximum in the nuisances’ space, we define

q0 = −2 log
max

ν
L(Rν |D,A)

L(NPi ;̂ν;μ̂|D,A)
, (35)

if μ̂ > 0, and we set q0 = 0 otherwise. In the equa-
tion, L denotes the extended likelihood constructed as in

(a) (b)

Fig. 8 The median Z -score (Z ) obtained with our model-independent
strategy, compared to the median reference Z -score (Z ref ) of a model-
dependent search (see the main text) optimized for each of the three
new physics scenarios in Eqs. (32)–(34). The left panel a shows the
dependence of Z on the nuisance parameter uncertainties, and the mild
dependence of the ratio Z/Z ref . The left panel is obtained with NP

toys generated with central-value nuisance parameters ν∗
n,s = 0. The

right panel b displays Z/Z ref under multiple assumptions are for the
nuisance parameters uncertainties (σn,s = 5, 10, 15%) and for the true
values (ν∗

n,s = 0, ±σn,s) of the nuisance parameters. The error bars
quantify the statistical uncertainties (on 100 toys) in the determination
of the median
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Sect. 2, exploiting the analytic knowledge of the new physics
distributions provided by Eqs. (32)–(34). The “numerator”
hypothesis Rν coincides by construction with the NP hypoth-
esis at μ = 0. The distribution of q0 under the Reference
(numerator) hypothesis is known in the asymptotic limit. We
can thus associate a p-value to the value of q0 that is obtained
on each NP toy data set. The median p-value over the toys
provide the median Z -score [24]

Z ref = median
[√

q0
]
. (36)

The physical interpretation of the results on the left panel
of Fig. 8 is quite straightforward. The sensitivity to the res-
onant new physics scenarios NP1,3 is not affected by the
presence of nuisances, because the nuisance parameters we
are considering can not produce deformations of the Refer-
ence distribution that mimic a resonant peak. On the con-
trary, the scale nuisance parameter can mimic non-resonant
new physics and indeed the sensitivity to NP2 considerably
deteriorates as σn,s increases. The same behavior is observed
for the model-dependent Z ref , as well as for the sensitivity Z̄
of our model-independent strategy. Indeed, we see that the
Z/Z ref ratio is quite stable under the variation of σn,s. This
confirms the existence of a direct correlation, as in previous
studies [1,2], between the sensitivity of our model-dependent
strategy and the “absolute degree of detectability” of the new
physics scenario, as quantified by the sensitivity of a model-
dependent search. A further confirmation of this correlation
is provided by the right panel of the figure.

Before concluding this section, it is interesting to consider
a fourth scenario for new physics, which does not manifest
itself in the variable of interest “x”, but rather in the aux-
iliary measurements that constrain the nuisance parameters.
As discussed in Sect. 2.6, our strategy is not necessarily blind
to this type of effects. Consider a situation where the estima-
tor for the scale nuisance parameter, ν̂s(A), is biased due to
new physics by an amount �νs = 5 σs. Since we do not know
about this bias, our auxiliary likelihood remains the one in
Eq. (27), but ν̂s(A) in reality is not distributed around the true
ν∗
s , but around ν∗

s +�νs. In order to generate toy experiments
that describe this scenario, one has to take ν∗

s + �νs as the
central-value for the generation of the toy ν̂s values while
using the true ν∗

s for the generation of the x toy datasets.
The mismatch, on average, between ν̂s and the value of νs
that truly underlies the x variable distribution can lead to
the detection of new physics as explained in Sect. 2.6. For
σs = 15% we find sensitivities

(
ν∗
s

σs
,

ν∗
n

σn
) (0, 0) (+1, 0) (0,+1) (−1, 0) (0,−1)

Z 2.87+0.16
−0.15 3.53+0.12

−0.11 3.04+0.14
−0.14 3.22+0.14

−0.14 3.31+0.14
−0.14

4 Two-body final state

In the previous section we described the practical implemen-
tation of our strategy and its validation in a very simple uni-
variate toy problem. We now turn to a slightly more complex
setup, which is inspired by the realistic problem of model-
independent new physics searches in two-body final states
at the LHC (see Ref. [2]). While not yet a complete LHC
analysis, the setup that we study in the present section is at
a similar scale of complexity, and it poses novel challenges
with respect to the univariate problem. We will show how to
deal with them, aiming at providing the reader with useful
indications on how to handle the various technical aspects
that might show up in realistic physics analysis contexts.

A two-body final state can be characterized in terms of the
five kinematical features pT,1(2), η1(2) and �φ12 = φ1 −φ2,
with pT , η and φ the transverse momentum, the pseudorapid-
ity and the azimuthal angle of the individual particles.9 The
particles are pT -ordered, namely pT,1 > pT,2. Data are sup-
posed to be selected by requiring the two particles to have
same flavor and opposite sign, but this information is not
retained at this stage. We do not specify sharply the nature of
the final state objects. In the typical cases we have in mind,
these are either muons, electrons or τ leptons reconstructed
by the detector. On the other hand, the same construction
could be applied to objects with similar resolution, e.g., trad-
ing electrons for photons or taus for jets. The kinematical dis-
tributions would be quite different in the different cases, how-
ever we do not expect these differences to impact the techni-
cal viability of our strategy, which we aim at demonstrating.
The total cross-section of the process would be also differ-
ent. However we can compensate this adjusting the assumed
integrated luminosity of the dataset, making the total num-
ber of expected events N(R0) roughly equal in the various
cases. Therefore, for our purpose the only relevant differ-
ence between muons, electrons and τ final states resides in
the increasingly large systematic uncertainties that affect the
corresponding SM predictions. Since larger uncertainties are
more difficult to handle, as outlined in the previous section,
it is instructive to investigate these three scenarios.

Owing to the previous discussion, we ignore the difference
in the distributions of the different final states and we model
all of them as opposite-sign muons. Namely, the central-value
Reference distribution n(x |R0) is the same in all cases, and
it corresponds to the SM simulation of pp → μ+μ− + X
at the 13 TeV LHC obtained with MadGraph5 [27] at
LO, with extra jets matching and using Pythia6 [28] and
Delphes3 [29] for parton showering and detector simula-

9 Two additional variables such as the total transverse momentum and
the pseudorapidity of the two-particles system could be included in
order to enhance the sensitivity of the analysis to the production of the
two particles in association with hard objects.
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tion. The data samples we employ for the analysis are the
ones described in Ref. [2] and can be downloaded from Zen-
odo [30]. We consider two Gaussian nuisance parameters
νn and νs describing, as in the previous section, the uncer-
tainty on the event yield normalization and on the scale fac-
tor in the measurement of the transverse momenta. We adopt
a simple modeling of the normalization uncertainties by a
global (phase-space-independent) factor with standard devi-
ation σn = 2.5%, corresponding to the uncertainty of the
luminosity measurement. Since the normalization nuisance
parameter can be incorporated analytically in the likelihood,
as we have discussed, it is essentially trivial to deal with it.

The scale factor, on the other hand, affects the input vari-
able distributions in a non-trivial manner. Furthermore, the
uncertainty in its determination widely depends on the nature
of the particle. We consider three representative scenarios,
having in mind the specific case of CMS10:

• muon-like: for the CMS experiment, the uncertainty on
the muon momentum scale is very small due to the com-
bined information of the inner tracker and the dedicated
muon detectors. Based on Ref. [31], we set the uncer-
tainty to a typical valueσ

(b)
s = 5×10−4 for central muons

with |η| < 2.1 (barrel region) and σ
(e)
s = 15 × 10−4 for

|η| ≥ 2.1 (endcaps region). Here and in the following
cases we ignore the dependence of the uncertainty on
the particle transverse momentum for simplicity, but a
generalization in this direction is straightforward.

• electron-like: the momentum reconstruction for electrons
is instead based on the combination of the inner tracker
information and the energy deposit in the electromag-
netic calorimeter. The LHC pileup makes the trajectory
reconstruction harder while for the energy reconstruction
from the calorimeter information one has to consider the
energy loss through bremsstrahlung in the detector mate-
rial before the calorimeter is reached. The resulting uncer-
tainty is then typically [32] an order of magnitude worse
than the one affecting the muons. We here consider an
error of σ

(b)
s = 3 × 10−3 and σ

(e)
s = 9 × 10−3.

• τ -like: tau leptons decay in the CMS detector and their 4-
momenta has to be reconstructed starting from the decay
products; the information of all sub-detectors is com-
bined to reconstruct all the particles produced in the col-
lision events in the so called ParticleFlow algorithm [33].
For hadronically decaying taus the energy scale uncer-
tainty was found to be always better than 3%; here we
simply assume an error on the τ -lepton momentum recon-
struction of 3 × 10−2 for both the barrel and the endcaps
regions, independently of the magnitude of the momen-
tum [34].

10 Our assumptions loosely apply also to the case of the ATLAS detec-
tor.

In all cases, we treat the effects on the barrel and endcaps
regions as fully correlated and we employ a single nuisance
parameter νs to describe both. Specifically, νs is the scale
uncertainty in the barrel, with standard deviation σs ≡ σ

(b)
s .

The Monte Carlo samples for non-central values (νs �= 0)
of the scaling nuisance parameters, needed for the imple-
mentation and the validation of our strategy, are obtained
by reprocessing the di-muon dataset with the transforma-

tion p(b,e)
T,1(2) → exp

(
νsσ

(b,e)
s /σ

(b)
s

)
p(b,e)
T,1(2), which acts dif-

ferently on the barrel and endcaps regions. After the trans-
verse momenta rescaling, we apply acceptance cuts pT,2(1) >

20 GeV, as well as a lower threshold on the di-body invari-
ant mass of M12 > 100 GeV, in order to exclude the reso-
nant peak associated with the Z boson production. Indeed, if
included the Z peak would dominate the composition of the
data sample by several orders of magnitude, and our analysis
would effectively turn into a search for new physics at the
Z -pole. We thus exclude the Z peak for a more broad explo-
ration of the two-body phase space. The invariant mass cut
will have to be raised to 120 GeV in the τ -like scenario. As
we will discuss, this is because Z -pole events contamination
of the signal-region enhances the effect of scale uncertainties
to a non-manageable level at low invariant mass. A similar
analysis could also be repeated below the Z mass, as done
by the CMS and the LHCb experiments, exploiting real-time
analysis techniques [35,36]. We do not discuss this case here.

In what follows we describe the implementation of our
model-independent search strategy on a dataset whose inte-
grated luminosity corresponds to N(R0) = 8 700 expected
events in the signal region defined by the acceptance and
the 100 GeV invariant mass cut. In the case of opposite-sign
muons, this number of events would correspond to an inte-
grated luminosity of around 0.35 fb−1. The expected event
yield in the non-central Reference hypothesis, N(Rν), is com-
puted with the same integrated luminosity, duly taking into
account the normalization nuisance factor eνn , and the effect
of the scale nuisance νs on the selection cuts efficiency. A
higher integrated luminosity, of 1.1 fb−1, is considered in the
τ -like scenario in order to maintain N(R0) as large as (specif-
ically, N(R0) = 8 400) in the other scenarios compensating
for the higher invariant mass cut.

Finally, in all scenarios we apply an upper cut pT,1(2) <

1 TeV. The phase space region excluded by this cut is pop-
ulated, for the luminosity we are considering, with a prob-
ability as low as 10−5 in the Reference model. Therefore it
has essentially no impact on the analysis and on its sensi-
tivity to new physics, also in light of the fact that the mere
observation of a few events in the region excluded by the cut
would constitute a discovery. On the other hand, it is tech-
nically important to set some upper cut (though extremely
mild, as in this case) in order to strictly avoid the presence in
toy datasets of high-pT outliers, falling in a region that is too
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rare to be populated even in the Reference sample.11 Indeed,
we will see that our strategy would overreact to such outliers,
similarly to what we discussed in Sect. 3.4 in the univariate
example.

4.1 Model selection

The first step in our strategy implementation is the selec-
tion of a suitable neural network model “ f (x; w)”, and of its
weight-clipping regularization parameter, for the BSM net-
work (see Fig. 4). The principles underlying the selection,
and its technical implementation, are described in detail in
Sect. 3.1 for the univariate example. However the choice of
the weight clipping parameter turns out to be more delicate
for the multivariate analysis under examination. We believe
that this is due to the enhanced sensitivity to the statistical
fluctuations of the training sample, which in turn stems from
two reasons. First, the sparsity of data in more dimensions
unavoidably favors overfitting, to be mitigated with a more
aggressive weight clipping. Second, in the current study we
will employ a Reference sample size that is only 5 times
larger than N(R0), namely NR = 5 N(R0) � 40 000, to be
compared with NR = 100 N(R0) in the univariate case. This
choice, which obviously enhances the statistical fluctuations
of the Reference sample, was made in order to validate our
strategy in a realistic context where an extremely abundant
Reference sample might (possibly because of the resources
needed to run the full detector simulation) not be available.12

In the same spirit, the results of the present section are
obtained (if not specified otherwise) using a single Monte
Carlo sample of 3.6 million unweighted events in total, gener-
ated with mild acceptance requirements. Each toy dataset was
obtained by random sampling around (up to Poisson fluctua-
tions) 200 000 events in the original sample. After the events
are selected according to these requirements, the desired
average number N(R0) of toy events is found. The Reference
dataset employed for the training of each toy experiment was
obtained by sampling 1 million events from the original data,
out of the remaining 3.4 million. This way of proceeding is
different from the one we adopted in the univariate example,
where each toy and the corresponding Reference sample were
generated independently. Clearly, this procedure dictated by
the constraints of our limited computational power, is not
ideal as it introduces unwanted correlation among the toys.
Since we sample with probability 2×105/3.6×106 = 1/18,
we can still reasonably regard the different toys as indepen-

11 In a real-life situation, the value of this upper threshold would be set
just above the highest pT value observed in data.
12 As a side remark, we acknowledge the importance of a reliable fast
simulation to make it feasible to generate very large reference datasets.
To this purpose, it would be crucial to explore the use of analysis-specific
deep-learning based data augmentation techniques (as in Ref. [37]), in
conjunction with the speed up of event generators [38].

dent if we generate around 100 of them (but not more). The
Reference samples are instead quite correlated because we
extract 1 million points out of 3.4 million only. However
there is no conceptual need for Reference samples being
uncorrelated across toys. Indeed, we described the concep-
tual role played by the Reference sample, in Sect. 2.4, under
the implicit assumption that only one such sample is available
for the training of all the toys. The only condition on the Ref-
erence sample is NR/N(R0) � 1. We are assuming here that
NR/N(R0) = 5 suffices. This assumption has been validated
by verifying the stability of the training outcome of individ-
ual toys under re-sampling of the Reference sample. Further
cross-checks of this and other aspects, including the approx-
imate independence of the toys, have been performed using
a second independent 3.6 million points sample. In addition,
the results of the present section concerning the tuning of the
weight clipping and the hyperparameters optimization have
been reproduced using this second sample.

In light of the items discussed above, it is important to
study model selection in detail for the two-body final state
problem outlining the differences with the univariate case
results presented in Sect. 3.1. This is the purpose of the
present section.

In a previous study [2] of the same dataset we found that
a (5, 5, 5, 5, 1) network with 3 hidden layers of 5 nodes each
(for a total of 96 degrees of freedom) returns a distribution
for the test statistic t which is well compatible with the tar-
get χ2

96 distribution, for an appropriate choice of the weight
clipping parameter.13 The weight clipping selection is per-
formed with the algorithm described in Sect. 3.1, which iter-
atively reduces the window of potentially viable values of
the weight clipping parameter. The last step of the selec-
tion process, where the window is already as small as the
[2.1, 2.2] interval, is illustrated in Fig. 9. A comparison with
Fig. 1 and Table 1 immediately reveals a number of differ-
ences between the univariate and the multivariate case. First
of all, the empirical t distribution is much more sensitive to
the weight clipping. Values of the weight clipping that differ
from the optimal one (of 2.16) at the second digit produce
distributions that are appreciably different from the target
χ2

96, while in the univariate case good compatibility with the
χ2

13 was observed in a quite wide range of weight clipping.
Moreover, the stabilization of the distributions with a reason-
able degree of compatibility is observed only after 500 000
training epochs or more, while 100 000 epochs were suffi-
cient in the univariate case. For the problem at hand, such
large number of epochs requires a few hours CPU time.14

13 In this section we employ the concepts, terminology and notations
introduced in Sect. 3.1. In particular, t is the test statistic in the absence
of nuisances, defined by Eq. (28).
14 The training time required for a given architecture clearly depends
on the problem. In particular it is proportional to the number of
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Fig. 9 Left panel: Percentiles of the empirical t distribution for the
(5, 5, 5, 5, 1) network, with 100 toys, as a function of the number of
training epochs for the optimal value (2.16) of the weight clipping

parameter. Middle: The distribution after 1 million epochs. Right: The
evolution during training of the KS p-value for different values of the
weight clipping

No further studies were made in Ref. [2] on the choice
of the model architecture. On one hand, this is justified by
the fact that identifying one single χ2-compatible configura-
tion is sufficient for the applicability of our strategy. On the
other hand, of the many configurations that potentially satisfy
this requirement one should select the most complex model,
because more expressive networks have more potential to fit
putative BSM effects, enhancing the sensitivity of the search.
There is not a unique notion of complexity for neural net-
work models. Complexity can, for instance, be enhanced by
increasing the number of hidden layers or the number of
nodes per layer or, alternatively, by introducing more sophis-
ticated activation functions and connection maps. It is hard to
reduce such concepts to a unique scalar metric. One simple
way to proceed would be to count the number of trainable
parameters, but this would not discriminate between models
with different architectures. In our study we restrict our atten-
tion to fully connected feedforward neural networks, with the
same number of nodes at each layer. Different architectures
are thus characterized by two parameters, namely the num-
ber of hidden layers and the number of nodes per layer, i.e.
the depth and the width of the network. In what follows we
explore this two-dimensional architectures space in slices of
depth, trying to identify the maximum number of nodes that,
for fixed number of layers, can be made compatible with the
target χ2 distribution for an appropriate choice of the weight
clipping parameter.

The conceptual criteria for model selection discussed
above must be combined with practical considerations, tak-
ing into account the available computational resources that
limit the complexity of the model we can concretely handle.
With “computational resources” we refer both to the memory
required to store the model and its gradients during training,
and to the training time needed to get a stable solution. For

Footnote 14 continued
training points which in turn, keeping the ratio NR/N(R0) = 5 fixed,
scales with the number of expected events.

models with a good level of compatibility with the target
χ2 distribution, we sharply define a solution as “stable” by
requiring the KS p-value not to vary more than 10% for at
least 100 000 epochs. The memory is not a limiting factor. It
does not exceed around 1 GB even for the most complex mod-
els we have considered. The training time is instead consider-
able, because of the large number of epochs that is typically
required. For the present study we consider a neural network
model “manageable” when a stable training (on a single toy
dataset) takes less than 6 hours CPU time. This threshold
takes into account the need of repeating training on many
toys (we use 100 toys to establish χ2-compatibility), of per-
forming a scan on the value of the weight clipping parameter
that ensures compatibility, and of exploring different archi-
tectures. One should notice that our procedure offers paral-
lelization opportunities by running toy experiments in paral-
lel. Because of this, and having at hand a large-size cluster of
CPUs (CERN lxplus cluster) and a handful of GPUs, we
found it convenient to run in parallel many time-consuming
toys on CPUs as opposed of running a few fast toys on GPUs.

Based on the above considerations, we identified the
(5, 50, 1) network as the most complex viable model among
those with a single hidden layer. The last step of the weight
clipping selection process is illustrated in Fig. 10. The
observed behaviour is similar to the one of Fig. 9 in terms
of the sensitivity to the weight clipping and of the number
of epochs required for training. The (5, 50, 1) network has
many more parameters (351 versus 96) than the (5, 5, 5, 5, 1)

one, but all concentrated in one layer. These two aspects
combined make the training time somewhat longer, but still
within the boundary of 6 hours CPU time that defines our
computational threshold. Increasing the number of neurons
of the network would further increase the training time, there-
fore the (5, 50, 1) model is selected among the one-layer
architectures. Among the architectures with two hidden lay-
ers, we selected by similar considerations (see Fig. 11) the
(5, 10, 10, 1) network.
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Fig. 10 Same as Fig. 9, but for the (5, 50, 1) architecture

Fig. 11 Same as Fig. 9, but for the (5, 10, 10, 1) architecture

Table 3 Summary of the
weight clipping tuning results
for the architectures considered
in this section

# of layers Latent size dof Weight clipping Training epochs KS p-value

1 5 36 1 100k 0.33

50 351 1.89 1M 0.90

2 6 85 1.8 200k 0.81

7 106 1.84 200k 1.00

10 181 1.87 1M 0.99

3 5 96 2.16 1M 0.89

10 291 – – –

We also tested other architectures, with the results sum-
marized in Table 3. For networks with 1 (2) hidden layers and
less than 50 (10) neurons, we could easily tune the weight
clipping parameter obtaining a good level of compatibility
with the target χ2. The number of epochs that safely ensures
convergence, reported in the table, decreases with the net-
work size as expected, and training becomes computationally
less demanding. Networks with more neurons are beyond our
computational threshold as previously explained. A 3 lay-
ers network with 10 neurons was also considered, but the
weight clipping tuning could not be achieved, because of
the behaviour displayed in Fig. 12. If the weight clipping is
small, training is stable but the t distribution strongly under-
shoots the target χ2. By raising the weight clipping the dis-
tribution moves to the right, but it is not stable even after
one million epochs. More training time would be needed
to establish if, for instance, the configuration with weight

clipping equal to 1.9 will eventually converge to the tar-
get χ2. Since this goes beyond our computational threshold,
the (5, 10, 10, 10, 1) network has to be discarded. We thus
retained the (5, 5, 5, 5, 1) network, in the 3-layers class. We
did not consider networks with four or more layers because
we expect, in light of these results, that for these networks we
would be obliged to use less than 5 (the number of features)
neurons in the hidden layers, entailing dimensionality reduc-
tion. In summary, the only architectures to be considered for
further studies are (5, 50, 1), (5, 10, 10, 1) and (5, 5, 5, 5, 1).
We will refer to them as Model 1, 2 and 3 respectively.

4.2 Learning nuisances and validation

Our next task is to model the effect of nuisance parame-
ters on the distribution log-ratio log r(x, ν). This is a rather
straightforward application of the methodology of Sect. 2.3,
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Fig. 12 The percentiles of the empirical t̄ distribution as a function of the training epochs (top row) and the distribution of the empirical t̄ distribution
after 1M training epochs (bottom row) for the (5, 10, 10, 10, 1) network at different values of the weight clipping

Fig. 13 The dependence on νs of log Nb(νs)/Nb(0) in selected bins of the transverse momentum distribution. The dots represent the true value of
the log-ratio. The linear, quadratic fits are performed using a subset of the true values points within ±0.01. The quartic one also considers points at
±0.015

only slightly more computationally demanding than the
one presented in Sect. 3.2 for the univariate problem. The
normalization nuisance νn contributes linearly to the log-
ratio, we thus incorporate it analytically in the reconstructed
log r̂(x; ν), as in Eq. (31). The effect of the scale nui-
sance νs is reconstructed locally in the five-dimensional
space of features by means of two neural networks δ̂1,2(x)
that parametrize the Taylor expansion of the log-ratio up
to quadratic order, again as in Eq. (31). The νs,i values
used for training were selected by studying the effect of the
scale uncertainty nuisance on the features distribution, like
in Fig. 13. The figure shows the dependence on νs of the
expected number of events in selected bins of the transverse
momentum of the leading lepton (pT,1). The scale uncer-
tainty in the endcaps region has been taken 3 times the one
in the barrel, as appropriate for the muon and electron sce-
narios defined at the beginning of this section. The result is
expressed as a function of the scale in the barrel, νs. The

uncertainty σs will be set to 5 × 10−4 and to 3 × 10−3 in
the muon and electron scenarios, respectively. We see that
the dependence is quadratic to a good approximation in the
interval νs ∈ [−0.02, 0.02], which comfortably covers the
range that is relevant for the electron scenario up to more
than 3 sigma (and even more for the muon-like one). Train-
ing points νs,i = {±1.5 × 10−3, ±1.5 × 10−2} are selected
as a reasonable choice which exposes the δ̂ networks both
to the linear and to the quadratic component of the likeli-
hood log-ratio. The validity of this choice was confirmed by
also inspecting the nuisance dependence of other kinematical
variables.

Five hidden layers with 10 neurons (and ReLU activation
functions) was identified as a viable architecture for the δ̂ net-
works. The training samples S0(νi ) were obtained using half
of the original 3.6 million sample. After the selection require-
ments are applied, they consist of around 80 000 events for
each value of νi . The S1 sample, with central-value nuisance,
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was provided by the remaining 1.8 million events, weighted
by a factor of 4 in order to compensate for the presence of
the four S0(νi ) non-central-value samples. For training we
applied an early stopping criterion based on the quality of
the log-ratio reconstruction achieved by the networks. The
quality of the reconstruction was monitored by plots like the
one in Fig. 14 and also by testing the capability of the δ̂ net-
works to reabsorb the effect of non-central nuisances in the
test statistic distribution. Good performances were obtained
with 2 000 epochs. A mild overfitting was observed training
longer.

In order to test the accuracy of the log-ratio reconstruc-
tion, we use the reconstructed r̂(x; ν) to re-weight the Monte
Carlo sample with central-value nuisances, and we com-
pare the predictions for the binned distribution log-ratio
(in pT bins), as obtained by this re-weighting, with those
obtained using non-central-value samples. Figure 14 shows
good agreement, for νs in the range that is relevant to cover
the muon- and electron- like scenarios.

The most stringent cross-check of the quality of the log-
ratio reconstruction is however provided by the final vali-
dation of the whole strategy, that consists in verifying the
independence on the nuisance parameters of the distribution
of the test statistic, P(t |Rν). Indeed, as emphasized in pre-
vious sections (see in particular Sect. 3.4), the emergence of
a χ2 distribution for the test statistic t = τ − �, with the
appropriate number of degrees of freedom, provides a highly
non-trivial test of all aspects of the algorithm implementa-
tion, ranging from the selection of the BSM network hyper-
parameters (which affects τ ) to the accuracy of the log-ratio
reconstruction (which affects both the τ and the � terms). In
Figs. 15 and 16 we display some of the validation plots that
have been produced in order to verify the independence of
the test statistic distribution on the true values ν∗ = (ν∗

n, ν
∗
s )

of the nuisance parameters. A summary of the results is pro-
vided in Table 4, covering the three neural network models
(1, 2 and 3) selected in Sect. 4.1 for the BSM network, and
in the electron-scenario for the scale uncertainty. The KS
p-value is typically low in the “w/o correction” columns,
showing that the presence of nuisances impacts the distribu-
tion of τ significantly. The asymptotic formula for the distri-
bution of t = τ − � is recovered by the inclusion of the �

term, as shown by the higher p-values in the “w/o correction”
columns.

In summary, we have demonstrated the possibility to deal
with a level of uncertainties that corresponds to the electron-
like scenario, as defined at the beginning of Sect. 4. Trivially
(since lower uncertainties are easier to manage), the same
holds in the muon-like setup. The larger uncertainty that
is foreseen in the τ -like scenario is instead more difficult
to manage, and deserves an extensive dedicated discussion,
which is the subject of the following section.

4.3 The τ -like scenario

The first difficulty we encounter in the τ -like scenario is
the wild dependence of the distribution on the scale nuisance
parameter, displayed in Fig. 17. The effect is due to the migra-
tion of events from the Z -peak to the signal region defined
by the invariant mass cut M12 > 100 GeV. Since the Z -peak
events are overly abundant, even a small correction to the
Z -peak rejection efficiency (of order σs = 3 × 10−2 in the
τ -like scenario) affects at order one the distribution in the
signal region. Our current setup is only capable to deal with
relatively small distortions, for which the Taylor expansion in
Eq. (31) is justified. Therefore we do not even try to study the
τ -like scenario in the entire signal region M12 > 100 GeV,
but rather consider a harder cut M12 > 120 GeV that miti-
gates the Z -peak migration effects. Figure 18 shows that the
effects of the nuisance are still sizable in this region, but mod-
erate enough to justify the expansion in νs up to the quadratic
order. The harder invariant mass cut reduces the expected
number of events by a factor of around 3. We compensate by
raising the luminosity as discussed at the beginning of this
section, in order to maintain N(R0) = 8 400 similar to the
one of the muon- and electron-like setups. We also want to
maintain a similar proportion between N(R0) and the total
number of Monte Carlo events employed in the analyses. We
must thus use three samples with 3.6 million events (for a
total of 10.8 millions) each before cuts.

It is straightforward to repeat in this new setup all the
steps described in the previous section. In particular the three
neural network architectures identified in Sect. 4.1 are still
viable up to a mild retuning of the weight clipping parameter.
However, validation is more delicate because of the stronger
impact of systematics uncertainties on the distribution of τ .
As discussed in Sect. 2.5 and verified in Sect. 3.4 in the uni-
variate example, we expect that a higher accuracy is required
in the computation of τ and of � in order to properly capture
the cancellation that takes place in the test statistics t = τ−�.
We observe that different levels of accuracy are required to
validate the three neural network models, depending on the
sensitivity of each model to the sparsity of input features.
In particular, Model 3 (with 3 hidden layers) turns out not
to be particularly sensitive, and its validation does not pose
any particular issue, even if the KS compatibility p-values
for non-central nuisances (see Fig. 19) are somewhat lower
than those we found in the previous section for the muon-
and electron-like scenarios. For Model 1 and 2, instead, the
compatibility with the target χ2 is remarkably low, especially
if ν∗

s is positive. The exact same asymmetric behavior was
found in Sect. 3.4 in the univariate example, and attributed
(see Fig. 6) to the fact that positive scale variations push
the data to the extreme tail of the Reference model distribu-
tion, which is not populated in the Reference sample. The
same effect was found to be responsible for the behavior
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Fig. 14 The reconstructed distribution log-ratio (dots) for different values of νs, compared with the quadratic binned approximation. The two
panels cover the ranges of νs that are relevant for the muon- and electron like scenarios respectively

Fig. 15 The empirical distribution of τ (in green) and of t (in blue) computed by 100 toy experiments performed in the Rν hypothesis at different
points in the nuisance parameters space for the muon-like regime. The χ2

181 distribution is reported in blue in all the plots

Fig. 16 Same as Fig. 15, but for the electron-like regime

we observe in the present setup. Indeed we could check the
presence of extreme outliers in the trained neural network
output, localized in a transverse momentum region that is
not populated in the Reference sample.

Since the problem is due to lack of Reference data in the
tail, a way out could be to add statistics to the Reference
sample, which however is computationally costly. Certainly
feasible with the computing power of a large experiment but
beyond our capabilities. A more efficient solution is instead

to enrich the Reference sample with a new Monte Carlo sam-
ple with a cut on the transverse momenta at generation-level.
We then generate 200′000 events with 200 GeV generation-
level cut on the minimal leading pT (plus basic acceptance
cuts), and we further cut it at 250 GeV on the reconstructed
momenta. We add such events with appropriate weights to
the original 10.8 million sample, and we remove the origi-
nal events with pT > 250 GeV. The so-obtained weighted
sample is then employed to generate Reference samples, and
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Table 4 Kolmogorov–Smirnov p-value for the compatibility of the τ

(“w/o correction” columns) and of the t (“w/ correction” columns) dis-
tributions with the target χ2 distribution for model 1, 2, 3 in the electron-

like regime. The KS test is based 100 toy experiments performed in the
Rν hypothesis at different points in the nuisance parameters space

(
ν∗
s

σs
,

ν∗
n

σn

)
Model 1 Model 2 Model 3

KS p-value KS p-value KS p-value

w/o correction w/ correction w/o correction w/ correction w/o correction w/ correction

(0, 0) 0.59 0.86 0.082 0.10 0.02 0.03

(+1, 0) < 10−5 0.02 < 10−5 0.05 < 10−5 0.18

(0,+1) 0.0002 0.58 0.002 0.18 0.11 0.13

(−1, 0) < 10−5 0.17 < 10−5 0.83 < 10−5 0.20

(0,−1) 0.24 0.71 0.09 0.24 0.002 0.06

Fig. 17 The dependence on νs of log Nb(νs)/Nb(0) in selected bins
of the transverse momentum distribution for M12 > 100 GeV. The dots
represent the true value of the log-ratio. The linear and quadratic fits

are performed using a subset of the true values points within ±0.1; the
cubic one also considers two additional points at ±0.15

Fig. 18 Same as Fig. 17, but for M12 > 120 GeV (lower panel)

the toy data by hit-or-miss unweighting. It is also used for
the training of the δ̂ networks, improving the quality of the
distribution ratio reconstruction in the high-pT tail.

The usage of the enriched sample allows us to validate
Model 3 with higher KS p-value, as shown in Fig. 20. Fur-
thermore it eliminates the outliers in the neural network
output and drastically ameliorates the χ2-compatibility of
Model 1 and 2. On the other hand, a satisfactory validation
of Model 1 and 2 requires a further improvement of the sam-
ple. By increasing the number of events in the high pT tail
from 200′000 to 400′000, good results are found for the val-
idation of Model 2, shown in Fig. 21. Figure 22 shows that
good compatibility can be obtained for Model 1 as well, but
only with 600′000 high-pT events. The improvement can be

traced back to the more accurate reconstruction of the nui-
sance coefficient functions δ, which can be monitored by
comparing the left panels of the two figures.

4.4 Sensitivity to new physics

We conclude the section on the two-body final state exper-
iments presenting some examples of the algorithm perfor-
mances to detect New Physics in the data. For definiteness,
we chose the Model 3 architecture to perform the sensitivity
tests. We consider two new physics benchmark scenarios: 15

15 The same benchmarks are employed in Ref. [2], to which the reader
is referred for additional details.
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Fig. 19 The empirical distribution of τ (in green) and of t (in blue) computed by 100 toy experiments performed for Model 3 in the Rν hypothesis at
νs = −1 (left side) and νs = +1 (right side) for the τ -like regime before enriching the reference sample in the region of high transverse momentum

Fig. 20 Same as Fig. 19, but after enriching the reference sample in the region of high transverse momentum with 200′000 additional events

(a) (b)

Fig. 21 Left side: the reconstructed distribution log-ratio (dots) for dif-
ferent values of νs, compared with the quadratic binned approximation.
Right side: the empirical distribution of τ (in green) and of t (in blue)
computed by 100 toy experiments performed for Model 2 in the Rν

hypothesis at νs = −1 (left side) and νs = +1 (right side) for the τ -like
regime. Both plots have been obtained enriching the reference sample
in the region of high transverse momentum with 400′000 additional
events

• Z ′ scenario: a new vector boson with the same couplings
to SM fermions as the SM Z boson and mass of 300 GeV;.

• EFT scenario: a non-resonant effect due to a dimension-6
4-fermion interaction

cW
�

JaLμ J
μ
La (37)

where Jμ
La is the SU(2)L SM current, the energy scale �

is fixed at 1 TeV and the Wilson coefficient cW determines
the coupling strength.

Both benchmarks are studied in the three regimes of
systematic uncertainties considered so far and the median
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(a) (b)

Fig. 22 Same as Fig. 21, but for Model 1 and 600′000 additional events in the region of high transverse momentum

observed Z -score (Z ) is compared with a median reference
Z -score (Z ref ). As in Sect. 3.5, the reference Z -score is
defined as a model dependent measure of the significance,
performed by assuming that the specific new physics model
is known a priori. As a first approximation, in both scenar-
ios a model dependent analysis would select the two-body
invariant mass as the variable of interest. We thus compute
the test statistic in Eq. (8) by binning the two-body invariant
mass and studying the effects of the nuisance parameters and
that of the signals in each bin. Notice that the upper cut on
the transverse momentum, which we employ in our analy-
sis, is not applied at this stage. For the SM hypothesis the
dependence on the momentum scale nuisance parameter νs
is approximated by a quadratic polynomial, whereas for the
Z ′ signal we use a quartic one. We call N(S) the total number
of expected Z ′ events, and we introduce a global exponential
factor to describe the normalization uncertainty. Namely, we
parametrize the number of events expected in each bin as

n̂(Z ′)
i (N(S), νs, νn) = [(a0i + a1iνs + a2iν

2
s ) + N(S) (b0i + b1iνs

+b2iν
2
s + b3iν

3
s + b4iν

4
s )] · eνn . (38)

For the EFT instead, the number of events in each bin depends
quadratically on the Wilson coefficient cW , while the depen-
dence on νs on the New Physics term (i.e., on the linear and
quadratic cW terms) can be safely ignored. Therefore, we
have

n̂(EFT)
i (cW , νs, νn) = (a0i + aνs

1i νs + aνs
2i ν

2
s

+acW1i cW + acW2i c
2
W ) · eνn . (39)

The numerical a and b coefficients in the above equations
where determined by a fit to the Monte Carlo simulations in
each bin.

Denoting collectively as “μ” the signal strengths in the
two scenarios, namely μ = N(S) or μ = cW , respectively,
the binned log-likelihood reads (up to an irrelevant additive
constant)

logL(μ, νs, νn|D,A) =
∑

i∈bins

ni log[n̂i (μ, νs, νn)]

−N(μ, νs, νn) + logL(0|A),

(40)

where ni denotes the number of observed events in the i-th
bin. The binned log-likelihood is then used to compute the
test statistic

tref(D,A) = 2
max
μ,ν

[log L(μ, νs, νn|D,A)]
max

ν
[log L(0, νs, νn|.D,A)] . (41)

The reference Z -score is finally obtained by throwing toy
experiments in the new physics hypothesis and computing
the p-value of the median of the empirical test statistic dis-
tribution. In the regimes considered for this work, the counts
per bin are always greater than 4. Therefore it is legitimate
to assume the asymptotic behavior for the distribution of the
test statistic under the null (SM) hypothesis to be valid, and
compute the p-value with respect to a χ2

1 . The asymptotic
behavior has been verified by running the procedure on SM-
distributed toys.

Figure 23 shows the algorithm performances in the muon-
like and electron-like regimes. The setup is the one described
at the beginning of this section, with an effective luminos-
ity (set by assuming the cross-section of the di-muon pro-
cess) of 0.35 fb−1 and a cut on the two-body invariant mass
at 100 GeV, which leads to approximately N(R0) = 8 400
expected SM events in the search region. For the Z ′ sce-
nario we inject a number of signal events which is Poisson-
distributed around the expected value N(S) = 120, which
is around 1% of N(R0). Whereas for the EFT scenario we
generate a Monte Carlo sample with Wilson coefficient set to
1 TeV−2, which increases the total cross section only at the 2
per mille level. Figure 23 shows that muon- and electron-like
systematics do not affect appreciably the sensitivity of our
method, nor the sensitivity of the model-dependent analysis
strategy that we take as reference.

The results in the τ -like regime are presented in Fig. 24.
As previously explained the effective luminosity is now set
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(a) (b)

Fig. 23 Sensitivity to two New Physics scenarios in the muon-like (a)
and electron-like (b) regimes. The upper panels show the sensitivity of
the method to the presence of a Z ′ (mZ ′ = 300 GeV, N(S) = 120)
resonance in the two leptons invariant mass. The lower panels show the

sensitivity of the method to a non resonant effect due to a dimension-6
4-fermions interaction (EFT scenario, cW = 1.0 TeV−2). In all pan-
els the true value of the scale nuisance parameter is assumed to be 1
standard deviation above the central value

to 1.1 fb−1 and the cut on the two-body invariant mass is
moved to 120 GeV. Since the data integrated luminosity is
now a factor 3 larger than what used in the previous cases,
the sensitivity to new physics improves making the previous
benchmark models visible with overly high significance. In
order to define realistically challenging benchmarks we thus
reduce the Z ′ cross-section such that N(S) = 210 < 3 · 120,
while in the EFT scenario we lower the Wilson coefficient to
cW = 0.25 TeV−2. In order to asses the role of systematics,
we compare the τ -like setup to an idealized experiment where
the uncertainties are negligible (specifically, σs = σn = 1 ×
10−4). We observe a slight degradation of the sensitivity due
to the uncertainties, but only in the case of the EFT new
physics scenario, as expected because the resonant Z ′ signal
can not be mimicked by systematics effects.

We conclude that our strategy to deal with systematic
uncertainties, on top of being robust against false positives
as verified in the previous sections, maintains a remarkably
high sensitivity to putative new physics effects. The observed
mild sensitivity loss due to uncertainties, when present, is per-
fectly in line with the degradation of the model-dependent
reference analysis performances, signally that the sensitivity
lowers because the new physics signal is genuinely harder to
see and not because of an intrinsic limitation of our model-

independent method. Furthermore, the results of the present
section confirm the weak dependence on the specific type
of new physics, claimed in our previous works [1,2], of the
ratio Z/Z ref . This is shown in Fig. 25 by summarizing the
performances we have obtained at different luminosities, sys-
tematic uncertainties regime and new physics scenarios. In
all the experiments our reach is a factor ∼ 2.7 lower than the
reference Z -score.

5 Conclusions and outlook

We have proposed and validated a strategy for model-
independent new physics searches that duly takes into
account the imperfect knowledge of the Reference model pre-
dictions. The methodology is robustly based on the canonical
Maximum Likelihood ratio treatment of uncertainties as nui-
sance parameters for hypothesis testing, which emerges as a
completely natural and conceptually straightforward exten-
sion of the basic framework we proposed and developed in
Refs. [1,2]. Our findings open the door to real analysis appli-
cations, where a “New-Physics-Learning” Machine (NPLM)
inspects the LHC data in search from departures from the
Standard Model, with no bias on the nature and the origin of
the putative discrepancy. The proposed method is an end-to-
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(a) (b)

Fig. 24 Sensitivity to two New Physics scenarios in the case of neg-
ligible uncertainties (a) and τ -like regime (b). The upper panels show
the sensitivity of the method to the presence of a Z ′ (mZ ′ = 300 GeV,
N(S) = 210) resonance in the two leptons invariant mass. The lower

panels show the sensitivity of the method to the EFT scenario, with
cW = 0.25 TeV−2). In all panels the true value of the scale nuisance
parameter is assumed to be 1 standard deviation above the central value

Fig. 25 Summary of the sensitivity of our method, relative to the sensitivity of dedicated model-dependent searches, to selected New Physics
benchmark models. The relative performances depend neither on the New Physics model nor on the assumed scenario for systematic uncertainties

end statistical analysis, ultimately returning a p-value that
quantifies the level of discrepancy of the data and the Stan-
dard Model hypothesis. Moreover it returns the trained neural
network, which can be exploited for a first characterization of
the discrepancy. This will pave the way to dedicated model-
dependent analyses of the discrepant data set, that will even-
tually unveil the nature of the discovered new physics.

The detailed study of the method in real LHC analyses
will be essential in order to identify possible implementa-
tion issues, which might require further developments of the
NLPM strategy itself or methodological advances in related
domains. Based on the studies performed in the present paper
we can anticipate interesting directions for future develop-
ments:

1. The need of a statistically accurate enough (large or
“smart”) Reference sample. We have seen in the study
of the two-body final state example how a limited
Reference to Data ratio NR/N(R0)= 5 (to be com-
pared with NR/N(R0)= 100 in the univariate problem)
poses a number of technical difficulties, ranging from
an enhanced sensitivity to the weight clipping param-
eter (see Sect. 4.1) to possible validation failures (see
Sects. 3.4 and 4.3) due to Data outliers in regions that
are not populated in the Reference sample. Raising the
Reference sample statistic is not the only way to address
these issues. Our results in Sect. 4.3 suggest that with a
suitably weighted Reference one might obtain the same
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effect without increasing NR, i.e. without impacting the
training execution time.

2. The generation of Reference-distributed toys. Our strate-
gies for model selection and validation heavily rely on
the availability of toy datasets, namely sets of unweighted
data that mimic the outcome of the real experiment under
the Standard Model hypothesis. Generating a large set
of toys requires, in the first place, a large enough sam-
ple of Standard Model data. The potential issue is, as
for item 1, that such large sample might not be avail-
able or it might be computationally too demanding to be
generated. Furthermore, if the Standard Model data are
weighted, producing unweighted events with the hit-or-
miss technique can be highly inefficient in the presence
of large weights, and conceptually impossible if some of
the weights are negative as it is the case for simulations
at Next-to-Leading order.

3. Accurate learning of nuisance effects. We have seen in
Sects. 3.4 and 4.3 that an accurate reconstruction of
log r(x; ν) is essential and that higher accuracy is needed
for those nuisance parameter that impact the distribution
of τ more considerably. On the other hand the accuracy
could be limited by an insufficient statistical accuracy of
the data used for training the δ̂ networks. Moreover when
the dependence on the nuisance parameters is not a small
correction to the central-value distribution, such that it
can not be Taylor-expanded in ν, we expect that learning
log r(x; ν) might become more demanding.

4. Training execution time. The time needed for training
the “BSM” network is considerable, and entails (see
Sect. 4.1) a computational constraint on the maximal
neural network complexity that we can handle. The
time obviously increases with NR, potentially posing an
obstruction to the data statistics we can handle, at fixed
NR/N(R0), or to NR itself, which on the other hand we
might need to take large as per item 1.

It should be noted that items 1 and 3, as well as item 4, are
not absolute obstructions to the applicability of the NPLM
strategy. They rather limit the integrated luminosity of the
data (i.e., N(R0)) that our algorithm can handle. Indeed item 1
can be addressed by lowering N(R0), and item 3 as well
because the impact of systematic uncertainties on the anal-
ysis is relatively smaller if the data statistics is lower. On
the other hand an upper limit on N(R0) does not prevent
us from employing the full data luminosity for the analy-
sis. One could indeed split the data in several independent
datasets, run NPLM on each and combine statistically the
corresponding p-values. However, this necessarily entails a
reduced sensitivity to new physics effects.

We also see that most of the items listed above are not spe-
cific of the NPLM methodology. In particular the availability
of sufficient samples of Standard Model data is a generic need

of any LHC analysis, which will become more pressing with
the high data statistics of the HL-LHC. Similarly, the gener-
ation of toy datasets is in principle a need for any un-binned
analysis that can not rely on asymptotic formulas. Finally,
learning the effect of nuisance parameters is methodologi-
cally identical to (and directly relevant for) the regression on
the distribution dependence on parameters of interest, which
is being studied extensively for other applications such as
inference on new physics parameters. Potential limitations
related with the training time are instead obviously specific
of the NPLM methods. It is not excluded that the training time
could be substantially reduced by a better choice of the train-
ing algorithm or of its implementation, which is an aspect we
did not investigate in great detail so far. A more radical solu-
tion is to trade neural networks with non-parametric Kernel
models, which are radically faster to train [39]. See Ref. [40]
for an implementation of the NPLM strategy based on kernel
models.

NPLM aims at the detection of unexpected manifestations
of new physics, therefore its design and optimization should
not be based on its sensitivity to specific new physics mod-
els. On the other hand, it would be interesting to perform
an extensive study of the sensitivity to a variety of putative
new physics models, possibly displaying exotic or uncon-
ventional signatures. On top of assessing the effectiveness of
the strategy, this analysis might suggest new general model-
independent criteria for the design of the method. Further-
more, it could clarify if and how the selection of the neural
network model impacts the sensitivity. Investigations in these
directions are left to future work.

In summary, NPLM emerges as a promising option for
the development of a new kind of model-independent new
physics searches. The extensive deployment of this type of
analyses might play a vital role in experimental programs
where, like at the LHC, increasingly rich experimental data
are accompanied by an increasingly blurred theoretical guid-
ance in their interpretation. Furthermore, designing NPLM
analyses and addressing the corresponding challenges might
trigger developments in event generation and in likelihood-
free inference techniques, with broader implications on LHC
physics.
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Appendix A: Model-independent strategies

In the categorisation of model-independent LHC searches,
using either machine learning techniques or more traditional
statistical methods, one should first of all keep “Anomaly
Detection” strategies, like the ones in Refs. [41–49], distinct
from the other methods. Anomaly Detection algorithms aim
at detecting outliers in the data, namely at classifying events
(i.e., instances of x in D) that are “rare” in the dataset. The
great advantage of this strategy is that it relies marginally
or does not rely at all on the availability of a Reference
dataset because the notion of “rarity” can in principle be
extracted exclusively from the observed data. The disadvan-
tage is that its sensitivity is limited to those manifestations of
new physics that take place in regions of the phase-space that
are weakly populated in the Reference Model. Consider for
illustration a univariate feature variable x and a new physics
model producing a peak in that variable. The model can be
detected if the peak falls in the extreme tail of the Refer-
ence Model distribution, because the events falling in the tail
will be identified as rare and thus selected by the algorithm.
If instead the peak emerges in the bulk of the Reference
Model distribution, the events originating from resonance
production will not be selected because they are not rare in
the dataset. The sensitivity to new physics in this case can
only emerge from inspecting the observed dataset as a whole,
rather than searching for individual anomalous events. Sim-
ilar considerations apply to realistic multivariate problems
where the presence of the resonance also affects the distribu-
tion of other variables. New physics will be detected only if
the resonance effects are pronounced in a region that is rare
in the Reference Model distribution of these variables.

Furthermore, it should be kept in mind that the selection
of “rare” events that is achieved by Anomaly Detection algo-
rithms is only the first step of a search for new physics. The
second one is to assess whether or not the observed number of
selected rare events signals the presence of new physics. The
first step can be achieved purely based on the observed data,
but the second one requires comparing with the predictions
of the Reference Model.

Anomaly Detection methods are thus more limited in
scope, both in terms of new physics targets and methodolog-
ically, since they constitute only one step of the new physics
search. Therefore they should be kept distinct from the strict
model-independent strategies as we defined them in Sect. 1.

It should be noted that even the strict (in our definition)
model-independent strategies [1,2,50–67] are not “fully”
model-independent because they rely on the prior choice of
the feature variables x and possibly of the region X (x ∈ X )
of the phase-space where they are considered to be of interest
for the analysis. A fully model-independent test should ide-
ally employ the entire ATLAS and CMS raw datasets (i.e.,
the collection of detector hits) before the reconstruction of
high-level objects, which is however unfeasible particularly
because the trigger selection would be still an implicit bias.
On the other hand it is not hard to identify physically moti-
vated features and search regions where new physics could
emerge. For instance new heavy particles and short-distance
interactions would generically show up in final states with
high-level reconstructed SM particles or jets with high trans-
verse momentum. New light particles might instead be found
in jets and alter their inner structure, and/or produce anoma-
lous tracks to be found in the analysis of detector data of
even lower level, etc. By restricting to the corresponding
datasets one could perform new physics searches that are
still way more model-independent than the search for one
postulated new physics model. Clearly if many such model-
independent searches were actually performed one should
in principle include an estimate of the look-elsewhere effect
in the assessment of the statistical significance of a puta-
tive excess. However this effect would be present, and to a
larger extent, also in an agnostic interpretation of the regular
model-dependent LHC searches.

In order to proceed to a finer characterization of the strict
model-independent methods it is important to clarify the role
and the origin of the Reference dataset R, which is an essen-
tial element of these strategies. The availability of sufficiently
accurate SM background predictions is obviously a potential
concern for any LHC analysis, and in particular it is a concern
for the deployment of model-independent methods. In order
to emphasize this issue, it was proposed in Ref. [68] to accom-
pany the regular notion of (signal) model-independence with
the one of “background model independence” and to treat
the two notions on equal footing.

As mentioned above, to perform a new physics search up
to the quantification of an excess significance it is necessary
to have a trustable Reference Model. The need of a Refer-
ence prediction is conceptually unavoidable in any strategy
to search for “new” phenomena, as it provides the necessary
notion of “old” phenomena. In absence of a Reference Model
one can only perform the first step of a new physics search, as
discussed for Anomaly Detection methods. We can identify
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“rare” events, but we can not say whether they are present in
the dataset because of new or old physics.

The need of a trustable Reference prediction is clearly not
a new conclusion, it is a common requirement of any model-
dependent or model-independent search ever performed. Our
interpretation of the emphasis on “background model inde-
pendence” given in [68] is the quest for methods with a built-
in data-driven estimate of the background. We do not con-
sider this aspect relevant, for two reasons. First, because it
very commonly happens in concrete LHC final states that a
data-driven background estimate is not available, and Monte
Carlo simulations need to be employed for at least one of the
dominant components of the background. We thus need a
method that can also employ Monte Carlo background sim-
ulation, rather than being limited to data-driven estimates.
Second, because there are strategies, like ours, that indeed
work both with first-principle and with data-driven back-
ground estimates. Therefore it is possible, and convenient,
to keep the background estimate problem separate from the
development of the search strategy itself.

The regular notion of (signal) model-independence is also
subject to caveats as detailed above. But is still possible to
classify and rank different methodologies by their “degree
of model-independence” as we did for Anomaly Detection,
by trying to figure out which type of new physics signals
they might or might not be sensitive to. From this viewpoint
one would rank BumpHunter [69] and similar strategies
[68,70–76], which target resonant signals in a pre-specified
variable, lower than methods with a broader target [1,2,50–
67,77–80]. On the other hand, one should not employ these
generic considerations to tell which one is the “right” strat-
egy to pursue. That depends on aspects that are specific of the
final state (features set and phase-space region) one is willing
to explore, such as the availability (or not) of a trustable Ref-
erence sample and the actual perspectives of progress in the
characterization of the data relative to more standard analysis
techniques. This is why, ultimately, all these methods should
be tried with data and their complementarities exploited to
extract the most out of the LHC datasets.

The aim of this Appendix was to introduce some elements
for the classification of model-independent strategies, not to
provide an exhaustive overview of the field. Strategies like
those in Ref. [81] and Ref. [82] would require a more in-
depth exposition as they do not fully fall in any of our cate-
gories. The approach in Ref. [81] is to train a multi-categories
classifier to tag multiple SM processes and specific putative
new physics signals, with the idea that if used on the data
this classifier will be sensitive to new physics models not
used in training, which can be verified with numerical exper-
iments. In Ref. [82], one employs machine learning tech-
niques to cluster the data into categories that correspond,
in the Reference hypothesis, to the different components of
the background. A new category can emerge in the presence

of new physics. This approach is conceptually interesting as
an Anomaly Detection (dubbed “Collective Anomaly Detec-
tion” in Ref. [83]) performed on the entire dataset rather than
on individual events.
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