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Abstract In this note, we briefly review some theory aspects of Quantum Chromodynamics
at the future circular lepton collider (FCC-ee).

1 Introduction

With its broad programme spanning energies that range from the Z pole to the top-pair
threshold, the FCC-ee offers an ideal environment to study several aspects of particle phe-
nomenology. The expected FCC-ee measurements will improve the knowledge of many
Higgs and electroweak (EW) parameters with respect to previous colliders by up to one and
two orders of magnitude, respectively. Moreover, it will offer great opportunities for the study
of the properties of the top quark as well as to explore aspects of flavour physics. In order to
use the above measurements to perform consistency tests of the Standard Model (SM) and to
derive stringent indirect constraints on new-physics scenarios, it is crucial to reduce theory
uncertainties to the level of the experimental ones. This demands unprecedented theoretical
accuracy in the strong and the EW sectors of the SM for a variety of processes and observ-
ables (see e.g. ref. [1] and references therein), reaching the permille level in some cases. A
complementary aspect will be the development of new observables to enhance the sensitivity
of the analyses by improving the theoretical control and reducing undesired contamination
from background effects. In this brief note, we will discuss some of the advances that will be
instrumental in achieving this accuracy on the QCD front, and comment on open challenges
towards the desired precision.

2 Event shapes, jets, and the strong coupling constant

A crucial theoretical ingredient needed to match the FCC-ee experimental accuracy is the
knowledge of SM parameters that enter the calculations. A remarkable phenomenological
application on the QCD side is the extraction of the strong coupling constantαs that constitutes
the least well-known coupling in the gauge sector of the SM. Currently, the World Average
quotes a ∼ 1% uncertainty in its value (αs(MZ ) = 0.1179±0.0010) [2,3]. The most precise
inputs arise from lattice calculations [3,4], whose uncertainties are expected to be reduced
by a factor of two in the next decade (see e.g. [5,6] for a recent study).
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Conversely, precise determinations of αs at FCC-ee will arguably come from electroweak
pseudo observables (EWPO), such as the total cross section σ(e+e− → hadrons) at the Z
resonance peak or its ratio to σ(e+e− → μ+μ−) [7]. This quantity is particularly suitable
to extract αs due to the small non-perturbative hadronisation corrections that scale with the
c.o.m. energy Q as (�QCD/Q)6 [8]. With the O(5×1012) Z bosons produced at the FCC-ee,
the experimental error on αs extractions from fits of the above quantities will be of order
O(0.00015) (see e.g. [7]), hence requiring a substantial reduction in the corresponding the-
oretical uncertainties. The status of theory computations for such inclusive observables is
already very advanced, and QCD corrections are known up to N4LO [9–11] (N3LO correc-
tions for massive bottom quarks are also known in a power series in m2

b/Q
2 [12]). Similarly,

EW and mixed QCD-EW corrections are available at least up to two loops (see e.g. [13–15]
and references therein), and will be discussed elsewhere in this report. Other extractions of
αs at the FCC-ee can be derived from τ decays (see e.g. [3,16,17]) and even W [18] decays,
using high-order perturbative QCD computations (see e.g. refs. [9–11,19,20]). However,
some outstanding theoretical questions related to the treatment of non-perturbative contribu-
tions in fits from τ decays [21–23], as well as to the difference between extractions relying
on contour-improved [24,25] and fixed-order perturbative calculations adopted in the fits are
still open. A deeper understanding of these aspects is necessary for robust measurements of
αs from FCC-ee data. Furthermore, the study of these decays at the FCC-ee will be instru-
mental to explore aspects of flavour physics and lepton flavour universality (see e.g. [26,27]
and references therein).

Finer details of strong dynamics can be explored through event shapes, designed to study
the geometrical properties of hadronic events, or jet rates that, within a specific jet-clustering
algorithm, allow one to classify the event in terms of its jet multiplicity. Owing to their
sensitivity to QCD radiation, they are widely used to measure αs , and to calibrate non-
perturbative hadronisation models (see e.g. ref. [28] and references therein). Moreover, their
relative simplicity allows for very accurate predictions. Fully differential calculations for
the process e+e− → Z/γ ∗ → qq̄ + X at N3LO (α3

s ) in QCD for massless partons in
the final state can be derived starting from the results of refs. [29–33] with the inclusive
cross section at N3LO [19]. Similarly, the production of heavy (notably bottom) quarks
e+e− → Z/γ ∗ → QQ̄+X can be described at NNLO in QCD using the predictions of refs.
[34–36] and [12]. For higher jet-multiplicities, the computation of QCD radiative corrections
with massless final-state partons has been pushed to NLO for e+e− → Z/γ ∗ → n jets
with n = 5 [37], and n = 6, 7 [38]. The perturbative description of kinematical regimes that
require the all-order resummation of radiative corrections has also improved substantially
in the past decade, and the state-of-the-art calculations for standard global event shapes
and jet rates in e+e− → Z/γ ∗ → qq̄ + X are either NNLL or N3LL [39–55]. Accurate
predictions can be also obtained for e+e− → Z/γ ∗ → qq̄g + X observables [56–59],
particularly important for the study of gluon-initiated jets (and corresponding tuning of event
generators). The computation of non-global observables [60], featuring angular cuts in the
final state, poses a major theoretical challenge, and it is currently limited to lower logarithmic
accuracy (see e.g. [61–68]). These observables are sensitive to the geometric pattern of soft
QCD interference, and are therefore instrumental to our understanding of strong interactions
at all orders.

The sensitivity of final-state observables on αs makes them suitable for precise extractions
of the strong coupling. Currently, different αs determinations from these observables [39–
41,69–83] can differ from each other by a few standard deviations. Besides the high-precision
perturbative ingredients described above, such fits require input on hadronisation effects.
Non-perturbative radiation induces changes in the observable of O(�

p
QCD/Qp) (typically
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p = 1) that must be estimated to achieve the desired precision. Aside from the considered
observable, the core difference between different αs determinations lies in how one esti-
mates hadronisation corrections. For instance, among the fits currently included in the World
Average [3], these corrections are estimated either via Monte Carlo (MC) generators (e.g. in
[71,73,75,79,82]) or with analytic models [40,72,76,78] (based for instance on dispersive
methods or shape functions [8,84–95]).

In this context, the use of event generators is sometimes criticised on the ground that they
are tuned on less accurate perturbative calculations, and therefore the separation between
perturbative and non-perturbative components cannot easily be related to today’s highest-
accuracy predictions. Conversely, the analytic models fit simultaneously αs and a non-
perturbative model, though considering only the leading term in the expansion of the latter
in powers of �QCD/Q. The coefficient of this correction is extracted from data under the
assumption that it does not vary across the spectrum of the event-shape observable used in the
fit. Besides the natural question about the size of subleading power corrections, the approxi-
mation above leads to systematic uncertainties that affect the αs fits at the few-percent level
[96].

Thus, improving our understanding and control over hadronisation corrections is essential
for precision at future colliders, and the FCC-ee might contribute in different ways. On the
one hand, energies higher than those of previous lepton colliders would arguably justify
further development of analytic models based on a power expansion in �QCD/Q. On the
other hand, the energy span and experimental accuracy of FCC-ee will be instrumental to
gain better control of non-perturbative dynamics in MC generators, which will be beneficial
in all measurements foreseen at FCC-ee, such as e+e− → t t̄ , e+e− → W+W−, and
e+e− → ZH . An endeavour of this type will crucially require the development of more
accurate MC generators, both regarding the predictions for the hard scattering [97–105] and
concerning the formulation of novel parton shower algorithms (both for QCD and QED
radiation) that overcome the accuracy limitations of the current designs (see e.g. [106–
118] for recent work). The resulting improved description of final-state radiation would
be instrumental for the development of more accurate modelling of the fragmentation of jets
initiated either by light or heavy partons. The understanding of the former is essential for
the implementation of quark/gluon jet tagging [119–126] to the study of Higgs production at
FCC-ee, while the latter is crucial, for instance, to investigate existing discrepancies in heavy-
quark observables such as the forward-backward asymmetry [127–130]. Parallel important
developments will concern the creation of improved models of colour reconnection, which
could be precisely calibrated in reactions like e+e− → W+W− → qq̄q ′q̄ ′ or e+e− → t t̄
[131]. In the context of jet observables discussed in this section, one can also envision using
accurate αs extractions either from EWPO or from future lattice calculations to model and
tune non-perturbative aspects of event generators from differential distributions.

A complementary development would be to design observables with reduced sensitivity
to hadronisation, for instance by exploiting the modern knowledge of jet dynamics and their
substructure, also via machine learning technology (see e.g. [132] for a review). An example
is to groom the final-state event so that non-perturbative corrections are reduced in well-
identified regions of the observable spectrum (see e.g. [133–136]), hence opening promising
avenues for complementary extractions of αs [137]. An in-depth study of the effectiveness
of these techniques at the energies of the FCC-ee, as well as the estimate of the remaining
hadronisation corrections (see e.g. refs. [137,138] for recent studies in specific observables),
will be highly desirable in the coming years.
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3 Top physics

An essential component of the FCC-ee programme is related to the study of top quarks. These
are produced in colour-singlet pairs and are nearly free of background, which arises mainly
from W+W−+jets production and is non-resonant at collision energies Q ∼ 2mt . There-
fore, the foreseen threshold scan will lead to extremely precise measurements of top-quark
properties such as its mass, width and Z/γ t t̄ couplings, and will allow indirect constraints of
the top Yukawa (yt ), which will be already known with ∼ 3% accuracy after HL-LHC. These
quantities are a central element of global fits, and the augmented precision will increase the
sensitivity to indirect effects of new physics.

The most precise measurements of the top mass at hadron colliders rely on its direct
reconstruction from kinematical distributions of the top decay in t t̄ events. Today’s state-
of-the-art determination quotes a total error of about 500 MeV [3], and the experimental
uncertainties will be reduced further after HL-LHC [139,140]. These extractions, however,
face significant theoretical limitations due to the complexity of the final state, and to the
intrinsic ambiguities that affect the pole mass scheme used in these analyses, related to the
presence of infrared renormalons in its definition (see e.g. [141,142] for recent discussions).
Conversely, at the FCC-ee, the top mass will be extracted through a precise threshold scan
at c.o.m. energies close to 2mt , where the top-quark pair is non-relativistic and is subject
to Coulomb-type interactions. This allows the definition of short-distance top-mass schemes
that are not affected by ambiguities related to infrared physics and are particularly suitable
to the production at threshold [143–147]. The clean measurements at the FCC-ee will also
enable the comparison of the accurate experimental data to considerably more precise theory
predictions than what is available for hadron colliders. The QCD calculations for the line-
shape of the t t̄ system at threshold (σt t ) reach a remarkable degree of precision. Although
NNLO fixed-order QCD calculations are available (see e.g. [148]), in this kinematic regime,
σt t receives a substantial contribution from Coulomb corrections due to the non-relativistic
nature of the t t̄ pair. The latter effects can be accurately described in the context of various
effective field theories derived from non-relativistic QCD [149–151], which operate within
the power counting αs ∼ v (with v being the small velocity of the top quarks). Predictions in
this framework are already extremely accurate, and include QCD effects up to N3LO [152]
(see also refs. [153,154] and references therein for a more detailed discussion), approxi-
mate NNLL renormalisation-group improved corrections [155], and the inclusion of EW
effects within an analogous EFT framework [156]. In general, only the physical final state
W+W−bb̄+X is well-defined in perturbation theory, and therefore one must also include the
contribution from (non-resonant) channels that do not involve the creation of a top-quark pair
near their mass shell. These require embedding the non-relativistic EFT mentioned above
into the unstable particle EFT [157,158], where current predictions reach NNLO accuracy
for the non-resonant part (see discussion in ref. [156]). Current projections quote an expected
accuracy of about �mt ∼ O(50) MeV [156] (see also refs. [159,160]) for the top mass in
the potential-subtracted scheme [146] from the FCC-ee.

These future measurements will exhibit a parametric sensitivity to both αs and yt . To
maximize the sensitivity to the top mass and width, such parameters should be preferably
obtained from other determinations. These are for instance measurements at the Z peak or
lattice simulations of αs (cf. Sect. 2), and direct measurements at HL-LHC of yt . For the
optimal exploitation of FCC-ee measurements, further theoretical developments are desirable,
such as the N3LO corrections to the non-resonant channels (currently out of reach) as well as
a next-to-leading logarithmic control over the initial state QED radiation, for which progress
is currently ongoing (see e.g. [161,162]).
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The theoretical description of differential distributions is less accurate than that of the
inclusive quantities just discussed, and reaches either NLO or NNLO only for specific observ-
ables [163,164]. Thus, further progress is needed in these computations, which are central
to control precisely the effect of experimental cuts. Some aspects of such calculations pose
considerable theoretical challenges, for instance, concerning the differential calculations in
the non-relativistic limit, or the assessment of non-factorisable radiative corrections to the
decays of the two top quarks [165]. Another important aspect of differential predictions is
that of MC event generators (see e.g. [166]), where theoretical improvement is needed in
different directions. A first aspect involves the inclusion of higher-order QCD corrections to
the hard scattering, for instance using matching technology along the lines of that developed
in recent years at hadron colliders. A second development concerns the accurate descrip-
tion of t t̄ production at threshold, for which significant challenges arise from the inclusion of
Coulomb corrections discussed in this section within the framework of a fully exclusive event
generator. Thirdly, another necessary improvement concerns the parton shower algorithms
used to simulate QCD and QED radiation, both for what regards their logarithmic accuracy,
as well as regarding the accurate description of radiation off the top-quark decays with a
correct account of its finite width. Some aspects of this latter problem are addressed in refs.
[167,168] for top quarks produced in hadronic collisions; however, a full description of the
hierarchy of scales involved in the process (i.e. v,mt , the top width �t ) is not accounted for by
existing algorithms. Finally, the study of non-perturbative power corrections to differential
observables is also paramount to carry out a top-quark precision physics programme at the
FCC-ee. Here, the accurate extraction of the top mass from the inclusive measurements dis-
cussed earlier can arguably be used as input to deepen the understanding of linear renormalon
corrections to kinematic distributions (see e.g. ref. [169] for a recent study).

4 The Higgs sector

The FCC-ee will operate as a Higgs factory producing at least 106 Higgs bosons via the
e+e− → ZH and W+W− fusion (e+e− → Hνν̄) processes, allowing the precise determi-
nation of many Higgs couplings as well as of the Higgs boson width [7]. Besides considerable
improvements compared to HL-LHC extractions, this data will be used to constrain some
aspects of new physics beyond the SM. Conversely, some important couplings that are not
directly accessible at FCC-ee will be only constrained indirectly, as it is the case for the top
Yukawa or the trilinear coupling. The top Yukawa will be known at the 3 − 4% level after
HL-LHC (the improvement on yt foreseen at the FCC-ee is marginal [7]), providing key input
to several measurements at the FCC-ee, such as the t t̄ threshold scan discussed in Sect. 3.
On the other hand, model-independent indirect constraints on the trilinear coupling (see e.g.
[170–173]) are expected to reach O(40%) precision, which in combination with HL-LHC
will achieve a precision of about 30% [7]. This coupling will be then determined with an
astonishing 5% precision at FCC-hh, also thanks to the precise knowledge of other Higgs
branching ratios and EW couplings gained at FCC-ee. Reaching theoretical uncertainties
aligned with the projections for these quantities requires dedicated developments in different
areas of both QCD and EW calculations. An active programme focused on the computation
of the EW and mixed QCD-EW corrections to the production and decay of a Higgs boson
in the above processes is ongoing [174–185], and we refer to these references for a detailed
discussion. In the following, we focus on the main pure QCD aspects.

The small background and low hadronic activity of the FCC-ee will allow a detailed study
of the hadronic decays of the Higgs boson. Partial widths are currently known at the percent
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level. Specifically, in the case of H → bb̄, N4LO QCD corrections are known in the limit of
massless bottom quarks [11,186,187], and N4LO QCD corrections to H → gg have been
computed in the heavy-top-mass limit [11]. Besides these partial decay widths, the simulation
of Higgs decays at the differential level is paramount either to correct for experimental
fiducial acceptances or for the study of differential distributions for angular observables
and jet observables measured on the Higgs decays, which are sensitive to quark Yukawa
couplings [188,189] or new physics states (see e.g. [190–194]). The future development of
heavy and light jet tagging and quark/gluon jet discrimination techniques can be exploited to
gain sensitivity to Yukawa couplings to light quarks. This sensitivity can arise both via the
decay of the Higgs boson to light, e.g. strange, quarks,1 or indirectly via light-quark virtual
corrections to the H → gg decay. The practical realisation of these ideas relies nevertheless
on the assumption that sufficiently accurate theoretical predictions will be achieved to support
the measurements. Considerable steps are being taken in this direction. The differential
H → bb̄ decay is known up to N3LO [195–200] in the limit of massless b quarks and
NNLO (and partially beyond) mass corrections are available [201–208]. Similarly, H → gg
is known to NNLO in the heavy-top limit, though a N3LO calculation for this process is
currently within reach. Finite quark mass corrections to H → gg are relevant at the level of
precision foreseen at FCC-ee, and could be estimated at best at NNLO in QCD in the near
future with state-of-the-art calculations (see e.g. [202,209–212]). Calculations of hadronic
event shapes and jet resolutions at NLO [213–215] and NNLO [216] in QCD have also
been performed in recent years. As discussed in Sect. 2, the accurate description of these
observables also requires the resummation of radiative corrections, which are obtained either
by dedicated analytic calculations, largely obtained with the same techniques used in the
context of e+e− → Z → hadrons, or using exclusive event generators matched to parton
showers [217–219]. Interesting theoretical challenges are posed by the consistent description
of the radiation off massive quark loops at all perturbative orders (entering for instance
H → gg, as discussed, e.g. in refs. [220–226]) and whose understanding can play a crucial
role in new physics scenarios that modify the quark Yukawa couplings (see e.g. refs. [227,228]
for a discussion at hadron colliders). Finally, a special role is again played by the modelling
of non-perturbative corrections in hadronic final states that, due to the relatively low energy
of the decay (∼ mH ), will have a sizeable impact on most differential measurements of the
(hadronic) Higgs decay products. In this respect, the same considerations made in Sect. 2
apply, and the study of the Higgs boson at the FCC-ee will benefit enormously from future
developments in the modelling of such effects evoked in Sect. 2.

The FCC-ee will also allow for the exploration of rare and exotic decays of the Higgs
boson, such as H → Zγ , μμ and μτ (the latter being forbidden in the SM). Experimental
constraints on H → Zγ , μμ will be already set at the 10% level at HL-LHC. While the
improvement on these constraints reached at the sole FCC-ee will be marginal, the whole
FCC programme will drastically reduce the uncertainty on the measurement of such couplings
[229]. In addition, valuable information can be extracted from exclusive decays to mesons,
which are sensitive to the Yukawa couplings to second- and first-generation quarks. Examples
are the decays into J/ψ , φ, ρ and ω, in association with either a photon or a weak vector boson
[230–234]. Accurate predictions for these decays in the framework of QCD factorisation are
available (see e.g. [230,235–237] and references therein). However, the tiny branching ratios
will make the measurements very challenging due to the limited statistics at FCC-ee [7].

Funding Open access funding provided by CERN (European Organization for Nuclear Research)

1 In optimistic scenarios constraints on first-generation Yukawa couplings can be obtained [188].
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208. A. Behring, W. Bizoń, F. Caola, K. Melnikov, R. Röntsch, Bottom quark mass effects in associated

WH production with the H → bb̄ decay through NNLO QCD. Phys. Rev. D 101, 114012 (2020).
([2003.08321])

209. A. Djouadi, M. Spira, P.M. Zerwas, QCD corrections to hadronic Higgs decays. Z. Phys. C 70, 427–434
(1996). ([hep-ph/9511344])

210. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B
453, 17–82 (1995). ([hep-ph/9504378])

211. M. Schreck, M. Steinhauser, Higgs Decay to Gluons at NNLO. Phys. Lett. B 655, 148–155 (2007).
([0708.0916])

212. H. Frellesvig, M. Hidding, L. Maestri, F. Moriello, G. Salvatori, The complete set of two-loop master
integrals for Higgs + jet production in QCD. JHEP 06, 093 (2020). ([1911.06308])

213. J. Gao, Y. Gong, W.-L. Ju, L.L. Yang, Thrust distribution in Higgs decays at the next-to-leading order
and beyond. JHEP 03, 030 (2019). ([1901.02253])

214. M.-X. Luo, V. Shtabovenko, T.-Z. Yang, H.X. Zhu, Analytic Next-To-Leading Order Calculation of
Energy-Energy Correlation in Gluon-Initiated Higgs Decays. JHEP 06, 037 (2019). ([1903.07277])

215. J. Gao, V. Shtabovenko , T.-Z. Yang, Energy-energy correlation in hadronic Higgs decays: analytic
results and phenomenology at NLO, 2012.14188

216. R. Mondini, C. Williams, H → bb j at next-to-next-to-leading order accuracy. JHEP 06, 120 (2019).
([1904.08961])
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