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1 Introduction

The high-energy limit of scattering amplitudes has been a fascinating avenue in exploring
the strong interactions already before the discovery of QCD, see e.g. [1–6]. The behaviour
of amplitudes at high energy was described in terms of fundamental objects in Regge theory
associated with specific exchanges in the scattering process, which are characterised by
their singularities in the complex angular momentum plane [3, 5, 6], namely Regge cuts and
Regge poles. With the development of perturbative QCD it became clear that this limit is
also an extraordinary laboratory for investigating the behaviour of gauge interactions to
high perturbative orders, and resumming them.

The discovery of gluon Reggeization in non-abelian gauge theories [7–10], made it
possible to predict the high-energy behaviour of amplitudes to all orders in the coupling in
the BFKL approach [11–14] and provided a direct link between concepts of Regge theory and
QCD. In particular, focusing on 2→ 2 scattering, perturbative corrections are dominated at
high energies by large logarithms of the ratio between the centre-of-mass energy s and the
momentum transfer −t. Each perturbative loop order comes with an additional power of
this logarithm, hence the expansion must be resummed to all orders in the strong coupling.

At the leading logarithmic (LL) approximation this resummation amounts to a simple
exponentiation. This is best understood as a consequence of factorisation of the amplitude
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in rapidity. Factorisation translates into evolution equations, such as the above mentioned
BFKL equation [11–14] and its non-linear generalisation, the Balitsky-JIMWLK equa-
tion [15–19], whose solutions resum the dependence on s/(−t). BFKL theory can also be
seen as describing the dynamics of effective degrees of freedom, the Reggeised gluons, or
Reggeons, which propagate in the two-dimensional transverse space. The aforementioned
simplicity of the LL approximation can thus be seen as due to the propagation of a single
Reggeon in the t-channel.

Beyond the LLs, the solutions of rapidity evolution equations develop a rich structure,
which features Regge cuts, in addition to the Regge pole. These Regge cuts can be understood
as due to the exchange of multiple Reggeons. In the Next-to-Leading Logarithmic (NLL)
approximation of the amplitude, the pole and the cut contributions are well understood.
The former determines the real part of the amplitude in terms of a single Reggeon exchange,
similarly to the LLs [20–22]. In turn, the Regge cut is associated with the exchange of
a pair of Reggeons, which enters the imaginary part of the amplitude. This tower of
corrections has been recently computed by solving the BFKL equation iteratively through
13 loops [23–26]. This example makes it clear that the special features of the Regge limit
allow to uncover structures of the perturbative expansion of gauge theories, far beyond the
reach of fixed-order calculations in general kinematics. Furthermore, it holds the promise of
resumming the expansion.

In this work we focus on the tower of Next-to-Next-to-Leading Logarithms (NNLL) in
the real part of the amplitude. Here, contributions of both a single-Reggeon exchange and
a triple-Reggeon exchange become important and their interplay generates both a Regge
pole and a Regge cut. These effects have been studied using different approaches [27–37],
but the all-order expression for the NNLL amplitude is not yet known. While the Balitsky-
JIMWLK equation [15–19] has been shown to apply [23, 35, 36] also in this case, its exact
solution is beyond the reach of present methods. Significant simplification may be gained
by considering the planar limit, where the exchange of any number of Reggeons can be
solved exactly [38–41]. Indeed, it is long known that Regge cuts arise from non-planar
diagrams [1, 3, 4] and therefore their contribution is expected to disappear in the planar
limit, drastically simplifying the amplitude, which can then be expressed as a Regge pole.
We are interested in the structure of the amplitude in general colour, and we follow the
approach of refs. [23–26, 35, 36] developing an iterative, order-by-order solution of the
Balitsky-JIMWLK equations. Our focus here is on the NNLL tower through four loops.

Our motivation is twofold. On the one hand we wish to explore the structure of the
perturbative high-energy amplitude itself, notably the interplay of Regge pole and Regge
cut contributions at NNLL accuracy. On the other hand, we use the high-energy limit as a
tool to investigate the long-distance singularity structure of non-planar 2→ 2 amplitudes
in general kinematics in QCD and in N = 4 super Yang-Mills (SYM), beyond the accuracy
of state-of-the-art fixed-order calculations, see e.g. [42].

In studying the high-energy limit we elucidate the separation between contributions
to the Regge cut and Regge pole in the real part of the amplitude to all loop orders. We
explain some of the surprising findings of ref. [35] where the “cut” contribution was identified
directly as the component arising for multiple-Reggeon exchange diagrams. Here we show
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that planar contributions due to multiple-Reggeon exchange diagrams can be factorised as
a Regge pole along with the single-Reggeon exchange. Moreover, we find that when this is
done, the singular part of the gluon Regge trajectory is directly determined by the cusp
anomalous dimension, in line with the prediction by Korchemskaya and Korchemsky [43, 44].
We explicitly compute the Regge cut component of the amplitude through four loops and
show that it is non-planar.

A central part of this paper constitutes the study of infrared singularities of gauge-
theory amplitudes, using information from the Regge limit, continuing studies along similar
lines at lower orders in refs. [23, 24, 35, 36, 45, 46]. As is well known, infrared singularities
are generated by a universal soft anomalous dimension [47–55], currently known to three
loops [55]. We contrast the results of our explicit computations in the Regge limit through
four loops, with predictions based on the factorisation and exponentiation of infrared
singularities. In this way, we extract information regarding the soft anomalous dimension
at four loops as well as on the infrared-finite parts of the four-loop amplitude in the high-
energy limit. Furthermore, we use these results to constrain a general parametrisation of
the four-loop soft anomalous dimension for multi-leg massless scattering [54], extracting
explicitly the high-energy limit of the relevant kinematic functions. This information opens
the way for bootstrapping these functions in general kinematics, similarly to what was done
at three loops in ref. [56].

The outline of the paper is as follows: in section 2 we introduce the theoretical
background regarding the high-energy limit of 2 → 2 scattering including the treatment
of colour, infrared divergences and the separation between the Regge pole and Regge cut
components of the amplitude. Finally, we also define the so-called reduced amplitude, which
is most directly accessible within our approach. Next, in section 3 we first review the
formalism we use to compute the Regge limit of 2→ 2 amplitudes based on an iterative
solution of the Balitsky-JIMWLK equation [23, 35] and then we characterise the entire
tower of NNLL of the reduced amplitude to all orders. Section 4 describes the techniques
we use to carry out the calculation, in particular to evaluate the colour structure for general
representation of the scattering partons. The complete results are given in section 5, where
we also investigate the separation between the Regge pole and Regge cut contributions
at the NNLL accuracy through four loops. In section 6 we contrast our results with
infrared factorisation, which allows us to extract the NNLL contribution to the four-loop
soft anomalous dimension and the finite part of QCD and N = 4 SYM amplitudes. In
section 7 we investigate the parametrisation of the soft anomalous dimension [54] and derive
the high-energy limit of the kinematic functions it contains.

2 The Regge limit of 2→ 2 scattering: introduction

2.1 Partonic scattering in the high-energy limit

Let us consider two-parton scattering

i(p1, a1, λ1) + j(p2, a2, λ2)→ j(p3, a3, λ3) + i(p4, a4, λ4), (2.1)
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i(p1, a1, λ1)

j(p2, a2, λ2) j(p3, a3, λ3)

i(p4, a4, λ4)

Figure 1. 2 to 2 particle scattering corresponding to eq. (2.1). The two partons i and j can be
quarks or gluons, and the arrows indicate the direction of the momenta. The indices ak are colour
indices, while the labels λk represent the particle helicities. At leading power in the high-energy
limit the amplitude is helicity conserving, as indicated at tree level in eq. (2.5).

where the partons i, j can each be quarks or gluons. Labelling the momenta of the particles
as in figure 1, with p1, p2 incoming, and p3, p4 outgoing, the process is described in terms
of the Mandelstam variables

s = (p1 + p2)2 > 0 , t = (p1 − p4)2 < 0 , u = (p1 − p3)2 < 0. (2.2)

The high-energy limit is defined by the condition

s� −t, (2.3)

i.e., the centre-of-mass energy s becomes much larger than the momentum transfer −t.
In this regime, the amplitude can be seen as an expansion in the small parameter (−t)/s.

We focus in this paper on the leading power term in this expansion, which is dominated
by a t-channel exchange, and is therefore proportional to [(−t)/s]−1. This leading-power
scattering amplitude is further restricted to be helicity-conserving, namely, the partons i
and j retain their helicities through the scattering process.

The amplitude develops large logarithms of the ratio s/(−t) and our general aim
is to determine these log-enhanced terms. The leading logarithmic (LL) contribution is
summed to all orders [10, 12] by dressing the tree-level t-channel gluon exchange by the
exponential factor

MLL
ij→ij =

(
s

−t

)CA αg(t,µ2)
Mtree

ij→ij , (2.4)

where the tree-level amplitude reads

Mtree
ij→ij = g2

s

2s
t

(T bi )a1a4(T bj )a2a3 δλ1λ4δλ2λ3 , (2.5)

where the factor δλ1λ4δλ2λ3 represents helicity conservation, and where the colour matrices de-
pend on the representations of the projectile (i) and target (j) according to (T bi )a1a4 = tba1a4

for quarks, (T bi )a1a4 = −tba4a1 for antiquarks, and (T bi )a1a4 = ifa1ba4 for gluons. The ex-
ponent αg(t, µ2) in eq. (2.4) is the famous gluon Regge trajectory, whose perturbative
expansion reads

αg(t, µ2) =
∑
n

(
αs(µ2)
π

)n
α(n)
g (t, µ2). (2.6)
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The one-loop coefficient in dimensional regularisation, with D = 4− 2ε, is given by

α(1)
g (t, µ2) = rΓ

2ε

(
µ2

−t

)ε
; rΓ = eεγE

Γ2(1− ε)Γ(1 + ε)
Γ(1− 2ε) . (2.7)

In the following we will often evaluate amplitudes at the renormalisation scale µ2 = −t. In
this case we will omit the scale argument: αg(t) ≡ αg(t,−t).

The simple exponentiation property in eq. (2.4), with the characteristic colour charge
CA, the quadratic Casimir in the adjoint representation, can be understood as due to the
exchange of a single Reggeized gluon (dubbed Reggeon), which admits a trivial evolution
equation in rapidity.1 The exchange of a single Reggeon can be related to so-called Regge
poles in the complex angular momentum plane.

As we discuss in section 2.4 below, beyond the LL approximation, the amplitude
develops a more complex analytic structure, which can be associated to the emergence of
Regge cuts in the complex angular momentum plane [1, 3, 4]. These in turn are related to
the exchange of compound states of multiple Reggeons. The Balitsky, Fadin, Kuraev and
Lipatov (BFKL) equation [11–14] describes the evolution of two-Reggeon states. Different
approaches have been developed to go beyond these cases, e.g. in terms of the Bartels,
Kwiecinski and Praszalowicz (BKP) equation [27, 28]. The evolution of states consisting of
any number of Reggeons, as well as mixing between such states, can be described in full
generality in terms of the non-linear Balitsky-JIMWLK equation [23, 35]. In the case of a
two-Reggeon exchange, this equation reduces to the BFKL equation, which has been solved
in a variety of circumstances, see e.g. [23, 24, 26, 57]. Going beyond two-Reggeon exchange,
an exact solution can be found in the planar limit, where the BKP equation becomes
integrable [38–41, 58, 59]. The non-linear Balitsky-JIMWLK equation is much harder to
solve, but restricting it to a given logarithmic accuracy — and thus restricting the number
of Reggeons being exchanged in the t channel — an iterative solution can be obtained even
in the general non-planar, off-forward case [35, 36]. We shall review the essentials of this
approach in section 3.1 and then use it for the calculation in subsequent sections.

In the high-energy limit u ' −s, the amplitude acquires an additional symmetry under
the exchange s↔ u, which is known as the signature symmetry. It is thus convenient to
split the amplitude into its even and odd components under s↔ u:

M(±)(s, t) = 1
2
(
M(s, t)±M(−s− t, t)

)
, (2.8)

whereM(+) andM(−) are referred to, respectively, as the even and odd amplitudes. As
shown in ref. [35], upon using the signature-even combination of logarithms,

L ≡ log
(
s

−t

)
− iπ

2 = 1
2

[
log

(−s− i0
−t

)
+ log

(−u− i0
−t

)]
, (2.9)

and expanding the amplitudesM± according to

M(±)
ij→ij =

∞∑
n=0

(
αs
π

)n n∑
m=0

LmM(±,n,m)
ij→ij , (2.10)

1The concept of rapidity evolution will be important in what follows, and we shall return to it in
section 3.1. We refer the reader to refs. [23, 35] for a more complete presentation of the formalism.
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withM(−,0,0)
ij→ij ≡Mtree

ij→ij , the odd amplitude coefficientsM(−,n,m)
ij→ij are purely real, while the

even onesM(+,n,m)
ij→ij are purely imaginary. These two components also have independent,

and rather different factorisation properties in the high-energy limit, which we shall review
in section 2.4. Naturally, they also feature distinct colour components, as we now discuss.

2.2 Colour structure of 2→ 2 scattering

In order to express the dependence of the scattering amplitude on the colour degrees of
freedom of the external particles, we write it as a vector in colour-flow space:

Mij→ij =
∑
k

c
[k]
ij M

[k]
ij→ij , (2.11)

where the tensors c[k]
ij represent the elements of a colour basis, andM[k]

ij→ij are the corre-
sponding amplitude coefficients. A convenient basis in the high-energy limit is given by the
t-channel exchange orthonormal basis, as defined in ref. [32] and appendix B of ref. [35], to
which we refer for further details.

An orthonormal colour basis in the t-channel can be obtained by decomposing the direct
product of the colour representations associated to the incoming and outgoing particles 1
and 4 (the top line in figure 1) into a direct sum, and taking those representations which
have non-zero overlap with the equivalent decomposition obtained for particles 2 and 3
(the bottom line in figure 1). In the cases of gluon-gluon, quark-gluon and quark-quark
scattering one has2

(8⊗ 8)gg→gg = 1⊕ 8s ⊕ 8a ⊕ (10⊕ 10)⊕ 27⊕ 0, (2.12a)
(8⊗ 8)qg→qg = 1⊕ 8s ⊕ 8a, (2.12b)
(3⊗ 3̄)qq→qq = 1⊕ 8 . (2.12c)

This basis is particularly convenient, because it describes the colour flow in the t-channel: at
tree-level the two-parton amplitude in the high-energy limit is always given by the exchange
of a gluon in the t-channel, which has the quantum number of an antisymmetric octet,
thus the tree-level amplitude in the t-channel orthonormal basis is always given by a single
component, namely

Mtree
ij→ij = c

[8a]
ij M

tree,[8a]
ij→ij . (2.13)

As is clear from eq. (2.4), the same is true to all orders for the LL component of the
amplitude. This can also be seen as a manifestation of the fact that a single Reggeon carries
the quantum numbers of a gluon. One has thus

Mij→ij(s, t)|LL = c
[8a]
ij M

[8a]
ij→ij(s, t)|LL . (2.14)

Owing to multi-Reggeon exchange, beyond LLs all colour components in the decomposition
in eq. (2.12) contribute. The exchange of an odd number of Reggeons contributes toM(−),
while an even number of Reggeons contributes toM(+) [23, 35].

2Notice that the decomposition in (2.12) is valid for SU(Nc), although the representation labels refer to
their dimension for Nc = 3.
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In the cases of gluon-gluon and quark-gluon scattering, Bose symmetry links the
kinematic dependence to that of colour, therefore,M(±)

gg→gg andM(±)
qg→qg receive contributions

from t-channel exchange of colour representations which are even and odd under 1↔ 4 (or
2↔ 3) interchange for the even (+) and odd (−) components, respectively. Specifically, the
odd amplitudeM(−)

gg→gg consists of t-channel exchange of the antisymmetric octet 8a and the
(10⊕ 10) representations, whileM(+)

gg→gg involves the remaining components in eq. (2.12a).
Similarly,M(−)

qg→qg is governed (exclusively!) by the antisymmetric octet 8a representation,
whileM(+)

qg→qg by the singlet and the symmetric octet 8s in eq. (2.12b). Bose symmetry
does not apply to quark-quark scattering, and therefore there is no direct correspondence
betweenM(±)

qq→qq and the colour componentsM[1]
qq→qq,M[8]

qq→qq. For instance, the exchange
of two Reggeons, which contributes to the even amplitudeM(+) starting at NLL, affects
bothM[1]

qq→qq andM[8]
qq→qq.

Our main interest in this paper is in the odd-signature amplitude. In this case, the
relevant orthonormal basis elements for qq, gg and qg scattering are:

c[8]
qq = 2√

N2
c − 1

(tb)a4
a1(tb)a3

a2 , (2.15a)

c[1]
qq = 1

Nc
δa4

a1δ
a3
a2 , (2.15b)

c[8a]
gg = 1

Nc

1√
N2
c − 1

fa1a4bfa2a3
b, (2.15c)

c[10+1̄0]
gg =

√
2

(N2
c − 4)(N2

c − 1)

[1
2(δa1

a2δ
a3
a4 − δa3

a1δ
a4
a2)− 1

Nc
fa1a4bfa2a3

b

]
, (2.15d)

c[8a]
qg =

√
2

Nc(N2
c − 1)(tb)a4

a1if
a2a3b. (2.15e)

While the t-channel colour basis is convenient for analysing individual 2→ 2 scattering
processes in the high-energy limit, understanding the process-independent features, such
as the relation between the exponentiation of high-energy logarithms and that of infrared
singularities (see section 2.3), is best done in terms of colour operators. Indeed, following
refs. [23–26, 35, 36, 45, 46, 60, 61], our analysis of 2→ 2 scattering amplitudes in this paper
will be largely based on such operators.

To this end we use the colour-space formalism introduced in refs. [47, 62–64]: a colour
operator Tk corresponds to the colour generator associated with the k-th parton in the
scattering amplitude, which acts as an SU(Nc) matrix on the colour indices of that parton.
For instance Tc

1 acting on the tree-level colour structure in eq. (2.5) can be written, with
explicit indices, as

Tc
1(Tb

i)a1a4(Tb
j)a2a3 = (Tc

1)a1a′1
(Tb

i)a′1a4(Tb
j)a2a3 . (2.16)

For later use, let us note that generators associated with different particles trivially commute,
Tk · Tl = Tl · Tk for k 6= l, while T2

k = Ck where Ck is the quadratic Casimir operator
of the corresponding colour representation, i.e. Cq = CF = (N2

c − 1)/(2Nc) for quarks
and Cg = CA = Nc for gluons.
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In the high-energy limit it proves useful to express such colour factors using the basis
of Casimirs corresponding to colour flow through the three channels [45, 65]:

Ts = T1 + T2 = −T3 −T4,

Tu = T1 + T3 = −T2 −T4,

Tt = T1 + T4 = −T2 −T3 ,

(2.17)

subject to the colour-conservation identity

(T1 + T2 + T3 + T4)M = 0 . (2.18)

The latter identity also implies

T2
s + T2

t + T2
u =

4∑
i=1

Ci, (2.19)

which can be used to simplify the colour structure of the amplitude.
As we have seen above when working with explicit colour tensors, the t channel has a

special status in the high-energy limit: in this basis the tree level (and the tower of LLs in
eq. (2.14)) is given by a single component, the antisymmetric octet exchange. Similarly,
when working with channel colour operators, the operator T2

t has a special status in the
high-energy limit: T2

t measures the colour charge flowing in the t channel and thus upon
acting on the tree-level amplitude (2.5) it simply yields

T2
tMtree

ij→ij = CAMtree
ij→ij . (2.20)

To see this we may choose to expand T2
t using T1 + T4 in eq. (2.17), getting

T2
t (Tb

i)a1a4(Tb
j)a2a3 = (T1 + T4)2(Tb

i)a1a4(Tb
j)a2a3

=
(
T1 ·T1 + T4 ·T4 + 2Tc

1Tc
4

)
(Tb

i)a1a4(Tb
j)a2a3

= 2Ci(Tb
i)a1a4(Tb

j)a2a3 − 2(Tc
i )a1a′1

(Tb
i)a′1a′4(Tc

i )a′4a4(Tb
j)a2a3

= CA(Tb
i)a1a4(Tb

j)a2a3 ,

(2.21)

where after expanding the square we used the rule in eq. (2.16) for both T1 and T4. Keeping
in mind that Tk (with k = 1 through 4) acts inwards towards the t-channel exchange (see
figure 1) we observe that in the second line Tc

1 = Tc
i acts on the original tree-level exchange

from the left, while Tc
4 = −Tc

i acts on it from the right. The relative minus sign reflects
the fact that parton 4 is outgoing, and thus Tc

4 is opposite to the direction of Tc
i . In the

final step we use the colour algebra on the Ti generators, noting the cancellation of the
quadratic Casimir Ci, and thus recovering eq. (2.20).

In contrast to T2
t , the action of T2

s or T2
u on the tree-level gives rise to other colour

tensors. Given the symmetry properties of (Bose-symmetric) signature eigenstate amplitudes
M(±), it is convenient to introduce a colour operator that is odd under s↔ u interchange:

T2
s−u ≡

1
2
(
T2
s −T2

u

)
. (2.22)
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We will see in section 4.2 and what follows that a natural basis of operators in the Regge
limit can be constructed using T2

t and T2
s−u along with their commutators (see also previous

work [24–26, 35, 36, 61]). Signature symmetry is readily encoded in such a basis, since
signature odd (even) operators must necessarily feature T2

s−u an odd (even) number of times.
Having set up the colour operator formalism, we are ready to review the correspondence
between the exponentiation of high-energy logarithms and that of infrared singularities.

2.3 Infrared divergences in the Regge limit of 2→ 2 scattering

A salient feature of gauge-theory amplitudes is the presence of long-distance singularities. It
is well known that these singularities factorise and exponentiate, as described for example
in refs. [47–55]. Specifically, considering the ultraviolet-renomormalised massless scattering
amplitudeMij→ij in general kinematics, one has

Mij→ij
(
s, t;µ, αs(µ2), ε

)
= Zij→ij

(
s, t;µ, αs(µ2), ε

)
Hij→ij

(
s, t;µ, αs(µ2), ε

)
, (2.23)

where the so-called infrared renormalisation factor Zij→ij captures all the singularities in ε,
while the hard function Hij→ij on which it acts, is finite for ε → 0. The Zij→ij factor
exponentiates according to

Zij→ij
(
s, t;µ, αs(µ2), ε

)
= P exp

{
−1

2

∫ µ2

0

dλ2

λ2 Γij→ij(s, t;λ, αs(λ2))
}
, (2.24)

where Γij→ij is the soft anomalous dimension, which is a finite function of the d = 4− 2ε
dimensional coupling

dαs
d logµ = −2εαs −

α2
s

2π

∞∑
n=0

bn

(
αs
π

)n
, (2.25a)

αs(λ2) = αs(µ2)
(
λ2

µ2

)−ε 1− b0
4πε

1−
(
λ2

µ2

)−εαs(µ2) +O
(
α2
s

) , (2.25b)

where b0 = (11CA − 4TRnf )/3 in QCD; in N = 4 SYM the beta function coefficients are
identically zero, so the square brackets in eq. (2.25b) should be replaced by 1. Infrared
singularities in the exponent of eq. (2.24) are generated by integrating over the coupling
down to λ→ 0.

Within the Regge limit, long-distance singularities are particularly conspicuous as the
leading-order gluon Regge trajectory in eq. (2.7) is itself proportional to 1/ε. Thus, eq. (2.4)
implies that the LLs, LmM(±,m,m)

ij→ij in eq. (2.10), are proportional to 1/εm. Naturally, similar
infrared singularities occur along with subleading high-energy logarithms, LmM(±,n,m)

ij→ij with
n > m, and thus studying factorisation and exponentiation in the Regge limit is directly
connected to studying the infrared singularity structure. The intimate interplay between
the two has been observed and used in multiple occasions, e.g. in refs. [23–26, 35, 36, 43–
46, 56, 60, 61]. A primary avenue for investigating it, is based on specialising the analysis
of infrared singularities in terms of the soft anomalous dimension (according to eqs. (2.23)
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and (2.24)) to the Regge limit, obtaining3

Γij→ij
(
αs, L,

−t
λ2

)
= 1

2γK(αs)
[
LT2

t + iπT2
s−u

]
+ Γi

(
αs,
−t
λ2

)
+ Γj

(
αs,
−t
λ2

)
+ ∆(L,αs) , (2.26)

where the first terms arise from the dipole formula [47–53]: γK is the coefficient of the
quadratic Casimir within the lightlike cusp anomalous dimension (see eq. (2.28) below)
while Γi and Γj capture collinear singularities, which depend on the scattered partons (both
their spin and their colour representation), but are independent of high-energy logarithms
and are proportional to the unit matrix in colour space. In turn,

∆(L,αs) =
∞∑
`=3

(
αs
π

)` `−1∑
m=0

Lm∆(`,m), (2.27)

represents corrections to the dipole formula, and has a complex structure in colour space.
It arises owing to non-planar multi-parton correlations starting from three loops and to
quartic (and higher) corrections to the cusp anomalous dimension, starting from four loops.

The cusp anomalous dimension may be defined through the renormalisation of cusped
Wilson loops [66] and it corresponds to the coefficient of the leading ultraviolet divergence
of this object in the lightlike limit. This translates [67] into the leading infrared behaviour
of massless amplitudes, where the colour representation of the Wilson line is that of the
parton. It may be expanded in Casimirs according to [51–54, 66–75]

Γcusp
i (αs(λ2)) = 1

2γK(αs(λ2))Ci +
∑
R

gR(αs(λ2))dRRi
NRi

+O(α5
s), (2.28)

where γK(αs) multiplies the quadratic Casimir Ci in the representation of parton i, while
gR(αs), starting only at four loops, multiplies the quartic Casimir (defined in eq. (7.26)
below). Both γK and gR are independent of the representation Ri and are known to four
loops in QCD [68–75]. For convenience we collect the expansions in eqs. (B.2) and (B.3).

The anomalous dimensions Γi and Γj , associated to the projectile i and the target j,
respectively, are the only sources of double poles in ε upon integration in eq. (2.24). They
take the form

Γi
(
αs(λ2), −t

λ2

)
= 2γi(αs(λ2)) + Γcusp

i (αs(λ2)) log −t
λ2 , (2.29)

where Γcusp
i is given in (2.28) and the function γi(αs) is the collinear anomalous dimension [32,

76–78] corresponding to the parton i. It has recently been computed to four loops in
QCD [75]. We provide its expansion through two-loop in eqs. (B.4) and (B.5) for quarks
and gluons, respectively.

Having defined the relevant components of the soft anomalous dimension, let us see
what infrared singularities they generate at leading and subleading logarithmic accuracy

3In section 7 we will review the structure of the soft anomalous dimension in general kinematics, and
examine how it simplifies in the high-energy limit, obtaining eq. (2.26). Here we only need some of its salient
features, which we define below.
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in the Regge limit. Upon integrating over eq. (2.26) in eq. (2.24), the terms involving γK
result in the following two integrals [45, 46]:

K(αs(µ2)) ≡ −1
4

∫ µ2

0

dλ2

λ2 γK(αs(λ2)) =
∞∑
n=0

(
αs(µ2)
π

)n
K(n) = 1

2ε
αs(µ2)
π

+ . . . ,

(2.30a)

KD(αs(µ2)) ≡ −1
4

∫ µ2

0

dλ2

λ2 γK(αs(λ2)) ln
(
µ2

λ2

)
= − 1

2ε2
αs(µ2)
π

+ . . . , (2.30b)

where the ellipsis stand for higher-order terms in the coupling, generated by the expansion
of γK in eqs. (B.2), and by the running coupling (2.25b). Of these two integrals, the former,
involving a single pole in ε, contributes K(αs)(LT2

t + iπT2
s−u) to the exponent while the

latter, involving a double pole in ε enters only through Γi and Γj , multiplying a unit operator
in colour space. At this point the comparison with the Regge-pole factorisation picture is
immediate: of all the terms in the exponent in eq. (2.24) the only one entering at leading
logarithmic accuracy is T2

tK
(1)Lαs(−t)/π, originating in the leading-order cusp anomalous

dimension. To identify the colour structure of the gluon Regge trajectory note that T2
t

in the exponent of Zij→ij will be acting on Hij→ij (s, t; ε) in eq. (2.23), which coincides
withMtree

ij→ij at leading order. Using eq. (2.20) one then recovers the CA colour factor of
eq. (2.4), and one finds

α(1)
g (t) = K(1) +O(ε0) , (2.31)

where aside from the singular term, the left-hand side features finite terms along with
ε-suppressed terms summarised by eq. (2.7).

We thus see explicitly how the two exponentiation pictures, that of high-energy loga-
rithms and that of infrared singularities are compatible, as they must be. One wonders how
this extrapolates to higher orders. Naively4 comparing the infrared-singular terms which
are linear in the high-energy logarithm in the exponent in eq. (2.4) to those of eq. (2.23)
(K(αs)LT2

t , to three loops) one would require

αg(t)
?= K +O(ε0) . (2.32)

This rather remarkable connection between the singularities of the Regge trajectory and cusp
singularities of Wilson lines was proposed already in refs. [43, 44], where it was established
analysing quark-quark scattering in terms of Wilson lines, and shown to hold at two loops.
Although eq. (2.32) has been regarded as general (see e.g. [32], where it was used at three
loops) its realisation beyond two loops is complicated by the presence of Regge cuts (see
e.g. [35]) and has not been fully understood. In the present paper we explain how it is
realised at three loops, and conjecturally, beyond this order.

Generally speaking, the comparison between the two exponentiation pictures at sub-
leading logarithmic orders is rather complex. This is both because corrections to the soft
anomalous dimension in eq. (2.26) at three loops and beyond may have a complex colour

4Recall that so far we only discussed the validity of eq. (2.4) to leading logarithmic accuracy.
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structure, and because Regge-pole factorisation is violated by Regge-cut contributions asso-
ciated with multiple Reggeon exchange, which is the topic of section 2.4 below. As already
mentioned, this comparison is highly insightful [23–26, 30–32, 35, 36, 43–46, 56, 60, 61],
and provides an important impetus for the current study.

Let us now make some brief comments about NLLs and beyond based on eq. (2.26),
leaving the more detailed analysis to sections 6 and 7, where we will infer information
regarding the soft anomalous dimension at four loops from the calculations in the Regge limit.
While at LL accuracy the soft anomalous dimension is real (thus signature even), starting
from NLL it contains both real and imaginary contributions. Real NLL contributions arise
only from the O(αs) term in Γi and Γj and the O(α2

sL) term in the expansion of K(αs)LT2
t .

Thus, the signature-even part of the NLL anomalous dimension is two-loop exact.5 In
turn, signature odd terms in eq. (2.26) have a more complex structure: the leading-order
contribution is the O(αs) term in K(αs)iπT2

s−u. Subsequent corrections in this NLL tower
start at four loops (see appendix E). They have been computed to all orders, thus fixing
the coefficients ∆(`,`−1) in eq. (2.27) for any ` (see eq. (4.24) in ref. [24]). Our interest
in the present paper is in the real tower of NNLL contributions, Re ∆(`,`−2) in eq. (2.27),
which, as we shall see, also start at four loops. Knowing that these NNLL contributions
to eq. (2.26) are associated (see details in section 7) with multi-leg correlations in the soft
anomalous dimension, rather than with the cusp anomalous dimension, it is clear at the
outset that they must be non-planar to any loop order.6 This is an important prediction
we will be able to verify from the Regge perspective in what follows.

2.4 Subleading logarithms, Regge pole and Regge cuts

The LL contribution to the scattering amplitude in eq. (2.4) is generated by a single Reggeon
exchange, which appears as a Regge pole in the complex angular momentum plane. A
Regge pole corresponds to s raised to a power (CAαg(t)), which is strictly independent of s.
Beyond LL accuracy one needs to take into account multiple Reggeon exchanges, which
give rise to Regge cuts [23, 29–37]. In refs. [1, 3, 4] it was shown that Regge cuts arise
from non-planar diagrams. This has profound implications on the structure of subleading
logarithmic corrections to the amplitude.

In the majority of the present work we split the contributions to the 2→ 2 amplitude
into single-Reggeon states (SRS) and multiple-Reggeon states (MRS). We will see later
that the latter contain non-planar as well as planar contributions. We will write this
separation as

M(−) =M(−), SRS +M(−),MRS , (2.33a)
M(+) =M(+),MRS (2.33b)

5The absence of real ∆(`,`−1) contributions can also be seen as a manifestation of Regge-pole factorisation
of the odd amplitude — indeed multiple Reggeon exchange cannot yet arise at this logarithmic order. See
section 2.4 below.

6In the planar limit, the soft anomalous dimension reduces to a sum over two-particle interactions, where
the only kinematic dependence is linear in the (high-energy) logarithm, and thus necessarily beyond NNLL
from four loops.
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where the even amplitude,M(+), starts at NLL with the exchange of two Reggeised gluons,
and in the odd amplitude, M(−), the first term refers to the t-channel exchange of a
single Reggeon state (SRS), while the second involves the t-channel propagation of multiple
Reggeon states (MRS). The latter starts at NNLL at two loops, with the exchange of
three Reggeised gluons. Starting from three loops it also involves mixing between three
Reggeons and one Reggeon [35]. To understand precisely what MRS corresponds to, we
refer the reader to figures 2 through 8 below, which we will later on compute using an
iterative solution of the Balitsky-JIMWLK rapidity evolution equations [15–19] following
the methodology of refs. [23, 35] (briefly reviewed in section 3.1). In each of these figures
the propagation in the t channel is mediated at some stage by a compound state of three
Reggeons; this is enough to classify it as a MRS in eq. (2.33a). Conversely, a SRS refers to
the situation where the entire propagation in the t channel from the projectile to the target
is via a single Reggeon.

At LL accuracy M(−), SRS is given by eq. (2.4) to all orders in αs. Beyond LL, this
contribution retains the same exponential dependence on s, but higher-order corrections to
the gluon Regge trajectory αg(t) of eq. (2.6) are required, and in addition impact factors
must be introduced, which can be seen as effective couplings of the Reggeon with the
external scattered particles [20, 22]. Thus, the SRS contribution can always be written as

M(−), SRS
ij→ij = eCAαg(t)LCi(t)Cj(t)Mtree

ij→ij , (2.34)

generalising eq. (2.4). The impact factors Ci/j(t), much like the trajectory αg(t), are strictly
independent of the centre-of-mass energy s. Importantly, eq. (2.34) also retains the colour
tensor structure of the tree-level amplitude in eq. (2.5), which is equivalent to stating that
the t-channel exchange remains an antisymmetric octet exchange.

Contributions at fixed logarithmic accuracy are obtained upon expanding the Regge
trajectory and the impact factors in powers of the strong coupling. In particular, the NLL
contribution is given by taking the Regge trajectory at O(α2

s) in the exponent, and the
impact factors at O(αs). Both the Regge trajectory and Ci/j(t) are theory-dependent. The
two-loop Regge trajectory in QCD is [79–82]

α(2)
g (t)|QCD = − b0

16ε2 + 1
8ε

[(67
18 − ζ2

)
CA −

10TRnf
9

]
+CA

(101
108 −

ζ3
8

)
− 7TRnf

27 +O(ε) .
(2.35)

The corresponding expression for N = 4 SYM can be obtained, according to the principle of
“maximum transcendentality” [83–86], by selecting the terms in eq. (2.35) with the highest
transcendental weight, i.e.

α(2)
g (t)|SYM = −CA8

(
ζ2
ε

+ ζ3

)
+O(ε) . (2.36)

An amplitude that can be brought to the form of eq. (2.34) is said to admit Regge-
pole factorisation. At NLL, the real part of the amplitude M(−)

ij→ij admits Regge-pole
factorisation, namely it is fully described by the exchange of a SRS as in eq. (2.34). A well-
known consequence of this is the following simple relation between quark-gluon, gluon-gluon
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and quark-quark scattering [29]:(
M(−)

qg→qg|NLL
Mtree

qg→qg

)2

= M
(−)
gg→gg|NLL
Mtree

gg→gg
· M

(−)
qq→qq|NLL
Mtree

qq→qq
, (2.37)

which automatically follows from the fact that each of the separate processes computed at
NLL admits eq. (2.34), and that the gluon Regge trajectory is independent on the nature
of the scattered partons.

Considering odd partonic amplitudes beyond NLL, the above relation is broken by Regge-
cut contributions that first arise in the signature-odd amplitudes at NNLL at two loops [29].
These contributions, commonly referred to as Regge-pole factorisation breaking terms,
have been interpreted as being due to three-Reggeon exchange — namely contributions
toM(−),MRS in eq. (2.33a) — in refs. [33–35], where the three-loop NNLL amplitude was
determined. In this paper we take a further step, by fully characterizing the tower of NNLL
corrections to the odd amplitude, and extending the explicit computations of these to four
loops. We will also show that contributions that do not conform with factorisation according
to eq. (2.34) (thus nor with a relation of the form of eq. (2.37)) arise only from non-planar
diagrams. Indeed, planar contributions do conform with the factorisation of eq. (2.34), even
if they arise from multiple Reggeon exchanges,M(−),MRS in eq. (2.33a). Our findings are
therefore consistent with the general considerations showing that Regge-pole-factorisation
breaking is associated with non-planar diagrams [1, 3, 4].

We conclude that to describe the high-energy behaviour of a signature-odd amplitude
at NNLL and beyond one must take into account both terms in eq. (2.33). Consequently,
Ci/j(t) and αg(t) start to depend on how the separation in eq. (2.33) is precisely defined;
this will be referred to as a scheme choice. As explained following eq. (2.33), to perform
explicit computations we shall use the MRS scheme, where the entire contribution due to
MRS will be explicitly computed using the Balitsky-JIMWLK rapidity evolution equation,
while the remaining SRS contribution, which is strictly driven by the evolution of a single
Reggeon, will be determined by matching

M(−)
ij→ij = eCAαg(t)LCi(t)Cj(t)Mtree

ij→ij +M(−),MRS
ij→ij , (2.38)

to the known fixed-order signature-odd amplitude. With the computed M(−),MRS at hand,
and knowing that the pure SRS contribution admits Regge-pole factorisation, we would
be able to uniquely define and compute the impact factors Ci(t) and Cj(t) and trajectory
αg(t) in this scheme, as done in ref. [35].

Given that planar MRS contributions can be factorised according to eq. (2.34), one
may be inclined to consider another scheme for separating the odd amplitude, the Regge-cut
scheme, where

M(−)
ij→ij =M(−), pole

ij→ij +M(−), cut
ij→ij

= eCAα̃g(t)L C̃i(t) C̃j(t)Mtree
ij→ij +M(−), cut

ij→ij .
(2.39)

Here the non-planar part ofM(−),MRS is represented byM(−), cut, while the planar part of
M(−),MRS is absorbed into the first term, the Regge pole. The latter can be factorised just
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as in eq. (2.34), but given the presence of planar MRS at NNLL (and beyond), one would
obtain different values for the impact factor coefficients starting at two loops, and the gluon
Regge trajectory, starting at three loops, as compared to the MRS scheme in eq. (2.38).

While the MRS scheme of eq. (2.38) is most natural from the calculation perspective, the
Regge-cut scheme of eq. (2.39) aims to capture the high-energy behaviour of the amplitude
along with its behaviour in the large-Nc limit. The Regge-pole term dominates in the
large-Nc limit, while, as we will see, the cut term at NNLL accuracy is characterised by a
highly non-trivial colour structure. Furthermore, we will see that it is in this scheme that
the aforementioned remarkable relation (2.32) between the singularities of the gluon Regge
trajectory and the cusp anomalous dimension [43, 44], namely

α̃g(t) = K +O(ε0) , (2.40)

holds at three loops. Its generalisation at four loops is discussed in section 7.4. We will
return to the Regge-cut scheme in section 5.4 and then discuss in detail the interplay
between the exponentiation of infrared singularities and high-energy logarithms in sections 6
and 7. At this point we return to the MRS scheme and focus on characterising the NNLL
tower of corrections using rapidity evolution.

2.5 The reduced amplitude

As a final step of preparation for the study of the NNLL tower of MRS correctionsM(−),MRS

using rapidity evolution equations, we briefly review the concept of a reduced amplitude [24–
26, 35, 36], defined by stripping off of the amplitude the single Reggeon evolution and
parton-dependent singularities associated with the impact factors.

To this end we further factorise the impact factors as

Ci/j(t) = Zi/j(t)Di/j(t), (2.41)

where [45, 46, 51, 52, 87]

Zi(t) = exp
{
−1

2

∫ µ2

0

dλ2

λ2 Γi
(
αs(λ2), −t

λ2

)}
, (2.42)

with Γi defined in eq. (2.29). Following the convention introduced for the Regge trajectory
in eq. (2.6), we expand the impact factors in powers of αs/π:

Ci(t) =
∞∑
n=0

(
αs(−t)
π

)n
C

(n)
i , (2.43a)

Zi(t) =
∞∑
n=0

(
αs(−t)
π

)n
Z

(n)
i , (2.43b)

Di(t) =
∞∑
n=0

(
αs(−t)
π

)n
D

(n)
i , (2.43c)

where C(0)
i = Z

(0)
i = D

(0)
i = 1.
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To directly access the multiple Reggeon exchange, we introduce a reduced amplitude
M̂, as follows [35]:

M̂ij→ij ≡ (ZiZj)−1 e−T2
t αg(t)LMij→ij , (2.44)

where the effect of the exponential is to remove the evolution of a single Reggeon and where
Zi and Zj , defined in (2.42), remove the collinear divergences.

At tree-level M̂tree
ij→ij =Mtree

ij→ij . In general, comparing eq. (2.34) with eq. (2.44), the
structure of the reduced signature-odd amplitude beyond NLL reads

M̂(−)
ij→ij = Di(t)Dj(t)Mtree

ij→ij + M̂(−),MRS
ij→ij , (2.45)

where M̂(−),MRS
ij→ij represents the contribution due to multiple Reggeon exchanges. In

section 3.1 we are going to review how these terms can be calculated by solving iteratively
the Balitsky-JIMWLK equation, [23, 24, 26]. The resulting amplitude takes the form given
in eq. (2.10), and once the renormalisation scale is set as µ2 = −t, the amplitude coefficients
depend only on ε and on colour operators acting on the tree amplitude.

We point out that the definition in eq. (2.44) applies also to the signature-even amplitude.
The first few coefficients of the reduced even amplitude at NLL, as calculated in ref. [26], read:

M̂(+,1,0) = iπ rΓ

{ 1
2ε

}
T2
s−uMtree, (2.46a)

M̂(+,2,1) = iπ
r2

Γ
2

{
− 1

4ε2
}

[T2
t ,T2

s−u]Mtree, (2.46b)

M̂(+,3,2) = iπ
r3

Γ
3!

{ 1
8ε3 −

11ζ3
4

}
[T2

t , [T2
t ,T2

s−u]]Mtree, (2.46c)

M̂(+,4,3) = iπ
r4

Γ
4!

{
−
(
ζ3
8ε + 3ζ4

16

)
[T2

t , [T2
t ,T2

s−u]]T2
t −

1
16ε4 [T2

t , [T2
t , [T2

t ,T2
s−u]]]

}
Mtree,

(2.46d)
where we suppressed corrections that vanish at ε → 0. Note that the commutators
in eq. (2.46) involve an odd number of T2

s−u operators, consistently with the signature
symmetry (recall thatMtree is signature-odd). It can be shown (see eq. (4.50) in section 4.2.3)
that colour operators involving commutators correspond to non-planar diagrams, i.e., to
subleading contributions in the large-Nc limit. This allows one to conclude that, starting
from two-loops, the two-Reggeon MRS contribution to the NLL amplitude is non-planar
and, thus, also consistent with the known diagrammatic origin of Regge cuts [1, 3, 4].

3 From rapidity evolution to the NNLL odd amplitude

The calculation of the odd-signature amplitude at NNLL accuracy is particularly interesting,
because at this logarithmic accuracy one faces for the first time the contribution of a
Regge cut in the real part of the amplitude [23, 29, 30, 32–34]. This phenomenon is
associated with the exchange of three Reggeons, as shown by direct calculations to three
loops [33, 35]. By using the Balitsky-JIMWLK evolution equation which dictates the
evolution of one- and three-Reggeon states, we determine here the general form of the entire
NNLL tower,M(−,n,n−2).
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3.1 Amplitudes via Balitsky-JIMWLK evolution

As discussed in refs. [23, 35], two-parton scattering in the high-energy limit is conveniently
described within the shockwave formalism: fast particles moving in the (+) lightcone
direction, to which we refer to as the projectile, scatter against fast particles moving in the
(−) lightcone direction, referred to as the target. The fast projectile |ψi〉 appears as a set of
infinite Wilson lines [43, 44] at transverse position zk ≡ xk⊥, crossing the target 〈ψj | (seen
as a “shockwave”) at x− = 0: one has

|ψi〉 ∼ U(z1)⊗ · · · ⊗ U(zn), (3.1)

where ⊗ denote convolution, and a Wilson line at transverse position z reads

U(z) = P exp
[
igsTa

∫ +∞

−∞
dx+Aa+(x+, x−=0, z)

]
. (3.2)

In perturbation theory the unitary matrices U(z) are close to the identity, therefore they
can be parameterised in terms of a colour-adjoint field W a:

U(z) = eigs T
aWa(z) , (3.3)

which is identified as a source for Reggeised gluons. The projectile and target are thus
expanded in Reggeon fields:

|ψi〉 =
∞∑
n=1
|ψi,n〉 , (3.4)

where |ψi,n〉 represents a state of n Reggeons. In turn, the latter has an expansion in powers
of the strong coupling:

|ψi,n〉 = |ψi,n〉LO +
∞∑
k=1
|ψi,n〉N

kLO , (3.5)

which accounts for the non-trivial dynamics of the projectile. The leading-order projectile
is given in terms of a single Wilson line: in momentum space one has

|ψi〉LO = Ui(p), (3.6)

where Ui(p) is defined by means of Fourier transformation:

Ui(p) =
∫

[dz] e−ipz Ui(z), Ui(z) =
∫

[d̄p] eipz Ui(p), (3.7)

where Ui(z) is given by eq. (3.2) with the generator T identified as Ti, and we have further
defined the transverse-space integration measures

[dz] ≡ d2−2εz, and [d̄p] ≡ d2−2εp

(2π)2−2ε . (3.8)
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Upon expansion at fixed order in the strong coupling, this gives states with a definite
number of Reggeons, which, according to eq. (3.5) read [35]:

|ψi,1〉LO = igs Ta
i W

a(p), (3.9a)

|ψi,2〉LO = −g
2
s

2 Ta
iTb

i

∫
[d̄q]W a(q)W b(p−q), (3.9b)

|ψi,3〉LO = − ig
3
s

6 Ta
iTb

iTc
i

∫
[d̄q1][d̄q2]W a(q1)W b(q2)W c(p−q1−q2), (3.9c)

where the Reggeon fields W a(p) in momentum space are defined as

W a(p) =
∫

[dz] e−ipzW a(z), W a(z) =
∫

[d̄p] eipzW a(p). (3.10)

The non-trivial dependence on the transverse coordinates is parameterised in terms of
impact factors: at NLO one has for instance

|ψi,1〉NLO = igs Ta
i W

a(p) αs
π
D

(1)
i (p), (3.11a)

|ψi,2〉NLO = −g
2
s

2 Ta
iTb

i

∫
[d̄q] αs

π
ψ

(1)
i (p, q)W a(q)W b(p−q), (3.11b)

while at NNLO the single-Reggeon wavefunction is given by

|ψi,1〉NNLO = igs Ta
i W

a(p)
(
αs
π

)2
D

(2)
i (p). (3.12)

In these equations, D(n)
i (p) defines the single-Reggeon impact factors at n-th order in

perturbation theory, while ψ(n)
i (p, q) represent a two-Reggeon impact factor. On a technical

note, let us remark that the wavefunctions |ψi〉 defined above have the meaning of “collinear
subtracted” wavefunctions, i.e. they describe the effective coupling for the emission of a
given number of Reggeons, in which collinear divergences have been subtracted according to
|ψi〉 = Z−1

i |χi〉, where |χi〉 represents the full effective projectile-Reggeon(s) coupling with
unsubtracted collinear singularities. For this reason, the single-Reggeon impact factors D(n)

i

in eqs. (3.11a) and (3.12) coincide with the collinear-subtracted impact factors introduced in
eq. (2.34). We shall determine their values by matching matrix elements involving |ψi,1〉NLO

and |ψi,1〉NNLO, defined in eqs. (3.11a) and (3.12), to the full amplitude at one and at two
loops, respectively.

The n-Reggeon states |ψi,n〉 depend on the transverse momenta of the Reggeons, but
not on the centre-of-mass energy. In this formulation the energy dependence enters through
the fact that infinite Wilson lines develop rapidity divergences. These may be regulated by
introducing a cutoff, which can be identified with L of eq. (2.9) [23]. The dependence on L
is encoded in a rapidity evolution equation for the projectile (and the target)

− d

dL
|ψi〉 = H |ψi〉 , (3.13)

where H is the Balitsky-JIMWLK Hamiltonian [15–19]. A key feature of eq. (3.13) is the
non-linearity of H: evolution of the full projectile |ψi〉 ∼ U(z1)⊗ · · · ⊗ U(zn) generates an

– 18 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
3

increasing number of Wilson lines U(zj), eventually leading to the phenomenon of gluon
saturation. However, in applications to partonic scattering processes as considered in this
paper, it is appropriate to take the limit of dilute projectile and target [23, 35], in which case
the Balitsky-JIMWLK Hamiltonian acts on states with a given number of Reggeon fields W .
In this perturbative regime, H is diagonal to leading order in g2

s ; the non-linearity of H
manifests itself at higher orders in the coupling, producing transitions between states with
different number of Reggeon fields: a transition k → k + 2n is of order g2(1+n)

s . Also, note
that, as a consequence of the signature symmetry, only transitions of the type k → k ± 2
are allowed; transitions of the type k → k ± 1 are forbidden, because they would induce
mixing between the even and odd parts of the amplitude. In short, the r.h.s. of eq. (3.13)
has the form

H


W

WW

WWW

· · ·

 ≡

H1→1 0 H3→1 . . .

0 H2→2 0 . . .

H1→3 0 H3→3 . . .

· · · · · · · · · · · ·




W

WW

WWW

· · ·



'


g2
s 0 g4

s . . .

0 g2
s 0 . . .

g4
s 0 g2

s . . .

· · · · · · · · · · · ·




W

WW

WWW

· · ·

 (3.14)

where the non-vanishing entries in the second line display the perturbative order at which
each transition Hamiltonian Hk→l starts to contribute. We will see in section 3.2 that for
the calculation of the odd amplitude at NNLL accuracy, only the k → k, 1→ 3, and 3→ 1
transitions Hamiltonians are needed. They have been calculated [35]: the diagonal k → k

transitions, with k > 1 are entirely given in terms of the leading-order BFKL equation, while
the 1→ 3, and 3→ 1 transitions are extracted from the leading-order Balitsky-JIMWLK
equation. In momentum space the k → k Hamiltonian reads

Hk→k = Ak→k +Bk→k, (3.15)

where

Ak→k = −
∫

[dp]CA αg(p2, µ2)W a(p) δ

δW a(p) , (3.16)

Bk→k = αs(µ2)
∫

[d̄q][dp1][dp2]H22(q; p1, p2)W x(p1+q)W y(p2−q)

· (F xF y)ab δ

δW a(p1)
δ

δW b(p2) , (3.17)

with (F x)ab ≡ ifaxb and the kernel H22(q; p1, p2) reads

H22(q; p1, p2) = (p1 + p2)2

p2
1p

2
2
− (p1 + q)2

p2
1q

2 − (p2 − q)2

q2p2
2

. (3.18)

Notice that the form of H22 implies that Bk→k is scale-invariant in exactly two transverse
dimensions. Indeed, this is a consequence of the fact that the evolution of multiple Reggeon
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states up to NNLL accuracy is completely determined by the LO Balitsky-JIMWLK
Hamiltonian, which is itself invariant under conformal transformations [23]. This simple
consideration allows us to anticipate that also the other terms in eq. (3.14), such as H1→3
and H3→1, are scale invariant. While we can rely on this property for the calculation of
the odd amplitude at NNLL accuracy, let us remark that the same will not be true for the
even amplitude at NNLL accuracy, which requires the Balitsky-JIMWLK Hamiltonian at
NLO, [88–93], for which scale-invariance is broken.

In momentum space the 1→ 3 Hamiltonian reads

H1→3 = α2
s(µ2)

∫
[d̄p1][d̄p2][dp] Tr[F aF bF cF d]

· W b(p1)W c(p2)W d(p3)H13(p1, p2, p3) δ

δW a(p) , (3.19)

where p3 = p− p1 − p2 and the kernel is

H13(p1, p2, p3) = 2π
3 Sε(µ2)

∫
[d̄q]

[
(p1+p2)2

q2(p1+p2−q)2 + (p2+p3)2

q2(p2+p3 − q)2

− (p1+p2+p3)2

q2(p1+p2+p3−q)2 −
p2

2
q2(p2−q)2

]
(3.20)

= rΓ
3ε

[(
µ2

(p1+p2+p3)2

)ε
+
(
µ2

p2
2

)ε
−
(

µ2

(p1+p2)2

)ε
−
(

µ2

(p2+p3)2

)ε]
,

where Sε(µ2) =
(

µ2

4πe−γE

)ε
. The 3→ 1 transition can be obtained by symmetry, by requiring

that the two matrix elements(
〈WWW |H

)
|W 〉 = 〈WWW |

(
H |W 〉

)
,

are equal, yielding [35]

H3→1 = α2
s(µ2)

∫
[dp1][dp2][dp3] Tr[F aF bF cF d]W d(p1+p2+p3)

× (−1)(p1+p2+p3)2

p2
1p

2
2p

2
3

H13(p1, p2, p3) δ

δW a(p1)
δ

δW b(p2)
δ

δW c(p3) . (3.21)

To summarise, a scattering amplitude in the high-energy limit is given as an expectation
value between states with fixed number of Reggeon fields W evolved to equal rapidity, by
means of eq. (3.13):

i(ZiZj)−1

2s Mij→ij = 〈ψj |e−HL|ψi〉 . (3.22)

Note that this equation takes into account the fact that collinear divergences are removed
from the projectile and the target, as discussed following eq. (3.12). Considering the reduced
amplitude introduced in eq. (2.44), rapidity evolution is governed by a suitably-modified
reduced Hamiltonian. Starting from eq. (2.44) and using the amplitude definition in eq. (3.22)
we define

i

2sM̂ = e−T2
t αg(t)L 〈ψj |e−HL|ψi〉 ≡ 〈ψj |e−ĤL|ψi〉 . (3.23)
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The explicit form of Ĥ is found by noticing that the Hamiltonian H in eq. (3.23) is given
by a matrix operator in the space labelled by the Reggeon number, as defined in eq. (3.14).
In this space, the subtraction term T2

t αg must be interpreted as a diagonal matrix, such
that one has

Ĥk→k+2n = Hk→k+2n + δn0T2
tαg(t). (3.24)

After evolution has been performed, one is left with an inner product between states
with a fixed number of Reggeon fields at equal rapidity. Such matrix elements must be
evaluated in full QCD, as discussed in section 2.3 of ref. [35]. Following refs. [23, 35] we
define the Reggeon propagator as

G11′ ≡ 〈W1|W1′〉 = i
δa1a′1

p2
1
δ(2−2ε)(p1 − p′1) , (3.25)

with no O(g2
s) corrections, along with a vanishing overlap between states with different

numbers of Reggeon at equal rapidity, namely, e.g.,

〈W1W2W3|W4〉 = 〈W4|W1W2W3〉 = 0 . (3.26)

While other definitions of the inner product are possible, including higher-order corrections
in eqs. (3.25) and (3.26) would also result in a modification of the impact factors. Given
that the latter are determined by matching matrix elements involving eqs. (3.11a) and (3.12)
to the full amplitude, the final result would not be altered by such alternative definitions.

Having fixed the inner product at equal rapidity, multi-Reggeon correlators are simply
obtained by Wick contractions:

〈W1W2|W1′W2′〉 = G11′G22′ +G12′G21′ +O(g2
s),

〈W1W2W3|W1′W2′W3′〉 = G11′G22′G33′ + (5 permutations) +O(g2
s),

etc. (3.27)

We now have all the definitions necessary to derive an all-order expression for the odd
amplitude at NNLL accuracy, to be discussed in the next section.

3.2 The odd reduced amplitude at n loops

We are now ready to derive the general form of the all-order NNLL reduced amplitude by
expanding eq. (3.23). First of all, we notice that, as discussed after eq. (3.13), the even
and odd amplitudes are orthogonal under the action of Ĥ, as a consequence of signature
symmetry. Therefore eq. (3.23) splits as

i

2sM̂ij→ij
Regge−−−→ i

2s
(
M̂(+)

ij→ij + M̂(−)
ij→ij

)
≡ 〈ψ(+)

j | e
−ĤL |ψ(+)

i 〉+ 〈ψ(−)
j | e

−ĤL |ψ(−)
i 〉 ,
(3.28)

where the notation |ψ(+)
i 〉, |ψ

(−)
i 〉 indicates a restriction to states with an even or odd

number of Reggeons W , respectively, see eq. (3.9). In this paper we focus on the odd
contribution to the amplitude at NNLL, i.e. we consider directly the second term in (3.28),
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which involves only states with an odd number of Reggeons. It is useful to expand this term
explicitly for the first few orders. At leading order in the strong coupling one obviously has

i

2sM̂
(−) tree
ij→ij = 〈ψj,1|ψi,1〉LO, (3.29)

where the superscript LO indicates that the target and projectile are taken at leading order,
as defined in eq. (3.9). Next, the expansion at first and second order gives

i

2sM̂
(−) 1-loop
ij→ij = −L 〈ψj,1| Ĥ1→1 |ψi,1〉LO + 〈ψj,1|ψi,1〉NLO, (3.30a)

i

2sM̂
(−) 2-loops
ij→ij = L2

2 〈ψj,1| (Ĥ1→1)2 |ψi,1〉LO − L 〈ψj,1| Ĥ1→1 |ψi,1〉NLO

+ 〈ψj,3|ψi,3〉LO + 〈ψj,1|ψi,1〉NNLO , (3.30b)

where the superscripts NLO and NNLO indicate that one needs to take expectation
values at NLO and NNLO, respectively, using the expressions for the target and projectile
wavefunction provided in eqs. (3.11a) and (3.12). Here, for illustrative purposes, we have
listed all terms that follows from the formal expansion of the second term in eq. (3.28),
taking into account eq. (3.26), but without any specific assumption about Ĥ. However, we
recall that the 1→ 1 transition is given, according to eqs. (3.15) and (3.16), by the Regge
trajectory H1→1 = −CA αg(t). Inspecting eq. (3.24) we see that Ĥ1→1 =

(
T2
t − CA

)
αg(t)

and then we deduce

〈ψj,1| Ĥ1→1O |ψi,n〉 = 〈ψj,n|OĤ1→1 |ψi,1〉 = 0, (3.31)

where O is a general operator mediating between single and n-Reggeon states. We use
the fact that any transition between these states is proportional (in colour space) to the
tree-level (which we explain in section 4.2.2) and that we can commute T2

t through the
bracket and apply eq. (2.20). Thus, eq. (3.30) simplifies to

i

2sM̂
(−) 1-loop
ij→ij = 〈ψj,1|ψi,1〉NLO, (3.32a)

i

2sM̂
(−) 2-loops
ij→ij = 〈ψj,3|ψi,3〉LO + 〈ψj,1|ψi,1〉NNLO. (3.32b)

Taking now into account eq. (3.26) as well as eq. (3.31), expansion at third order gives

i

2sM̂
(−) 3-loops
ij→ij = −L

[
〈ψj,3| Ĥ3→3 |ψi,3〉+ 〈ψj,3| Ĥ1→3 |ψi,1〉+ 〈ψj,1| Ĥ3→1 |ψi,3〉

]LO

+ 〈ψj,3|ψi,3〉NLO + 〈ψj,1|ψi,1〉(N
3LO). (3.33)

Here we are interested to determine the NNLL contribution to M̂(−)
ij→ij to all orders.

These terms are of order αnsLn−2, thus their contribution starts at two loops. Inspecting
eq. (3.32) and (3.33) we see that the NNLL terms read

i

2sM̂
(−,2,0)
ij→ij = 〈ψj,3|ψi,3〉LO + 〈ψj,1|ψi,1〉NNLO, (3.34a)

i

2sM̂
(−,3,1)
ij→ij = −

[
〈ψj,3| Ĥ3→3 |ψi,3〉+ 〈ψj,3| Ĥ1→3 |ψi,1〉+ 〈ψj,1| Ĥ3→1 |ψi,3〉

]LO
, (3.34b)
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where we used the notation for the amplitude coefficients introduced in eq. (2.10). In general,
at n-loop, the NNLL contribution to the odd amplitude is proportional to Ln−2, which is
obtained from n − 2 repeated actions of the Hamiltonian H in eq. (3.23). The diagonal
transitions Hk→k in eq. (3.15) are O(αs) while next-to-diagonal transitions Hk→k±2n with
n = 1 in eq. (3.19) are O(α2

s). Noting that |ψi,n〉 is O(gn−1
s ) we immediately find four

different types of contributions of the form O(αnsLn−2)

〈ψj,3|Ĥk
3→3|ψi,3〉 , 〈ψj,1|Ĥ3→1 Ĥ

k−2
3→3 Ĥ1→3|ψi,1〉 ,

〈ψj,1|Ĥ3→1 Ĥ
k−1
3→3|ψi,3〉 , 〈ψj,3|Ĥk−1

3→3 Ĥ1→3|ψi,1〉 .
(3.35)

These constitute the NNLL tower. The two transitions in the second line of eq. (3.35) are
related by target-projectile symmetry.

In order to express the contributions due to eq. (3.35) in a compact form, we find useful
to make the power-counting in the strong coupling manifest, by introducing normalised
Reggeon states |in〉 and a normalised reduced Hamiltonian H̃, defined as

(rΓαs)(n−1)/2 |in〉 ≡ |ψi,n〉 ,(
αs
π
rΓ

)1+n
πn H̃k→k+2n ≡ Ĥk→k+2n = Hk→k+2n + δn0T2

tαg(t) ,
(3.36)

where we introduce rescalings by the constant rΓ defined in eq. (2.7) and we recall the
relation between Ĥ and H according to eq. (3.24). In terms of these quantities the all-order
contribution to the odd amplitude at NNLL accuracy reads

i

2sM̂
(−),NNLL
ij→ij = π2

[ ∞∑
`=0

(−L)`
`!

(
αs
π
rΓ

)`+2
〈j3|H̃`

3→3|i3〉

+
∞∑
`=1

(−L)`
`!

(
αs
π
rΓ

)`+2 [
〈j1|H̃3→1H̃

`−1
3→3|i3〉+ 〈j3|H̃`−1

3→3H̃1→3|i1〉
]

+
∞∑
`=2

(−L)`
`!

(
αs
π
rΓ

)`+2
〈j1|H̃3→1H̃

`−2
3→3H̃1→3|i1〉

]LO
+
(
αs
π

)2
〈j1|i1〉NNLO.

(3.37)

One can check that this expression gives eqs. (3.34a) and (3.34b), at two- and three-loops. It
is interesting to notice that the whole NNLL tower is described in terms of the leading-order
formalism, with the sole exception of the two-loop contribution 〈j1|i1〉NNLO. The latter has
been extracted from two-loop amplitudes in ref. [35], and does not enter the calculation of
reduced amplitudes to higher orders. All remaining NNLL terms are found by expanding the
projectile and the target in states with either one or three Reggeons, according to eqs. (3.4)
and (3.9), and applying the Hamiltonians H̃3→3, H̃3→1 and H̃1→3, given in eq. (3.36) and
with Hk→k+2n of section 3.1. Finally, one is left with the inner product of Reggeon fields
at leading order, which is evaluated as in eq. (3.25). Apart from 〈j1|i1〉NNLO, eq. (3.37) is
therefore universal, in that it applies in any gauge theory, fully governed by the leading
order Balitsky-JIMWLK evolution of infinite Wilson lines in eq. (3.13).
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Eq. (3.37) has characteristic analytic properties, that are interesting to highlight at
this point. First of all, notice that the rescaling adopted in eq. (3.36) is particularly
useful, because it manifests the fact that (with the exception of the two-loop single-
Reggeon contribution) the NNLL amplitude is proportional to a factor of π2 to all orders
in perturbation theory. Furthermore, owing to the form of the Hamiltonian presented
in section 3.1, the amplitude has maximal, uniform transcendental weight, when the
dimensional regularisation parameter ε is counted as having transcendental weight −1. This
will become apparent in sections 4.3 and 5, where explicit results for the loop integrals and
matrix elements involved in the calculation of eq. (3.37) at fixed order will be presented.

4 Computation of the NNLL transition amplitudes

In this section we expand eq. (3.37) up to four loops and compute the transition amplitudes
explicitly. Each contribution to the transition amplitudes has a transparent diagrammatic
interpretation, presented in sections 4.1.1 through 4.1.3 for two, three and four loops,
respectively. Subsequently, we will discuss the calculation of the colour structure and of the
integrals associated to each diagram, respectively in section 4.2 and in section 4.3.

4.1 Diagrammatic interpretation of the transition amplitudes

4.1.1 Two loops

The two-loop transition amplitude is given in eq. (3.30b). Here we focus on the 3 → 3
transition, which is obtained by contracting the Reggeons emitted by target and projectile,
without any action of the Hamiltonian operator

〈ψj,3|ψi,3〉 = i g6
s C(2)

33 S
2
ε (µ2)

∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

, (4.1)

where an MS scale factor Sε(µ2) =
(

µ2

4πe−γE

)ε
is introduced for each loop. The coupling

constant gs is evaluated in the MS scheme at the renormalisation scale µ2 and in this section,
whenever not specified, both gs and αs are assumed to be defined at µ2. In eq. (4.1) we
define the integration measure

[d̄k] = dd−2k

(2π)d−2 , [d̄k1d̄k2d̄k3]δ = [d̄k1][d̄k2][d̄k3] (2π)d−2 δ(d−2)(p− k1 − k2 − k3). (4.2)

The colour factor of eq. (4.1) is

C(2)
33 = 1

6
(
T{a,b,c}+

)
i

(
T{a,b,c}+

)
j
, (4.3)

where we define the shorthand notation Ta1
i . . .Tan

i = (Ta1,...,an)i and(
T{a1,...,an}+

)
i

= {Ta1
i ,T

a2
i , . . . ,T

an
i }+ = 1

n!
∑
σ∈Sn

Taσ(1)
i . . .Taσ(n)

i . (4.4)

The integrand appearing in eq. (4.1) is constructed with three free Reggeon propagators,
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Ta Tb Tc

Ta Tb Tc

k
1

k
2

k
3

Figure 2. A two-loop diagram representing the leading contribution to the amplitude due to triple
Reggeon exchange. Note that the diagram drawn is just one of the six distinct orderings in eq. (4.3).

with a fixed total transverse momentum p. Therefore, the transition amplitude in eq. (4.1)
is represented diagrammatically in figure 2 by exchanges of three Reggeons. These need to
be taken in all possible orderings. Finally, in the notation of eq. (3.37) we have

〈j3|i3〉 = 1
α2
sr

2
Γ
〈ψj,3|ψi,3〉 , (4.5)

which fixes the leading-order (` = 0) contribution to this tower of logarithms.

4.1.2 Three loops

According to eq. (3.37), three-loop NNLL transitions either involve the evolution of three-
Reggeon states 〈j3| and |i3〉, by means of a single application of the Hamiltonian H̃3→3, or
transitions between single- and triple-Reggeon states, governed by H̃1→3 and H̃3→1. Let us
begin by considering the former contributions, for which we get

〈j3|H̃3→3|i3〉 = π

α3
sr

3
Γ

[
〈ψj,3|H3→3|ψi,3〉+ αg(t, µ2)〈ψj,3|T2

t |ψi,3〉
]
, (4.6)

where the normalisation factor follows from the rescaling in eq. (3.36) and H3→3 is defined
according to eqs. (3.15), (3.16) and (3.17), where αg(t, µ2) is written in eq. (2.6). The last
term in eq. (4.6) is immediately proportional to the two-loop result

αg(t, µ2)〈ψj,3|T2
t |ψi,3〉 = αg(t, µ2) T2

t 〈ψj,3|ψi,3〉, (4.7)

where 〈ψj,3|ψi,3〉 is given in eq. (4.1). This relation stems from the fact that T2
t may be

interpreted as acting on either the projectile or the target, rather than on simultaneously
on both. The first term in eq. (4.6) involves evolution of the three-Reggeon state

〈ψj,3|H3→3|ψi,3〉 = −3i g6
s S

2
ε (µ2)CA C(2)

33

∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

αg(k2
1, µ

2)

+ i αs g
6
s S

3
ε (µ2) C(3)

33

∫
[d̄q] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

H22(q; k1 − q, k2 + q) ,
(4.8)

where the two terms correspond respectively to the two components, eqs. (3.16) and (3.17),
in the H3→3 Hamiltonian, and the new three-loop colour factor arising in the latter, C(3)

33 , is

C(3)
33 = (F xF y)ab

(
T{a,b,c}+

)
i

(
T{x,y,c}+

)
j
. (4.9)
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Figure 3. Diagrammatic representation of the first term (a) and of the second term (b) in eq. (4.8).

A diagrammatic representation of both the colour structure and the momentum flow of the
loop integrals of each of the two contributions in eq. (4.8) is shown respectively in figures 3a
and 3b. The former differs from the two-loop transition amplitude of figure 2 only by the
insertion of the Regge trajectory αg(k2

1, µ
2) in the integrand. In turn, figure 3b depicts the

action of a gluon exchange between the two Reggeons, where the emission and absorption
of the gluon manifests in eq. (4.9) as an adjoint generator, F x and F y, respectively.

As mentioned in the beginning of this section, at this loop order, there are also
contributions involving transitions between one and three Reggeon states, given by the
second line of eq. (3.37). These read

〈j1|H̃3→1|i3〉+ 〈j3|H̃1→3|i1〉 = π

α3
sr

3
Γ

[
〈ψj,1|H3→1|ψi,3〉+ 〈ψj,3|H1→3|ψi,1〉

]
. (4.10)

By using the expressions of the Hamiltonian H3→1 of eq. (3.21), we find that the transition
amplitude 〈ψj,1|H3→1|ψi,3〉 is

〈ψj,1|H3→1|ψi,3〉 = −iα2
s g

4
s S

3
ε

(
µ2
)

C(3)
13

∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

H13 (k1, k2, k3) , (4.11)

where

C(3)
13 = Tr

[
F aF bF cF d

] (
T{a,b,c}+

)
i

(
Td
)
j
. (4.12)

The diagrammatic representation of eq. (4.11) is given in figure 4a. We obtain the sym-
metric contribution 〈ψj,3|H1→3|ψi,1〉 by replacing i ↔ j in eq. (4.12), which corresponds
diagrammatically to applying target-projectile symmetry on figure 4a, giving figure 4b.
Therefore, summing 〈ψj,1|H3→1|ψi,3〉 and 〈ψj,3|H1→3|ψi,1〉 we finally obtain

〈ψj,1|H3→1|ψi,3〉+ 〈ψj,3|H1→3|ψi,1〉 =

− iα2
s g

4
s S

3
ε (µ2)

(
C(3)

13 + C(3)
31

) ∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

H13 (k1, k2, k3) ,
(4.13)

with

C(3)
31 = Tr

[
F aF bF cF d

] (
T{a,b,c}+

)
j

(
Td
)
i
. (4.14)
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Figure 4. Diagrammatic representation of eq. (4.11). Note that the colour factor in eq. (4.12)
involves a trace of four generators in the adjoint representation, symmetrically summed over six
different orderings.

4.1.3 Four loops

As shown in the square bracket of eq. (3.37), the NNLL reduced amplitude at four loops
includes (i) 3→ 3 transitions, which connect three-Reggeon states in the target |ψi,3〉 and
in the projectile 〈ψj,3| involving two insertions of the Hamiltonian H̃3→3; (ii) 3 → 1 and
1→ 3 transitions, connecting |ψi,3〉 with 〈ψj,1| and |ψi,1〉 with 〈ψj,3|, respectively; and (iii)
1→ 1 transitions from |ψi,1〉 to 〈ψj,1|, which are mediated by three-Reggeon states. Below,
we discuss the interpretation of each of these in turn in terms of diagrams, integrals and
colour factors.

The 3 → 3 transition at four loops is generated by iterating the Hamiltonian H̃3→3
twice. Applying the rescaling of eq. (3.36) and the subtraction defined in eq. (3.23) one has

〈j3|H̃2
3→3|i3〉 = π2

(αsrΓ)4

[
〈ψj,3|H2

3→3|ψi,3〉+ αg(t, µ2)〈ψj,3|
(
T2
t H3→3 +H3→3T2

t

)
|ψi,3〉

+ α2
g(t, µ2) 〈ψj,3|

(
T2
t

)2
|ψi,3〉

]
. (4.15)

The first term of eq. (4.15) is the most complicated contribution: by writing the Hamiltonian
H3→3 according to eq. (3.15) we find

〈ψj,3|H2
3→3|ψi,3〉 = 〈ψj,3|B2

3→3|ψi,3〉+ 〈ψj,3|B3→3A3→3 +A3→3B3→3|ψi,3〉+ 〈ψj,3|A2
3→3|ψi,3〉,

(4.16)
where we distinguish between terms involving interactions between Reggeons, generated by
B3→3 of eq. (3.17), from insertions of the one-loop Regge trajectory αg on a single Reggeon,
generated by A3→3 of eq. (3.16). Diagrammatically, as we have already seen at three loops,
the action of B3→3 is represented by the addition of a rung in the triple-Reggeon ladders,
as in figure 3b, while A3→3 corresponds to an insertion of the trajectory αg on one of the
Reggeons, as in figure 3a. Eq. (4.16) represents two such insertions in any combination.
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Figure 5. Diagrammatic representation of a) the double ladder in eq. (4.18a) and b) the mixed
ladder in eq. (4.18b).

The first term in eq. (4.16) reads

〈ψj,3|B2
3→3|ψi,3〉 = 〈ψj,3|B2

3→3|ψi,3〉DL + 〈ψj,3|B2
3→3|ψi,3〉ML, (4.17)

and includes two distinct contributions

〈ψj,3|B2
3→3|ψi,3〉DL = 2i α2

s g
6
s S

4
ε (µ2) CDL

∫
[d̄q1d̄q2] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

H22(q2; k1 − q2, k2 + q2)

×H22(q1; k1 − q1 − q2, k2 + q1 + q2), (4.18a)

〈ψj,3|B2
3→3|ψi,3〉ML = 4i α2

s g
6
s S

4
ε (µ2) CML

∫
[d̄q1d̄q2] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

H22(q2; k2 − q2, k3 + q2)

×H22(q1; k1 − q1, k2 + q1 − q2), (4.18b)

which correspond respectively to the two possible ways of adding a second rung to the
ladder, depicted in figure 5a and figure 5b.

The colour structures CDL and CML, associated to the double ladder diagram in
figure 5a and to the mixed ladder diagram in figure 5b respectively, are

CDL = (F x1F y1)ab (F x2F y2)x1y1
(
T{a,b,c}+

)
i

(
T{x2,y2,c}+

)
j
, (4.19a)

CML = (F x1F y1)ab (F x2F y2)y1c
(
T{a,b,c}+

)
i

(
T{x2,y2,x1}+

)
j
. (4.19b)

The remaining terms in eq. (4.16) are

〈ψj,3|B3→3A3→3 +A3→3B3→3|ψi,3〉 = −2i g6
sαs S

3
ε (µ2)CAC(3)

33

∫
[d̄q] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

×
{
H22(q; k1 − q, k2 + q)

[
αg
(
k2

1, µ
2
)

+ αg
(
k2

2, µ
2
)

+ αg
(
k2

3, µ
2
) ]}

,

(4.20a)

〈ψj,3|A2
3→3|ψi,3〉 = 3i g6

s S
2
ε (µ2)C2

AC(2)
33

∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

[ (
αg
(
k2

1, µ
2
))2

+ 2αg
(
k2

1, µ
2
)
αg
(
k2

2, µ
2
) ]
.

(4.20b)
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Figure 6. Diagrammatic representation of the first (a) and second (b) terms of eq. (4.24).

We compute 〈ψj,3|H2
3→3|ψi,3〉 by adding eqs. (4.18a), (4.18b), (4.20a) and (4.20b). In order

to calculate the reduced amplitude 〈ψj,3|H̃2
3→3|ψi,3〉, according to eq. (4.15), we add

αg(t, µ2)〈ψj,3|
(
T2
t H3→3 +H3→3T2

t

)
|ψi,3〉 = 2αg(t, µ2) T2

t 〈ψj,3|H3→3|ψi,3〉, (4.21a)

α2
g(t, µ2) 〈ψj,3|

(
T2
t

)2
|ψi,3〉 = α2

g(t, µ2)
(
T2
t

)2
〈ψj,3|ψi,3〉, (4.21b)

where 〈ψj,3|H3→3|ψi,3〉 and 〈ψj,3|ψi,3〉 are given in eq. (4.1) and in eq. (4.8), respectively.
In eqs. (4.21a) and (4.21b) we notice that T2

t commutes with the application of H3→3 and
with the contraction of target and projectile, as in eq. (4.7).

The 3→ 1 and 1→ 3 transitions at four loops read

〈j1|H̃3→1H̃3→3|i3〉 = π2

α4
sr

4
Γ
〈ψj,1|H3→1 (H3→3 −H1→1) |ψi,3〉, (4.22a)

〈j3|H̃3→3H̃1→3|i1〉 = π2

α4
sr

4
Γ
〈ψj,3| (H3→3 −H1→1)H1→3|ψi,1〉. (4.22b)

We decompose each transition amplitude into three contributions

〈ψj,1|H3→1 (H3→3 −H1→1) |ψi,3〉 = 〈ψj,1|H3→1B3→3|ψi,3〉+ 〈ψj,1|H3→1A3→3|ψi,3〉
+ αg(t, µ2)〈ψj,1|H3→1 T2

t |ψi,3〉,
(4.23a)

〈ψj,3| (H3→3 −H1→1) H1→3|ψi,1〉 = 〈ψj,3|B3→3H1→3|ψi,1〉+ 〈ψj,3|A3→3H1→3|ψi,1〉
+ αg(t, µ2)〈ψj,3|T2

t H1→3|ψi,1〉.
(4.23b)

The amplitudes in eqs. (4.23a) and (4.23b) are related by target-projectile symmetry. Below
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we discuss the former equation. The first term in eq. (4.23a) gives

〈ψj,1|H3→1B3→3|ψi,3〉 =− 2iα3
s g

4
s S

4
ε (µ2) C(4),A

13

∫
[d̄q] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

H13 (k3, k1, k2)

×H22 (q; k1 − q, k3 + q)

− iα3
s g

4
s S

4
ε (µ2) C(4),B

13

∫
[d̄q] [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

H13 (k1, k2, k3)

×H22 (q; k1 − q, k3 + q) ,

(4.24)

where the colour factors C(4),A
13 and C(4),B

13 are

C(4),A
13 = (F xF y)ac Tr

[
F xF y

(
F bF d + F dF b

)] (
T{a,b,c}+

)
i

(
Td
)
j
, (4.25a)

C(4),B
13 = (F xF y)ac

(
Tr
[
F xF bF yF d

]
+ Tr

[
F xF dF yF b

]) (
T{a,b,c}+

)
i

(
Td
)
j
. (4.25b)

Diagrammatically, the two terms on the right-hand side of eq. (4.24) are represented in
figures 6a and 6b, respectively. These diagrams are obtained by dressing the three-loop
transition amplitude 〈ψj,1|H3→1|ψi,3〉, depicted in figure 4a, with one additional rung.

The second term in eq. (4.23a) is

〈ψj,1|H1→3A3→3|ψi,3〉 = iαsg
6
s S

3
ε (µ2)CAC(3)

13

∫ [d̄k1d̄k2d̄k3]
k2

1k
2
2k

2
3

H13 (k1, k2, k3)

×
[
2αg

(
k2

1, µ
2
)

+ αg
(
k2

2, µ
2
)]
,

(4.26)

where we used the symmetry of H13 (k1, k2, k3) of eq. (3.20) under k1 ↔ k3. Note that
eq. (4.26) features the same colour factor C(3)

13 as the three-loop diagram, multiplied by CA.
The last term in eq. (4.23a) is proportional to the three-loop transition amplitude

αg(t, µ2)〈ψj,1|T2
t H3→1|ψi,3〉 = αg(t, µ2) T2

t 〈ψj,1|H1→3|ψi,3〉, (4.27)

where 〈ψj,1|H3→1|ψi,3〉 = (αsrΓ)3

π 〈j1|H̃3→1|i3〉 is obtained from eq. (4.11).
Target-projectile symmetry implies that the amplitudes in eq. (4.23b), namely the

terms 〈ψj,3|B3→3H1→3|ψi,1〉, 〈ψj,3|A3→3H1→3|ψi,1〉 and 〈ψj,3|T2
tH1→3|ψi,1〉, are obtained

from eqs. (4.24), (4.26) and (4.27), respectively, by replacing colour factors C(3)
13 → C(3)

31 ,
defined in eq. (4.14), and C(4),A

13 → C(4),A
31 , C(4),B

13 → C(4),B
31 , with

C(4),A
31 = (F xF y)ac Tr

[
F xF y

(
F bF d + F dF b

)] (
T{a,b,c}+

)
j

(
Td
)
i
, (4.28a)

C(4),B
31 = (F xF y)ac

(
Tr
[
F xF bF yF d

]
+ Tr

[
F xF dF yF b

]) (
T{a,b,c}+

)
j

(
Td
)
i
. (4.28b)

The 1→ 1 transition mediated by three Reggeon states arises for the first time
at four loops where it takes the form

〈j1|H̃3→1H̃1→3|i1〉 = π2

α4
s r

4
Γ

[
〈ψj,1|H3→1H1→3|ψi,1〉D + 〈ψj,1|H3→1H1→3|ψi,1〉X

]
, (4.29)

– 30 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
3

Tb
j

Ta
i

(a)

Tb
j

Ta
i

(b)

Figure 7. Diagrammatic representation of a) 〈ψj,1|H3→1 H1→3|ψi,1〉D in eq. (4.30a) and b)
〈ψj,1|H3→1 H1→3|ψi,1〉X in eq. (4.30b).

where we have distinguished two contributions characterised by different colour structures
and integrals. These are defined as

〈ψj,1|H3→1H1→3|ψi,1〉D = iα4
sg

2
s S

4
ε (µ2) C(4),D

3113

∫ [d̄k1d̄k2d̄k3]δ
k2

1k
2
2k

2
3

[
H13 (k1, k2, k3)

]2
, (4.30a)

〈ψj,1|H3→1H1→3|ψi,1〉X = iα4
sg

2
s S

4
ε (µ2) C(4),X

3113

×
∫ [d̄k1d̄k2d̄k3]δ

k2
1k

2
2k

2
3

[
H13 (k1, k2, k3) H13 (k3, k1, k2)

]
,

(4.30b)

with colour factors

C(4),D
3113 = Tr

[
F aF cF dF e

]
Tr
[
F bF cF dF e + F bF eF dF c

] (
Ta
)
i

(
Tb
)
j
, (4.31a)

C(4),X
3113 = Tr

[
F bF cF eF d + F bF eF cF d + F bF dF eF c + F bF dF cF e

]
× Tr

[
F aF cF dF e

] (
Ta
)
i

(
Tb
)
j
.

(4.31b)

C(4),D
3113 and C(4),X

3113 correspond to the diagrams in figures 7a and 7b, respectively.
All the transition amplitudes contributing to the NNLL reduced amplitude through

four loops are written in terms of a handful of colour structures and of integrals involving
H22, H13 and αg as kernels. In sections 4.2 and 4.3 we will describe the techniques we used
to compute colour structures and integrals, respectively.

4.2 Colour structure

The definitions of the colour factors in section 4.1 are independent of the representations of
external particles, therefore they equally apply to quark-quark scattering, to gluon-gluon
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scattering and to quark-gluon scattering. Each colour structure can be easily evaluated
by specialising the generators Ti and Tj to the representation of the projectile and the
target, respectively, and by picking a colour basis for each process, such as the t-channel
bases given in ref. [32]. However, an explicit basis would obscure the universal features
of the amplitudes, such as the structure of their infrared divergences and the universality
of the Regge limit. Therefore, we need specialised techniques to compute colour factors
for general representations of the external particles. In sections 4.2.1 and 4.2.2, we will
briefly review the fundamental technique introduced in ref. [35] and compute the colour
structures of the two-loop and three-loop reduced amplitudes. We will see, however, that
one must generalise this method in order to compute the four-loop colour factors introduced
in section 4.1.3. To this end, in section 4.2.3 we derive and apply new identities that allow
us to provide explicit expressions for all colour factors through four loops without specifying
the representation of the scattering particles. Eventually, every colour structure will be
written in terms of operators T2

t and T2
s−u, along with quartic Casimir invariants, acting

on the colour structure of the tree-level amplitude, Ta
iTa

j .

4.2.1 Colour structure at two loops

At two loops, the reduced amplitude is characterised by the colour structure C(2)
33 defined

in eq. (4.3). In that expression, the contractions of colour generators may be evaluated
in a straightforward way, for any representation of the projectile and the target. Indeed,
contractions of outermost generators on the top and on the bottom line may be written in
terms of the colour channel operators T2

t and T2
s−u defined in eqs. (2.17) and (2.22). As

described in ref. [35], we have(
Ta
i Tb1

i Tb2
i . . .

) (
Ta
j Tc1

j Tc2
j . . .

)
=
(
Tb1
i Tb2

i . . .T
a
i

) (
Tc1
j Tc2

j . . .T
a
j

)
= 1

2
[
T2
s−u −

T2
t

2
] (

Tb1
i Tb2

i . . .
) (

Tc1
j Tc2

j . . .
)
,

(4.32a)

(
Ta
i Tb1

i Tb2
i . . .

) (
Tc1
j Tc2

j . . .T
a
j

)
=
(
Tb1
i Tb2

i . . .T
a
i

) (
Ta
jT

c1
j Tc2

j . . .
)

= 1
2
[
T2
s−u + T2

t

2
] (

Tb1
i Tb2

i . . .
) (

Tc1
j Tc2

j . . .
)
.

(4.32b)

By applying these identities to eq. (4.3) we get

C(2)
33 = 1

24

[(
T2
s−u

)2
− C2

A

12

]
Ta
iTa

j . (4.33)

Here, we isolated a universal operator, written in terms of T2
t and T2

s−u, which acts upon
the tree-level amplitude, Ta

iTa
j .

4.2.2 Colour structures at three loops

Let us apply the method described in section 4.2.1 to compute the colour structure C(3)
33 ,

defined in eq. (4.9). We write the structure constants (F xF y)ab in terms of commutators of
colour generators, using the Lie algebra relation

Ta
i (F x)ab = [Tx

i ,Tb
i ] ≡ T[x,b]

i . (4.34)
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Ta
i

Figure 8. Diagrammatic representation of a generic transition amplitude connecting one- and
three-Reggeon states.

There is a unique way of applying eq. (4.34) to eq. (4.9) such that each generator Ti, in the
representation of the target, is contracted with a generator Tj , in the representation of the
projectile, preserving manifest symmetry under exchange of target and projectile, and it
leads to

C(3)
33 =

(
T{[a,x],b,c}+

)
i

(
T{[b,x],a,c}+

)
j
. (4.35)

Target-projectile symmetry is immediately verified by exchanging representations of the
generators i↔ j. By applying eqs. (4.32a) and (4.32b) to eq. (4.35) we get

C(3)
33 =

(
3CA −T2

t

)
C(2)

33 . (4.36)

The remaining colour structures at three loops are C(3)
13 and C(3)

31 , defined in eqs. (4.12)
and (4.14), respectively. As noticed in eq. (4.13), the reduced amplitude features their
sum, C(3)

13 + C(3)
31 . This colour factor was computed in ref. [35] by applying the identities in

eqs. (4.32a), (4.32b) and (4.34), getting

C(3)
13 + C(3)

31 =
{

T2
t

4

[(
T2
s−u

)2
+ C2

A

12

]
+ 3

4T2
s−u

[
T2
s−u,T2

t

]}
Ta
iTa

j . (4.37)

However, the result above can be simplified further. Both in C(3)
13 and in C(3)

31 , colour
flows through a single generator, either on the target or on the projectile side. This single
generator acts7 as a projection operator [94] on the adjoint representation in the t-channel,
independently of the representations of the target and of the projectile. This in turn implies
that, to all orders in perturbation theory, the colour structure of transition amplitudes
connecting one- and three-Reggeon states, depicted in figure 8, is proportional to the
tree-level amplitude. This observation implies

C(3)
13 ≡ Tr

[
F aF bF cF d

] (
T{a,b,c}+

)
i

(
Td
)
j

= C
(3)
13 Ta

i Ta
j , (4.38a)

C(3)
31 ≡ Tr

[
F aF bF cF d

] (
T{a,b,c}+

)
j

(
Td
)
i

= C
(3)
31 Ta

i Ta
j , (4.38b)

7We thank Simon Caron-Huot for raising this point.
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where C(3)
13 and C(3)

31 are scalar functions of the Casimir invariants of the projectile and the
target, respectively. In order to determine C(3)

13 , we consider the case where the target is in
the same representation as the projectile. Upon setting Td

j = Td
i on the left-hand side of

eq. (4.38a) and Ta
j = Ta

i on the right-hand side, we contract all indices, getting

Tr
[
F aF bF cF d

]
TrRi

[
T{a,b,c}+i Td

i

]
= C

(3)
13 TrRi [Ta

i Ta
i ] , (4.39)

where the subscript Ri specifies the representation of the colour generators inside the trace.
After computing the traces we find

C
(3)
13 = dARi

NRi

1
Ci
. (4.40)

Here dARi is the quartic Casimir operator

dARi = 1
4!
∑
σ∈S4

Tr
[
F σ(a)F σ(b)F σ(c)F σ(d)

]
Tr
[
Ta
iTb

iTc
iTd

i

]
, (4.41)

and explicitly for a SU(Nc) gauge group, dARi is

dAA
NA

= N2
c (N2

c + 36)
24 ,

dAF
NF

= (N2
c + 6)(N2

c − 1)
48 , (4.42)

where NA = N2
c − 1 and NF = Nc are, respectively, the dimensions of the fundamental and

of the adjoint representations of SU(Nc). Following the same steps leading to eq. (4.40),
we determine

C
(3)
31 =

dARj
NRj

1
Cj
. (4.43)

Hence, the colour structure in eq. (4.37) becomes

C(3)
13 + C(3)

31 =
(
dARi
NRi

1
Ci

+
dARj
NRj

1
Cj

)
Ta
iTa

j . (4.44)

The result above implies the following non-trivial identity involving colour operators T2
t

and T2
s−u{

T2
t

4

[(
T2
s−u

)2
+ C2

A

12

]
+ 3

4T2
s−u

[
T2
s−u,T2

t

]}
Ta
iTa

j =
(
dARi
NRi

1
Ci

+
dARj
NRj

1
Cj

)
Ta
iTa

j ,

(4.45)
for any representation Ri and Rj of the projectile and the target. This three-loop quartic
Casimir colour identity will be useful also at four loops. We stress that the basic argument
leading to eqs. (4.38) holds to all orders in perturbation theory: every transition amplitude
involving a single Reggeon exchange, either from the target or from the projectile, has the
same colour structure as the tree-level amplitude up to a multiplicative factor depending
on Casimir operators. We therefore expect to be able to derive identities analogous to
eq. (4.45) at every perturbative order by applying the above argument. In particular, at
four loops we shall derive one more relation of this kind, given in eq. (4.48) below.
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Figure 9. An example of an entangled colour configuration. This specific one is the first term of d1
in eq. (C.10a).

4.2.3 Colour structure at four loops

Colour factors appearing in 3 → 3 transitions. We encounter two new colour
structures in the transition amplitude 〈j3|H̃2

3→3|i3〉. These are CDL and CML, defined in
eqs. (4.19a) and (4.19b) and depicted in figure 5a and 5b, respectively. As discussed above
eq. (4.35), all the structure constants may be written as commutators of the gauge-group
generators by means of the Lie algebra, so eqs. (4.19a) and (4.19b) may be expressed as

CDL =
(
T{a,b,[[c,d],e]}+

)
i

(
T{a,c,[[b,e],d]}+

)
j
, (4.46a)

CML =
(
T{a,[b,c],[d,e]}+

)
i

(
T{e,[d,c],[b,a]}+

)
j
, (4.46b)

where we contract each generator Ta
i , in the representation of the projectile, with one

generator Ta
j associated to the target and we preserve manifest target-projectile symmetry.

As we will clarify below, both features are crucial to evaluate CDL and CML in general
representations. To this end, we repeatedly apply identities (4.32a) and (4.32b) to eqs. (4.46a)
and (4.46b), in order to write contractions of the outermost generators on each line in
terms of T2

t and T2
s−u. However, these identities are applicable only to some of the terms.

While for two- and three-loop colour factors one could identify at every stage a gluon whose
both ends are external, thus fitting the pattern of either (4.32a) or (4.32b), starting from
four loops this is no more the case. Specifically, both CDL and CML involve entangled
configurations, where all gluons whose emission point is external on line i, have its absorption
point internal (that is, appearing in between other generators) on line j, and vice versa. In
this case, the reduction into a sequence of T2

t and T2
s−u operators faces an obstruction. An

example of such an entangled configuration is shown in figure 9.

In total we identified 8 sets, d1 . . . d8, of entangled colour structures, characterised by
target-projectile symmetry, that enter in CDL and CML. We present these contributions in
appendix C, where we also prove a set of identities that express d1 . . . d8 in terms of operators
T2
t , T2

s−u and of the quartic Casimir invariant dAA. The derivation of these identities,
given in eqs. (C.13a)–(C.13e), relies on target-projectile symmetry and a representation of
the colour structures as multiple pairwise interactions where each generator on the target
line is contracted with one on the projectile line, similar to CDL and CML in eqs. (4.46a)
and (4.46b). After applying eqs. (C.13a)–(C.13e), as well as eqs. (4.32a) and (4.32b), to
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eqs. (4.46a) and (4.46b) we obtain

CDL =
{
− 1

36

(
dAA
NA

+C4
A

12

)
+ 7C2

A

48 (T2
s−u)2+CA

48

(1
3T2

t (T2
s−u)2−7T2

s−uT2
tT2

s−u

)

+ 1
24

(3
2T2

s−u(T2
t )2T2

s−u−T2
tT2

s−uT2
tT2

s−u+ 1
3(T2

t )2(T2
s−u)2

)}
Ta
iTa

j ,

(4.47a)

CML =
{

1
72

(
dAA
NA
−C

4
A

6

)
+ 7C2

A

192 (T2
s−u)2+ 11CA

48

(1
4T2

s−uT2
tT2

s−u−
1
3T2

t (T2
s−u)2

)

+ 1
96

(7
2T2

tT2
s−uT2

tT2
s−u−3T2

s−u(T2
t )2T2

s−u−
1
6(T2

t )2(T2
s−u)2

)}
Ta
iTa

j . (4.47b)

For later use, we derive alternative expressions for CDL and CML, which make it easy
to identify terms that are leading in the large-Nc limit. To this end we need a new four-loop
colour identity

{
3
[
T2
s−u,

[
T2
t ,
[
T2
t ,T2

s−u
]]]

+
(
T2
t − 3CA

) [
T2
t ,
(
T2
s−u

)2
]}

Ta
iTa

j = 0, (4.48)

which will be derived in the second part of the present section, following similar steps to
those leading to eq. (4.45). By applying the three- and four-loop identities in eqs. (4.45)
and (4.48) to eqs. (4.47a) and (4.47b), we obtain

CDL =
{
− 1

36

[
dAA
NA
−6CA

(
dARi
NRiCi

+
dARj
NRjCj

)
+ 5

24C
4
A

]
+ 1

16
[
T2
s−u,T2

t

]
T2
tT2

s−u

− 1
48T2

t

[(
T2
s−u

)2
,T2

t

]}
Ta
iTa

j ,

(4.49a)

CML =
{

1
72

[
dAA
NA

+6CA
(
dARi
NRiCi

+
dARj
NRjCj

)
− 7

24C
4
A

]
− 3

32
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t

− 1
32
[
T2
s−u,T2

t

]
T2
tT2

s−u+ 1
16T2

s−u
[
T2
s−u,T2

t

]
T2
t

}
Ta
iTa

j .

(4.49b)

In eqs. (4.49a) and (4.49b), we collected in square brackets the leading contributions in
the large-Nc limit of CDL and CML, respectively. These terms are proportional to the
unit matrix in colour space. Subleading contributions at large Nc have non-trivial colour
structure, characterised by the action of commutators, such as [T2

t ,T2
s−u] on the tree-level

colour structure. Indeed, the occurrence of such commutators is automatically associated
to non-planar colour diagrams. To see this, consider the action of the commutator [T2

s,T2
t ]
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on a general colour structure

1
4
[
T2
s,T2

t

]
1

2

4

3

=
[
Ta

1,Tb
1
]
Ta

2Tb
4

1

2

4

3

=

1

2

4

3

−

1

2

4

3

=

1

2

4

3 .

(4.50)

Here the grey blob represents a general colour tensor with four indices. In the final
line of eq. (4.50), we used the commutation relation of the Lie algebra. Having done that,
three of the four external lines are connected together giving rise to a non-planar diagram.
Similarly, one shows that

[
T2
u,T2

t

]
is non-planar, hence

[
T2
s−u,T2

t

]
is subleading in the

large-Nc limit. Thus, by organising the colour structure in terms of commutators, we can
immediately distinguish between purely non-planar terms and those that have a planar
contribution. For instance, we observe that all signature-even amplitudes in eqs. (2.46)
at two-loops and beyond are expressible in terms of (nested) commutators and are hence
subleading at large Nc. It also becomes clear now that the only terms that contribute in
the large-Nc limit in eqs. (4.49a) and (4.49b) are those in the square brackets.

Colour factors appearing in 3 → 1 and 1 → 3 transitions. We now proceed to
compute the structures C(4),A

13 and C(4),A
31 , defined in eqs. (4.25a) and (4.28a), respectively.

Following the observation at the end of section 4.2.2, these colour tensors are proportional
to Ta

iTa
j . The proportionality factors may be found by repeating the steps that lead from

eqs. (4.38a) to (4.40). For instance, in the case of C(4),A
13 we have

C(4),A
13 = (F xF y)ac Tr

[
F xF y

(
F bF d + F dF b

)] (
T{a,b,c}+

)
i

(
Td
)
j

= C
(4),A
13 Ta

i ·Ta
j ,

(4.51)

where C(4),A
13 , which is a scalar function of the Casimir invariants of the representation Ri

of the projectile, can be determined by choosing Td
j = Td

i and Ta
j = Ta

i in eq. (4.51) and
contracting all indices. This yields

C
(4),A
13 = 1

NRiCi
TrRi

[
T{a,b,c}+,di

]
(F xF y)ac Tr

[
F xF y

(
F bF d + F dF b

)]
. (4.52)
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Similar expressions for the target-projectile symmetric colour factor C(4),A
31 are simply

obtained from of eqs. (4.51) and (4.52), by replacing the representation of the projectile
Ri with the one of the target, Rj . After computing traces with the codes color [95] and
ColorMath [96], we find

C(4),A
13 = CA

dARi
NRiCi

Ta
iTa

j , (4.53a)

C(4),A
31 = CA

dARj
NRjCj

Ta
iTa

j . (4.53b)

By target-projectile symmetry, both C(4),A
13 and C(4),A

31 multiply the same integrals, defined
in the first line of in eqs. (4.24). Therefore, the transition amplitude involves the colour
factor

C(4),A
13 + C(4),A

31 = CA

(
dARi
NRiCi

+
dARj
NRjCj

)
Ta
iTa

j , (4.54)

which simply corresponds to the three-loop colour structure in eq. (4.44) multiplied by CA.
We compute C(4),B

13 , associated to the diagram in figure 6b, and its symmetric partner
under exchange of target and projectile, C(4),B

31 , by applying the same procedure. These
colour tensors are defined in eqs. (4.25b) and (4.28b). Furthermore, they admit

C(4),B
13 = C

(4),B
13 Ta

i Ta
j , C(4),B

31 = C
(4),B
31 Ta

i Ta
j . (4.55)

We determine the scalar coefficients C(4),B
13 and C(4),B

31 by following the steps described in
eqs. (4.52) and (4.53a), getting

C
(4),B
13 = 1

NRiCi
Tr
[
T{a,b,c}+,di

]
(F xF y)ac

(
Tr
[
F xF bF yF d

]
+Tr

[
F xF dF yF b

])
= 0,

(4.56a)

C
(4),B
31 = 1

NRjCj
Tr
[
T{a,b,c}+,dj

]
(F xF y)ac

(
Tr
[
F xF bF yF d

]
+Tr

[
F xF dF yF b

])
= 0,

(4.56b)

where we used the code color [95] to compute the traces in eqs. (4.56a) and (4.56b).
This holds for general representations in any semi-simple gauge group. The vanishing of
C(4),B

13 and C(4),B
31 simplifies the calculation of the 3→ 1 transition at four loops, defined

in eq. (4.24), and its symmetric contribution under target-projectile exchange, the 1→ 3
transition.

Using the calculation of C(4),B
13 and C(4),B

31 above, we now derive the identity quoted in
eq. (4.48) above, which was applied to simplify the four-loop colour structures in eqs. (4.49a)
and (4.49b). To this end we compute C(4),B

13 and C(4),B
31 again, starting with eqs. (4.25b)

and (4.28b) and applying the identities in appendix C, along with eqs. (4.32a) and (4.32b),
obtaining

C(4),B
13 + C(4),B

31 =
{

3
[
T2
s−u,

[
T2
t ,
[
T2
t ,T2

s−u
]]]

+
(
T2
t − 3CA

) [
T2
t ,
(
T2
s−u

)2
]}

Ta
iTa

j .

(4.57)
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By comparing the sum of eqs. (4.56a) and (4.56b) to eq. (4.57), we obtain eq. (4.48). As
a cross-check we re-compute eq. (4.54) by applying eqs. (4.32a) and (4.32b), as well as
identities in appendix C, to the definitions of C(4),A

13 and C(4),A
31 , respectively in eq. (4.25a)

and (4.28a) and we get

C(4),A
13 +C(4),A

31 =CA

{
T2
t

4

[(
T2
s−u

)2
+ C2

A

12

]
+ 3

4T2
s−u

[
T2
s−u,T2

t

]}
Ta
iTa

j

− 5
48

{
3
[
T2
s−u,

[
T2
t ,
[
T2
t ,T2

s−u
]]]

+
(
T2
t −3CA

)[
T2
t ,
(
T2
s−u

)2
]}

Ta
iTa

j .

(4.58)

Here, the second line vanishes by eq. (4.48), while the first line, reproduces the expected
result in eq. (4.54) upon using eq. (4.45).

Finally, we compute the colour structures C(4),D
3113 and C(4),X

3113 , which were defined in
eqs. (4.31a) and (4.31b), respectively. By a similar argument to that leading to eq. (4.38)
we have

C(4),D
3113 = C

(4),D
3113 Ta

i Ta
j , (4.59a)

C(4),X
3113 = C

(4),X
3113 Ta

i Ta
j , (4.59b)

where the scalar functions C(4),D
3113 and C(4),X

3113 are

C
(4),D
3113 = 1

NA
Tr
[
F aF cF dF e

]
Tr
[
F aF cF dF e + F aF eF dF c

]
=
(

2dAA
NA

+ C4
A

6

)
, (4.60a)

C
(4),X
3113 = 1

NA
Tr
[
F aF cF dF e

]
Tr
[
F aF cF eF d + F aF eF cF d + F aF dF eF c + F aF dF cF e

]
=
(

4dAA
NA
− C4

A

6

)
, (4.60b)

where we computed the traces using the code of ref. [95]. It is easy to check using eq. (4.42)
that C(4),X

3113 is subleading in the large-Nc limit, while C(4),X
3113 has a leading O(N4

c ) component.
This can be expected based on the non-planar and planar nature of figures 7b and 7a,
respectively.

In conclusion, we expressed all the colour structures that contribute to the reduced
amplitudes through four loops in terms of colour channel operators T2

t and T2
s−u. In addition,

they contain quartic Casimir invariants associated with the colour representations of the
scattered particles, dARi and dARj , starting at three loops, and purely adjoint ones, dAA,
starting at four loops. These arise in both the 3→ 3 transitions of eqs. (4.49a) and (4.49b)
and the 1 → 3 → 1 transition of eqs. (4.60a) and (4.60b). Note that the dAA terms are
driven entirely by gluon loops, thus, they are entirely independent of the representations of
the scattered particles and on the matter content of the theory.
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4.3 Integrals

The transition amplitudes defined in section 4.1 involve a restricted set of integrals in
d = 2− 2ε dimensional Euclidean space, transverse to the lightcone of the colliding particles.
The associated integrands are constructed in term of massless propagators of the three
exchanged Reggeons, with momenta k1, k2 and k3 = p− k1 − k2, and integration kernels
H22, H13 and αg. It is convenient to use the notation of ref. [35],

I[N ] ≡
(

4πSε(p2)
rΓ

)2 ∫
d2−2εp1
(2π)2−2ε

∫
d2−2εp2
(2π)2−2ε

p2

p2
1p

2
2(p− p1 − p2)2N, (4.61)

where N indicates a general integrand depnding on p1 and p2. All integrals appearing in
transition amplitudes through four loops may be expressed in terms of the following set

J1 = I

[ 1
ε2

]
, J2 = I

[
1
ε2

(
p2

p2
1

)ε]
, J3 = I

[
1
ε2

(
p2

p2
12

)ε]
,

J4 = I

 1
ε2

((
p2

p2
1

)ε)2 , J5 = I

 1
ε2

((
p2

p2
12

)ε)2 , J6 = I

[
1
ε2

(
p2

p2
1

)ε(
p2

p2
2

)ε]
,

J7 = I

[
1
ε2

(
p2

p2
1

)ε(
p2

p2
12

)ε]
, J8 = I

[
1
ε2

(
p2

p2
1

)ε(
p2

p2
23

)ε]
, J9 = I

[
1
ε2

(
p2

p2
12

)ε(
p2

p2
13

)ε]
,

(4.62)

where pij ≡ pi + pj . We emphasise that despite describing 2→ 2 amplitudes, the integrals
above have a single kinematic scale, namely the squared transferred momentum of the process
p2 = −t, because the dependence on s is completely determined by Balitsky-JIMWLK
evolution.

With exception of J9, all the integrals may be computed by repeatedly applying the
one-loop propagator formula [97, 98]∫ [d̄k](

k2)α( (p− k)2 )β = Bα,β

(4π)1−ε

(
p2
)1−ε−α−β

, (4.63)

where as above, [d̄k] = dd−2k
(2π)d−2 , and the function Bα,β is defined by

Bα,β = Γ(1− ε− α)Γ(1− ε− β)Γ(α+ β − 1 + ε)
Γ(α)Γ(β)Γ(2− 2ε− α− β) . (4.64)

Using the notation above, the integrals J1 . . . J8 evaluate to

J1 = 4B1,ε+1
ε4B1,1

= 3
ε4
− 18ζ3

ε
− 27ζ4 +O (ε) (4.65a)

J2 = 4Bε+1,ε+1
ε4B1,1

= 2
ε4
− 44ζ3

ε
− 66ζ4 +O (ε) (4.65b)

J3 = 4B1,2ε+1
ε4B1,1

= 8
3ε4 −

128ζ3
3ε − 64ζ4 +O (ε) (4.65c)

J4 = J8 = 4B2ε+1,ε+1
ε4B1,1

= 5
3ε4 −

230ζ3
3ε − 115ζ4 +O (ε) (4.65d)
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k1

k2

p − k1 − k2

q1

k1 + k2 − q1

q2

p − k1 − q2

p ·D8 · D9

Figure 10. The integral T (2−2ε)
1,1,1,1,1,1,1,−1,−1,0,0,0,0,0 which is related to the required integral J9

through eq. (4.68). Arrows on the scalar propagators are added to keep track of the momentum
flow. The factors D8 and D9 represent numerator insertions.

J5 = 4B1,3ε+1
ε4B1,1

= 5
2ε4 −

75ζ3
ε
− 225ζ4

2 +O (ε) (4.65e)

J6 = 4B1,ε+1Bε+1,2ε+1
ε4B2

1,1
= 5

4ε4 −
65ζ3
ε
− 195ζ4

2 +O (ε) (4.65f)

J7 = 4B1,3ε+1Bε+1,1
ε4B2

1,1
= 15

8ε4 −
135ζ3

2ε − 405ζ4
4 +O (ε) (4.65g)

Note the absence of poles of order ε−3 and ε−2, the latter being associated with the absence
of ζ2. This will reflect in the final results of the amplitudes.

In order to compute the remaining integral J9, we define an integral family generated
by the following inverse scalar propagators

D1 = k2
1 D2 = k2

2 D3 = (p− k1 − k2)2 D4 = q2
1

D5 = (k1 + k2 − q1)2 D6 = q2
2 D7 = (p− k1 − q2)2 D8 = (k1 + k2)2

D9 = (p− k1)2 D10 = (k1 + q1)2 D11 = (k1 + q2)2 D12 = (k2 + q2)2

D13 = (q1 + q2)2 D14 = (p− q1)2 (4.66)

Denoting integrals in this topology as

T (d)
n1,...,n14 ≡

(
p2 eγE

)4ε ∫ ddk1 d
dk2 d

dq1 d
dq2(

πd/2
)4 p2

Dn1
1 . . . Dn14

14
, (4.67)

we consider T (d)
1,1,1,1,1,1,1,−1,−1,0,0,0,0,0, associated to the diagram in figure 10, which is related

to the integral J9 by

J9 =
(

e−εγE

εB1,1 rΓ

)2

T
(2−2ε)
1,1,1,1,1,1,1,−1,−1,0,0,0,0,0 , (4.68)

where rΓ is defined in eq. (2.7) and B1,1 in eq. (4.64).
We use the code LiteRed [99] to apply raising dimensional recurrence relations [100]

and express the integral T (2−2ε)
1,1,1,1,1,1,1,−1,−1,0,0,0,0,0 in terms of 2-point integrals in 4 − 2ε

dimensions, T (4−2ε)
n1,n2,n3,n4,n5,n6,n7,n8,n9,0,0,0,0,0. The latter are computed with the program
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Forcer [101] and expanded8 in ε, giving

T
(2−2ε)
1,1,1,1,1,1,1,−1,−1,0,0,0,0,0 = 28

3ε4 −
56ζ2
3ε2 −

3352ζ3
9ε − 1508ζ4

3 + ε

(6704
9 ζ2ζ3 −

73432
15 ζ5

)
+ ε2

(230264
27 ζ2

3 − 9458ζ6

)
+O

(
ε3
)

(4.69)

and

J9 = 7
3ε4 −

214ζ3
3ε − 107 ζ4 − 1166 ζ5 ε+

(4094
3 ζ2

3 −
8210

3 ζ6

)
ε2 +O

(
ε3
)
. (4.70)

We checked the result in eq. (4.70) by verifying up to O(ε5) that it yields uniform-weight
zeta numbers,9 by comparing it with ref. [23], which provides J9 to O(ε), and by comparing
with the numerical result, obtained up to O(ε) with pySecDec [102].

The integrals J1 . . . J9 are all pure transcendental numbers of uniform weight 4, when ε
is assigned weight −1. We note that the factor rΓ in the denominator of eq. (4.61) removes
all the occurrences of ζ2 from eqs. (4.65a)–(4.65g) and (4.70). Furthermore, all occurrences
of even zeta values may be removed by re-defining the odd zeta numbers, as in refs. [103–106].
This can be immediately verified by absorbing ζ4 and ζ6 in eqs. (4.65a)–(4.65g) and (4.70)
using the definition

ζ̂3 = ζ3 + 3
2εζ4 −

5
2ε

3ζ6 +O
(
ε5
)
, ζ̂5 = ζ5 + 5

2εζ6 +O
(
ε3
)

(4.71)

The appropriate definitions of hatted representation of the zeta values is derived in refs. [105,
106] including higher orders10 in ε.

5 The NNLL amplitude through four loops: results

We now provide results for the reduced amplitude M̂(−),NNLL
ij→ij , eq. (3.37), through four loops.

The relevant expressions for the transition amplitudes are defined in section 4.1. Here we
evaluate them in terms of the colour factors computed in section 4.2 and of the basis of
integrals introduced in section 4.3. At each perturbative order, we discuss the planar limit
of the reduced amplitude, by separating the dominant terms at large Nc.

In section 5.4 we construct the complete amplitudes, according to eq. (2.44), and we
disentangle the contributions of the Regge pole from those associated to the Regge cut,
as specified in eq. (2.39). We provide explicit results for quark-quark, quark-gluon and
gluon-gluon scattering amplitudes. Finally, using this Regge-cut scheme, we extract two-loop
quark and gluon impact factors, C̃(2)

q and C̃(2)
g , in QCD, as well as the three-loop Regge

trajectory in N = 4 SYM.
8Note that the topology defined in eq. (4.66) is absent in Forcer. Instead, the topology t1star24 is

defined in terms of D1, D2, D3, D8 and D9, where the latter two denominators are allowed to assume
non-integer powers. The conversion of integrals T (4−2ε)

n1,n2,n3,n4,n5,n6,n7,n8,n9,0,0,0,0,0 in Forcer notation is
immediately obtained by integrating the one-loop sub-integrals over q1 and q2.

9In contrast to the integrals J1 . . . J8, which all yield only single zeta values, J9 features multiple zeta
values, such as ζ5,3.

10The systematic construction of hatted single zeta values has been developed for all orders in ε in
ref. [106].
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5.1 Two loops

The transitions that contribute to two-loop reduced amplitudes can be read off the expansion
of the general formula eq. (3.37) to O

(
α2
s

)
i

2sM̂
(−,2,0)
ij→ij = 〈j1|i1〉NNLO + π2r2

Γ 〈j3|i3〉. (5.1)

Here the first term describes the contribution of single-Reggeon exchange to the two-loop
reduced amplitude. It may be obtained by substituting the NNLO impact factors introduced
in eq. (2.43a) into the first term in eq. (2.45) and expanding it to two loops. This fixes the
first term in eq. (5.1) to be

〈j1|i1〉NNLO =
[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

]
〈j1|i1〉, (5.2)

where the impact-factor coefficients D(1)
i and D(2)

i were defined in eq. (3.11a) and (3.12),
respectively. These coefficients have been determined in QCD in ref. [35], by matching the
expression above with explicit results of two-loop helicity amplitudes [107–109]. They are
quoted here in appendix A. Of course, this term is proportional to the tree-level amplitude,

〈j1|i1〉 = i

2sM̂
tree
ij→ij = i

g2
s

t
Ta
iTa

j , (5.3)

a purely t-channel octet exchange.

The 3 → 3 transition, 〈j3|i3〉 entering eq. (5.1), provides the first contribution of
three-Reggeon states to scattering amplitudes. Substituting eq. (4.1) into

〈j3|i3〉 = 〈ψj,3|ψi,3〉
(αsrΓ)2 (5.4)

and evaluating the integral, we obtain

〈j3|i3〉 = − ig
2
s

t
ε2 J1 C(2)

33 (5.5)

= −1
8

( 1
ε2
− 6ε ζ̂3 +O

(
ε3
)) [(

T2
s−u

)2
− C2

A

12

]
〈j1|i1〉,

where we expressed the colour factor C(2)
33 as in eq. (4.33) and we set the scale of the

coupling µ2 = −t for simplicity. The value of ζ̂3 is given in eq. (4.71). In this section, we
will consistently suppress the occurrence of logarithms of µ2

−t by making this scale choice.
Because of the action of (T2

s−u)2, the colour structure of eq. (5.5) is strikingly different
to single-Reggeon exchange 〈j1|i1〉, breaking Regge-pole factorisation [30–32, 45, 46]. Impor-
tantly, the leading term in the large-Nc expansion of (T2

s−u)2〈j1|i1〉 is always proportional to
〈j1|i1〉, and furthermore, the proportionality constant does not depend on the representation
of the scattered particles. This can be understood by rewriting eq. (4.45) as

Nc(T2
s−u)2

4 Ta
iTa

j =
(
dARi
NRiCi

+
dARj
NRjCj

− N3
c

48

)
Ta
iTa

j (5.6)

− 3
4T2

s−u
[
T2
s−u,T2

t

]
Ta
iTa

j −
1
4

[
T2
t ,
(
T2
s−u

)2
]

Ta
iTa

j .
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Here, the second line is manifestly non-planar, being written in terms of commutators (see
eq. (4.50)). In order to determine the large-Nc limit of the first line, we notice that the
invariant dARi

NRiCi
takes a simple form, when the representation Ri is either the fundamental

or the adjoint. From eq. (4.42) we find

dARi
NRiCi

= N3
c

24 +Nc


1
4 if Ri = F

3
2 if Ri = A

≡ N3
c

24 +Nc κ(Ri). (5.7)

After plugging the expression above into eq. (5.6) and multiplying by i g
2
s
t we get

(T2
s−u)2〈j1|i1〉 =

[
N2
c

4 + 4κ(Ri) + 4κ(Rj)
]
〈j1|i1〉 (5.8)

− 3
Nc

T2
s−u

[
T2
s−u,T2

t

]
〈j1|i1〉 −

1
Nc

[
T2
t ,
(
T2
s−u

)2
]
〈j1|i1〉.

In the large-Nc limit, the first term dominates. It features the colour factor of the tree-level
amplitude 〈j1|i1〉, corresponding to the exchange of a colour octet, multiplied by the factor
N2
c /4, irrespective of whether the projectile and the target are quarks or gluons. Subleading

terms in Nc are separated into two parts. In the first line, terms proportional to the function
κ(R) are still characterised by colour octet structure. By changing the representation, either
fundamental or adjoint, of the scattered partons, these terms are easily constructed as the
symmetric sum of one contribution associated to the projectile and one to the target. The
terms in the second line of eq. (5.8) have non-trivial colour structure and, to the best of our
knowledge, their expressions for definite representations of the external particles do not
obey simple relations.

Finally, plugging eqs. (5.2) and (5.5) into eq. (5.1) we recover the result of two-loop
amplitudes [35]:

M̂(−,2,0) =
[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j + π2r2

Γ S
(2)(ε)

(
(T2

s−u)2 − 1
12C

2
A

)]
M̂tree, (5.9)

where we define11

S(2)(ε) = − ε
2

24J1 = − 1
8ε2 + 3

4εζ3 + 9
8ε

2ζ4 +O(ε3). (5.10)

We recall that the entire dependence on the type of the scattered partons is encoded in the
impact factors Di and Dj , while the three-Reggeon contribution in operator form is entirely
process-independent.12 Likewise the former depends on the specific gauge theory considered,

11We slightly depart from the notation of ref. [35], where the expansion of the reduced amplitude involved
R(2)(ε) = r2

Γ S
(2)(ε). Similarly, at three loops we will introduce the quantities S(3)

A (ε), S(3)
B (ε) and S(3)

C (ε),
which are related to corresponding expressions in [35], R(3)

i (ε) = r3
Γ S

(3)
i (ε) with i = A,B,C.

12Note the distinction we make between process-independence of the operator itself, versus the process
dependence of its projection on the various components in an explicit colour basis, which we discuss in
section 5.4 and appendix D below (where we choose the t-channel basis).
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while the latter is entirely independent of the matter content and is thus universal. As
commented already in section 3.2 these features (scattering-process independence in operator
form and matter-contents independence) apply to the entire tower of MRS contributions to
the reduced odd amplitude at NNLL to all loops. In appendix D, we compute explicitly the
reduced amplitude in eq. (5.9), by picking orthonormal colour bases in the t-channel for
quark-quark, gluon-gluon and quark-gluon scattering processes. We obtain the colour octet
and colour singlet contributions to the quark-quark amplitude, respectively in eqs. (D.1a)
and (D.4a), (antisymmetric) octet and decuplet in gluon-gluon scattering, respectively
in eqs. (D.1b) and (D.5a), and an (antisymmetric) octet in quark-gluon scattering, in
eq. (D.1c).

In the planar limit, eq. (5.9) becomes

M̂(−,2,0)
∣∣∣
planar

=
[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j + π2r2

Γ
N2
c

6 S(2)(ε)
]
M̂tree, (5.11)

where we apply the identity in eq. (5.8) and we retain only the terms leading in Nc in D(1)
i ,

D
(1)
j and D(2)

i , D(2)
j .

5.2 Three loops

The expansion of eq. (3.37) to three loops gives

i

2sM̂
(−,3,1)
ij→ij = −π2r3

Γ

[
〈j3|H̃3→3|i3〉+

(
〈j1|H̃3→1|i3〉+ 〈j3|H̃1→3|i1〉

) ]
. (5.12)

Here, the first term is associated to 3 → 3 transitions, while the two terms in brackets
represent 3→ 1 and 1→ 3 transitions. Each contribution is described in turn below.

The 3 → 3 transition is defined in eq. (4.6) in terms of the integrals in eqs. (4.7)
and (4.8). These are evaluated at µ2 = −t in terms of the basis of integrals J1 . . . J8 of
section 4.3, getting

〈j3|H̃3→3|i3〉 = ig2
s

t

ε

2

[
(J3 − 2J2) C(3)

33 + 3 J2CA C(2)
33 − J1T2

t C(2)
33

]
. (5.13)

Here, the first two terms correspond to eq. (4.8). The last term, with the colour structure
T2
t C(2)

33 , arises from eq. (4.7). Using the expressions for the colour factors C(2)
33 and C(3)

33
given in eqs. (4.33) and (4.36), respectively, we get

〈j3|H̃3→3|i3〉 = −24S(3)
C (ε)

(
dARi
NRiCi

+
dARj
NRjCj

)
〈j1|i1〉

+
[
S

(3)
A (ε)T2

s−u
[
T2
s−u,T2

t

]
+ S

(3)
B (ε)

[
T2
s−u,T2

t

]
T2
s−u + S

(3)
C (ε)C3

A

]
〈j1|i1〉,

(5.14)
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where

S
(3)
A (ε) ≡ ε

16(J1 − J3) = 1
48ε3 + 37 ζ̂3

24 +O
(
ε2
)
, (5.15a)

S
(3)
B (ε) ≡ − ε

16(J2 − J3) = 1
24ε3 + ζ̂3

12 +O
(
ε2
)
, (5.15b)

S
(3)
C (ε) ≡ ε

288 (J1 + J2 − 2J3) = − 1
432

( 1
2ε3 − 35ζ̂3 +O

(
ε2
))

, (5.15c)

where we expanded each of the combinations of integrals in ε and where ζ̂3 is given in
eq. (4.71). In order to obtain the form in eq. (5.14) we applied the three-loop colour identity
of eq. (4.45), separating the contribution proportional to the tree-level amplitude 〈j1|i1〉 with
the proportionality factor involving the quartic Casimir of the scattered particles, from the
remaining colour structures generated by the operators T2

s−u[T2
s−u,T2

t ] and [T2
s−u,T2

t ]T2
s−u

and a pure C3
A term.

The 1→ 3 and 3→ 1 transitions are defined in eq. (4.13). By replacing the colour
factor with the expression in eq. (4.44) and performing the integrals, we get

〈j3|H̃1→3|i3〉+ 〈j1|H̃3→1|i3〉 = ε

12 (J1 + J2 − 2J3)
(
dARi
NRiCi

+
dARj
NRjCj

)
〈j1|i1〉,

= 24S(3)
C (ε)

(
dARi
NRiCi

+
dARj
NRjCj

)
〈j1|i1〉 ,

(5.16)

where S(3)
C (ε) is given in eq. (5.15c). We notice that the result is just the negative of the

quartic-Casimir-dependent part of the 3→ 3 transition amplitude in eq. (5.14), so these
terms will cancel exactly in the reduced amplitude.

The three-loop reduced amplitude, eq. (5.12), is computed by summing eqs. (5.14)
and (5.16). As noted above, quartic Casimir invariants cancel between the two transition
amplitudes and we obtain

M̂(−,3,1) = −π2r3
Γ

[
S

(3)
A (ε)T2

s−u

[
T2
s−u,T2

t

]
+ S

(3)
B (ε)

[
T2
s−u,T2

t

]
T2
s−u + S

(3)
C (ε)C3

A

]
M̂tree,

(5.17)
where S(3)

A (ε), S(3)
B (ε) and S(3)

C (ε) are defined in eqs. (5.15a), (5.15b) and (5.15c), respectively.
In appendix D, eq. (5.17) is expanded in the dimensional regulator ε and evaluated in
t-channel bases. Results are presented for the octet and for the singlet in quark-quark
scattering, respectively in eqs. (D.2a) and (D.4b), for the antisymmetric octet and the
decuplet in gluon-gluon scattering, respectively in eqs. (D.2b) and (D.5b), and for the
antisymmetric octet in quark-gluon scattering, eq. (D.2c).

In the planar limit the last term in eq. (5.17) dominates, while the commutators are
subleading, and eq. (5.17) then becomes

M̂(−,3,1)
∣∣∣
planar

= −π2r3
Γ S

(3)
C (ε)C3

A M̂tree , (5.18)

which is simply proportional to the tree-level amplitude 〈j1|i1〉, times a factor that is
independent of the scattered partons, similarly to the planar contribution to the two-loop
amplitude, eq. (5.11).
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5.3 Four loops

By expanding eq. (3.37) to four loops, we find the reduced amplitude
i

2sM̂
(−,4,2)
ij→ij = π2r4

Γ
2

[
〈j3|H̃2

3→3|i3〉+
(
〈j1|H̃3→1H̃3→3|i3〉+ 〈j3|H̃3→3H̃1→3|i1〉

)
+ 〈j1|H̃3→1H̃1→3|i1〉

]
,

(5.19)

where the terms above describe respectively 3→ 3, the sum of 3→ 1 and 1→ 3 and finally
1→ 1 transitions, mediated by an intermediate three-Reggeon state. Each term is evaluated
in turn using the results of sections 4.1, 4.2 and 4.3, as discussed below.

The 3 → 3 transition involves three contributions, given on the right-hand side of
eq. (4.15). The first term yields

π2

α4
sr

4
Γ
〈ψj,3|H2

3→3|ψi,3〉=
ig2
s

t

[(
2J7−

J5
2 −J6−J8

)
CDL−(3J6−2J7−J8+J9)CML (5.20)

+
(
J4+2J6−J7−

J8
2

)
CAC(3)

33 −
3
4 (J4+2J6) C2

AC(2)
33

]
,

where the factors multiplying CDL and CML in the first line arise from the integrals in
eqs. (4.18a) and (4.18b), respectively; the contribution proportional to C(3)

33 , in the second
line, is obtained by integrating eq. (4.20a) and the last term in eq. (5.20) corresponds to
eq. (4.20b). The remaining terms in eq. (4.15), defined in eqs. (4.21a) and (4.21b), yield

π2

α4
sr

4
Γ

[
2αg(t) T2

t 〈ψj,3|H3→3|ψi,3〉
]

= ig2
s

t

[
(J3 − 2J2) T2

tC
(3)
33 + 3J2

2 CA C(3)
33

]
, (5.21a)

π2

α4
sr

4
Γ
α2
g(t)

(
T2
t

)2
〈ψj,3|ψi,3〉 = − ig

2
s

t

J1
4
(
T2
t

)2
C(2)

33 . (5.21b)

The 3→ 3 transition amplitude is obtained by combining eqs. (5.20), (5.21a) and (5.21b).
The relevant colour factors are given in eqs. (4.33), (4.36), (4.49a) and (4.49b). Furthermore,
we make use of the three- and four-loop identities in eq. (4.45) and (4.48) to simplify the
colour structures and to isolate the leading contributions in the planar limit. We find

〈j3|H̃2
3→3|i3〉=

[
dAA

72NA

(
3J4 +J5−J6−2J7−J9

)
+ C4

A

1728

(
3J1 +6J2−12J3 +5J5 +J6−10J7 +7J9

)
− 1

32

[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t

(
4J4−3J6 +2J7−3J9

)
+ 1

96T2
t

[(
T2
s−u

)2
,T2

t

](
J1−4J2 +2J3 +2J4 +J5 +2J6−4J7

)
− 1

32
[
T2
s−u,T2

t

]
T2
tT2

s−u

(
3J4 +J5−J6−2J7−J9

)
+ 1

32T2
s−u

[
T2
s−u,T2

t

]
T2
t

(
J1 +2J2−4J3 +3J4−4J6 +4J7−2J9

)
− CA

24

(
dARi

NRiCi
+ dARj

NRjCj

)(
J1 +2J2−4J3 +J4 +2J5−4J7 +2J9

)]
〈j1|i1〉.

(5.22)
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Using section 4.3 we substitute the results for the integrals J1 . . . J9, expanded in powers of
ε, into eq. (5.22), getting

〈j3|H̃2
3→3|i3〉 =

[
C(4,−4)

ε4
+ ζ̂3

ε
C(4,−1) +O (ε)

]
〈j1|i1〉, (5.23)

where we have defined the following operators in colour space

C(4,−4) = 1
432

[
dAA
NA
− 3CA

(
dARi
NRiCi

+
dARj
NRjCj

)
+ C4

A

12

]
− 1

192[T2
s−u,T2

t ]T2
tT2

s−u

+ 1
96
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t + 7

576T2
t

[(
T2
s−u

)2
,T2

t

]
− 5

192T2
s−u

[
T2
s−u,T2

t

]
T2
t ,

(5.24a)

C(4,−1) = −101
216

[
dAA
NA
− 312

101CA
(
dARi
NRiCi

+
dARj
NRjCj

)
+ 211C4

A

2424

]
+ 101

96
[
T2
s−u,T2

t

]
T2
tT2

s−u

+ 49
48
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t −

47
288T2

t

[(
T2
s−u

)2
,T2

t

]
− 49

48T2
s−u

[
T2
s−u,T2

t

]
T2
t .

(5.24b)

The terms in square brackets in eqs. (5.24a) and (5.24b) are leading in the planar limit,
while all other terms, involving commutators of T2

s−u and T2
t , are suppressed for large Nc.

The 3→ 1 and 1→ 3 transitions, defined in eq. (4.22a), are computed by summing
eqs. (4.24), (4.26) and (4.27), together with their symmetric contributions under exchange
of the target and the projectile. The latter are obtained from the former by modifying
the colour factors, as explained below eq. (4.27). Therefore, summing each expression
in eqs. (4.24), (4.26) and (4.27), with its target-projectile symmetric partner, we obtain,
respectively, the following compact results:

π2

α4
s r

4
Γ

[
〈ψj,3|B3→3H1→3|ψi,1〉+ 〈ψj,1|H3→1B3→3|ψi,3〉

]
= i

g2
s

t

C(4),A
31 + C(4),A

13
12

[
2J2 − J3 + J5 + J6 − 4J7 + J9

]
,

(5.25a)

π2

α4
sr

4
Γ

[〈ψj,1|H3→1A3→3|ψi,3〉+ 〈ψj,3|A3→3H1→3|ψi,1〉]

= − ig
2
s

t

CA
(
C(3)

13 + C(3)
31

)
24

[
3J2 + J4 + 2J6 − 4J7 − 2J8

]
,

(5.25b)

π2αg(t)
α4
sr

4
Γ

T2
t [〈ψj,1|H3→1|ψi,3〉+ 〈ψj,3|H1→3|ψi,1〉]

= ig2
s

t

T2
t

(
C(3)

13 + C(3)
31

)
24

[
J1 + J2 − 2J3

]
.

(5.25c)
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Next, summing eqs. (5.25a), (5.25b) and (5.25c), and using the expressions in eqs. (4.44)
and (4.54) for the colour factors, we find

〈j1|H̃3→1H̃3→3|i3〉+ 〈j3|H̃3→3H̃1→3|i1〉 =

= CA
24

(
dARi
NRiCi

+
dARj
NRjCj

)
(J1 + 2J2 − 4J3 + J4 + 2J5 − 4J7 + 2J9)

= CA
144

(
dARi
NRiCi

+
dARj
NRjCj

)(
1
ε4
− 208ζ̂3

ε
+O (ε)

)
〈j1|i1〉 , (5.26)

where in the second line we expanded the integrals in ε using the results in section 4.3.
We notice that the first line of eq. (5.26) is just the negative of the terms proportional
to quartic Casimirs dARi and dARj in the 3 → 3 transition, eq. (5.22). Therefore, in the
four-loop reduced amplitude, eq. (5.19), these contributions will cancel exactly to all orders
in ε, as in the case of the three-loop transition amplitudes, eq. (5.14) and (5.16).

The 1 → 1 transition, mediated by three-Reggeon states, defined in eq. (4.29),
involves two contributions, given in eqs. (4.30a) and (4.30b). After performing the relevant
integrals of the kernel H13, we obtain

π2

α4
sr

4
Γ
〈ψj,1|H3→1H1→3|ψi,1〉D =− ig

2
s

t

C(4),D
3113
144 [J1+2J2−4J3+J4+2(J5−2J7+J9)] (5.27a)

π2

α4
sr

4
Γ
〈ψj,1|H3→1H1→3|ψi,1〉X =− ig

2
s

t

C(4),X
3113
144 [J1+2J2−4J3+J5+J6−2(J7+J8)+3J9]

(5.27b)

By substituting the colour factors C(4),D
3113 and C(4),X

3113 given in eqs. (4.60a) and (4.60b),
respectively, we get

〈j1|H̃3→1H̃1→3|i1〉 = − 1
72

[
dAA
NA

(3J1 + 6J2 − 12J3 − 3J4 + 4J5 + 2J6 − 8J7 + 8J9)

+ C4
A

12 (3J4 + J5 − J6 − 2J7 − J9)
]
〈j1|i1〉.

(5.28)

We expand the integrals J1 . . . J9, finding

〈j1|H̃3→1H̃1→3|i1〉 =
[
− 1

432ε4

(
dAA
NA

+ C4
A

12

)
+ 55 ζ̂3

108ε

(
dAA
NA

+ 101C4
A

1320

)]
〈j1|i1〉. (5.29)

The 1→ 1 transition amplitude mediated by three-Reggeon states in eq. (5.29) has the same
colour structure of the tree-level amplitude, 〈j1|i1〉. Furthermore, the result is independent
on the representation of the colliding particles and it depends only on the degrees of freedom
of the exchanged Reggeized gluons, through the Casimir invariants CA and dAA.

– 49 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
3

The four-loop reduced amplitude is given by the sum in eq. (5.19) of the 3→ 3, 1→ 3
and 3→ 1, and 1→ 3→ 1 transition amplitudes. Using the corresponding expressions in
eqs. (5.22), (5.26) and (5.29), respectively, we get

M̂(−,4,2) = π2r4
Γ

2

{
− 1

24

(
dAA
NA
− C4

A

24

)
(J1 + 2J2 − 4J3 − 2J4 + J5 + J6 − 2J7 + 3J9)

− 1
32
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t

(
4J4 − 3J6 + 2J7 − 3J9

)
+ 1

96T2
t

[(
T2
s−u

)2
,T2

t

] (
J1 − 4J2 + 2J3 + 2J4 + J5 + 2J6 − 4J7

)
(5.30)

− 1
32
[
T2
s−u,T2

t

]
T2
tT2

s−u

(
3J4 + J5 − J6 − 2J7 − J9

)
+ 1

32T2
s−u

[
T2
s−u,T2

t

]
T2
t

(
J1 + 2J2 − 4J3 + 3J4 − 4J6 + 4J7 − 2J9

)}
〈j1|i1〉.

Here we notice some important aspects of the reduced amplitude. As anticipated, all terms
arising from 3→ 1 and 1→ 3 transitions, eq. (5.26), which are proportional to the quartic
Casimir invariants dARi and dARj , cancel in the sum with the 3→ 3 amplitude, eq. (5.22)
exactly, to all orders in ε. This cancellation has already been observed in the three-loop
reduced amplitude, in eq. (5.16). Based on this observation, we conjecture that transition
amplitudes connecting three-Reggeon states with a single Reggeon cancel in the reduced
amplitude M̂(−),NNLL to all perturbative orders. More precisely, we expect a cancellation
in eq. (3.37) between the quartic Casimir contributions associated with the projectile and
the target inside 〈j3|H̃ l

3→3|i3〉 and the entire contribution due to 〈j1|H̃3→1H̃
l
3→3|i3〉 and

〈j3|H̃ l
3→3H̃1→3|i1〉, for all l.
The first line in eq. (5.30) is proportional to the colour factor dAA

NA
− C4

A
24 , which emerges

from the sum of eqs. (5.22) and (5.29). These are indeed the only contributions that involve
dAA and C4

A. Interestingly, this combination is non-planar, as it can be easily checked by
using the expression of dAA in SU(Nc), given in eq. (4.42)

dAA
NA
− C4

A

24 = 0 ·N4
c + 3

2N
2
c . (5.31)

All remaining terms in eq. (5.30) are manifestly non-planar, because they are written in terms
of commutators of T2

s−u and T2
t . This guarantees that the four-loop reduced amplitude is

non-planar as a whole. Notably, all planar contributions in the 3→ 3 transition, which are
proportional to the colour factors {dARi , dARj} and {dAA, C4

A}, are cancelled exactly by the
1→ 3 and 3→ 1 transitions, and by the 1→ 3→ 1 transition, respectively, to all orders in
ε. This mechanism is in place starting at four loops, where all transitions amplitudes are
available. At two and at three loops, there remain planar terms in the reduced amplitudes,
which are associated to the 3→ 3 transitions in eq. (5.5) and (5.14), respectively.

We expand the result in eq. (5.30) using the Ji integrals in section 4.3 and obtain

M̂(−,4,2) = π2 r4
Γ

2

[
1
ε4

K(4) +
(1
ε
ζ3 + 3

2ζ4

)
K(1) +O(ε)

]
M̂tree, (5.32)
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where we replaced ζ̂3 using eq. (4.71) to explicitly display the resulting O(ε0) contribution.
This result is exact in as far as divergent and finite contributions to M̂(−,4,2) are concerned.
Higher orders in the ε expansion, which we suppressed here, can be readily obtained from
eq. (5.30) using the integrals in section 4.3. The colour structures in eq. (5.32) are defined by

K(4) = 1
96
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t + 7

576T2
t

[(
T2
s−u

)2
,T2

t

]
− 1

192
[
T2
s−u,T2

t

]
T2
tT2

s−u −
5

192T2
s−u

[
T2
s−u,T2

t

]
T2
t ,

(5.33a)

K(1) = 49
48
[
T2
s−u,

[
T2
s−u,T2

t

]]
T2
t −

47
288T2

t

[(
T2
s−u

)2
,T2

t

]
+ 101

96
[
T2
s−u,T2

t

]
T2
tT2

s−u −
49
48T2

s−u
[
T2
s−u,T2

t

]
T2
t + 1

24

(
dAA
NA
− C4

A

24

)
.

(5.33b)

The colour tensors in eqs. (5.33a) and (5.33b) have a transparent interpretation in the large-
Nc limit. However, different choices of colour bases can also be considered. For instance,
ref. [61] proposes a basis of nested commutators, which allows one to uncover all-orders
relations between the Regge limits of N = 4 SYM and N = 8 supergravity amplitudes, and
verifies that such basis is suitable to write the three-loop N = 4 amplitude of ref. [60]. We
checked that also the four-loop amplitude in eq. (5.32) can be expressed in the basis of
ref. [61], by computing explicitly eqs. (5.33a) and (5.33b) in the adjoint representation.

Explicit results of the four-loop reduced amplitude, eq. (5.32), expanded in ε and
evaluated in t-channel colour basis are presented in appendix D. Specifically, the octet and
the singlet components of the quark-quark reduced amplitudes are presented, respectively,
in eqs. (D.3a) and (D.4c). The antisymmetric octet and the decuplet of the gluon-gluon
amplitude are given in eqs. (D.3b) and (D.5c), respectively. The antisymmetric octet
component of the quark-gluon amplitude is reported in eq. (D.3c).

5.4 Disentangling the pole and cut contributions

We have been computing amplitudes in the MRS scheme of eq. (2.38), where we have
separated the contributions from transitions mediated purely by single-Reggeon states from
those involving multiple-Reggeon states, which we explicitly computed to four loops. In this
section we will show that by redefining the two-loop impact factors C(2)

i and the three-loop
Regge trajectory α(3)

g , we can absorb the entire set of planar corrections at two and three
loops arising in the multi-Reggeon exchanges of eqs. (5.9) and (5.17) respectively, into a
Regge-pole factorising term, thus rendering the remaining term, which is associated with
the Regge cut, non-planar. This implements the Regge-cut scheme of eq. (2.39).

The fact that this transformation can be done is important and non-trivial. It requires
in particular that the planar MRS corrections would themselves be process-independent. In
fact, we already know that this is the case, see eqs. (5.11) and (5.18) above. To expose the
different contributions explicitly, we will compute the full NNLL odd amplitude at two loops,
three loops and four loops for qq, gg and qg scattering. We begin with the decomposition
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in eq. (2.38), which we expand in the coupling and the high-energy logarithm as follows:

M(−)
ij→ij = eCAαg(t)LCi(t)Cj(t)Mtree

ij→ij +M(−),MRS
ij→ij

≡
∞∑

m,n=0

(
αs
π

)m
Ln
[
p

(m,n)
ij c

[8a]
ij + (iπ)2(rΓ)mf (m,n)

ij

]
Mtree,[8a]

ij→ij ,
(5.34)

where we define the functions p(m,n)
ij and f (m,n)

ij for the SRS and MRS parts respectively,
and where the tree amplitude with the octet colour tensor c[8a]

ij stripped off,Mtree,[8a]
ij→ij , is

defined in eq. (2.13). Note that f (m,n)
ij is a linear combination of colour tensors (depending

on the representations of the scattered partons i and j) while from p
(m,n)
ij we have extracted

the colour tensor structure, so as to emphasise the fact that the Regge pole contributes
only to the c[8a]

ij component and does not involve other colour components. The impact
factors Ci/j(t) are assumed to be evaluated at the renormalisation scale µ2 = −t. We
utilise the orthornormal t-channel basis of refs. [32, 35], given in eq. (2.15) for the relevant
colour tensors.

The function p(m,n)
ij can be found from expanding the exponential in eq. (5.34) where the

quark and gluon impact factors and gluon Regge trajectory in QCD are given in appendix A,
while f (m,n)

ij can be found from the reduced amplitudes given in sections 5.1 through 5.3.
Using eqs. (2.44), (2.45) and (5.34) we have

M(−),MRS
ij→ij = (iπ)2

∞∑
m=2

(
αs
π
rΓ

)m m−2∑
n=0

Lnf
(m,n)
ij Mtree,[8a]

ij→ij

= Zi(t)Zj(t)eT
2
tαg(t)L

(
M̂(−)

ij→ij −Di(t)Dj(t)Mtree
ij→ij

)
,

(5.35)

where we indicated that the expansion starts at two loops and that the highest logarithms
are NNLL, with n = m − 2. The combination in parentheses in the second line is the
M̂(−),MRS

ij→ij of eq. (2.45). We now evaluate pij and fij at NNLL accuracy at two, three and
four loops in the MRS scheme. Subsequently, we will use these values to compute the
corresponding coefficients in the cut scheme of eq. (2.39):

M(−)
ij→ij = eCAα̃g(t)L C̃i(t) C̃j(t)Mtree

ij→ij +M(−),cut
ij→ij

≡
∞∑

m,n=0

(
αs
π

)m
Ln
[
p̃

(m,n)
ij c

[8a]
ij + (iπ)2(rΓ)mf̃ (m,n)

ij

]
Mtree,[8a]

ij→ij ,
(5.36)

where f̃ij is related to fij by simply removing the planar 8a component (there is no change
of the remaining components). Of course, the sum of terms in the square brackets in
eq. (5.36) must exactly match that in eq. (5.34), that is, the relation between the NNLL
coefficients in the MRS and cut schemes is consistent with

(iπ)2(rΓ)m
(
f̃

(m,m−2)
ij − f (m,m−2)

ij

)
= −

(
p̃

(m,m−2)
ij − p(m,m−2)

ij

)
c

[8a]
ij . (5.37)

In the following we shall see that the freedom to make such shifts exists only for two and
three loops (m = 2, 3) corresponding respectively to fixing the impact factor C̃(2)

i and the
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three-loop Regge trajectory α̃(3)
g . At four loop and beyond there are no parameters that

could be tuned at NNLL, and given that (on general grounds [1, 3, 4]) Regge cuts must
be associated with non-planar diagrams, one should expect f (m,m−2)

ij to be non-planar at
four loops and beyond, and of course then f̃ (m,m−2)

ij = f
(m,m−2)
ij for all m ≥ 4. We shall see

explicitly that this expectation is realised at four loop: result of the calculation of f (4,2)
ij is

strictly non-planar.
One might also contemplate alternative schemes in which the difference in eq. (5.37)

involves non-planar contributions beyond the planar ones. In what follows we shall see
that at two loops there is indeed some freedom to do that, and absorb further non-planar
corrections from the MRS component into the impact factors of the Regge pole. This directly
reproduces the scheme for the Regge cut proposed by Fadin and Lipatov in ref. [34]. At three
loops, in turn, there is no such freedom, since non-planar terms would be unnatural in α̃(3)

g ,
which is expected to be computable as a correlator of cusped (lightlike) Wilson lines.13 The
non-abelian exponentiation theorem [111, 112] then implies a simple, maximally non-Abelian
colour structure from any gluonic diagrams, with (Ncαs)m for m = 2, 3, respectively.

5.4.1 Two loops

At two loops we find the NNLL functions p(2,0)
ij and f (2,0)

ij as follows: p(2,0)
ij is obtained from

eq. (5.34) using the expansion of the impact factors defined in eq. (2.43a),

p
(2,0)
ij = C

(2)
i + C

(2)
j + C

(1)
i C

(1)
j . (5.38)

In turn, f (2,0)
ij is obtained from eqs. (5.35) and (5.9):

(iπ)2(rΓ)2f
(2,0)
ij Mtree,[8a]

ij→ij = M̂(−,2,0) −
(
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

)
Mtree

ij→ij

= π2(rΓ)2S(2)(ε)
(

(T2
s−u)2 − 1

12C
2
A

)
Mtree

ij→ij , (5.39)

where S(2)(ε) is given in eq. (5.10). The impact-factor coefficients C(n)
i in eq. (5.38) are

theory-dependent and can be found in QCD from the expressions for D(n)
i and Z(n)

i given
in appendix A. Here, f (2,0)

ij is driven solely by the three-Reggeon exchange in eq. (5.5).
Evaluating this function in the t-channel basis for different partonic processes, we have

f (2,0)
qq = −S(2) (ε)

[(
N2
c

6 − 1 + 3
N2
c

)
c[8]
qq +

√
N2
c − 1

(1
2 −

2
N2
c

)
c[1]
qq

]
, (5.40a)

f (2,0)
gg = −S(2) (ε)

(N2
c

6 + 6
)
c[8a]
gg + 3

√
N2
c − 4
2 c[10+1̄0]

gg

 , (5.40b)

f (2,0)
qg = −S(2) (ε)

(
N2
c

6 + 1
)
c[8a]
qg , (5.40c)

13At two loops both the singular and finite parts of αg(t) (known from refs. [29, 79–82]) have been observed
(see equation (1.6) of ref. [77]) to be related to the simple wedge configuration of two semi-infinite lightlike
Wilson lines meeting at a cusp, which was computed to this order in refs. [77, 110]. Note that the finite
part differs by a term proportional to b0π2, which is yet to be understood. Three-loop computations of this
Wilson-line correlator are still lacking.
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Now, it is evident that the leading-colour coefficient of c[8a]
ij is the same for the different

processes:

f
(2,0)
ij

∣∣∣
planar

= −N
2
c

6 S(2) (qε) c[8a]
ij = N2

c

6

( 1
8ε2 −

3
4ζ3ε−

9
8ζ4ε

2 +O(ε3)
)
c

[8a]
ij , (5.41)

which is in agreement with the universal result of M̂(−,2,0)
∣∣∣
planar

in eq. (5.11), as it must
be. We then shift to the Regge-cut basis according to

(iπ)2(rΓ)2f̃
(2,0)
ij ≡ (iπ)2(rΓ)2

[
f

(2,0)
ij + N2

c

6 S(2)(ε)c[8a]
ij

]
= (iπ)2(rΓ)2f

(2,0)
ij +

(
p

(2,0)
ij − p̃(2,0)

ij

)
c

[8a]
ij ,

(5.42)

where in the first line we defined f̃ (2,0)
ij by subtracting the planar part of f (2,0)

ij using eq. (5.41)
and in the second we required a corresponding shift of p(2,0)

ij using eq. (5.37). To implement
the latter we now recall eq. (5.38) and similarly expand the pole term in eq. (5.36) to two
loops getting

p̃
(2,0)
ij = C̃

(2)
i + C̃

(2)
j + C

(1)
i C

(1)
j . (5.43)

Note that sinceM(−),cut
ij→ij vanishes at NLL, the pole term is uniquely defined at that order

and we have C̃(1)
i/j = C

(1)
i/j . The required shift of the impact factor coefficient is

C̃
(2)
i/j = C

(2)
i/j +N2

c (rΓ)2 π
2

6
1
2S

(2)(ε)

= C
(2)
i/j −N

2
c (rΓ)2 π

2

6
1
2

( 1
8ε2 −

3
4ζ3ε−

9
8ζ4ε

2 +O(ε3)
)
,

(5.44)

where we retain the target-projectile symmetry by shifting C(2)
i and C(2)

j equally.
Our two-loop amplitude is then written in the Regge-cut scheme from eq. (5.36) as

M(−,2,0)
ij→ij =

[
p̃

(2,0)
ij c

[8a]
ij + (iπ)2(rΓ)2f̃

(2,0)
ij

]
Mtree,[8a]

ij→ij

=
[
p̃

(2,0)
ij + π2(rΓ)2S(2)(ε)

(
(T2

s−u)2 − C2
A

4

)]
Mtree

ij→ij

(5.45)

where we can then write

M(−,2,0), cut
ij→ij = π2(rΓ)2S(2)(ε)

(
(T2

s−u)2 − C2
A

4

)
Mtree

ij→ij , (5.46)

which can be easily verified to be non-planar by the identity in eq. (5.8). By evaluating the
contribution to the octet ofM(−,2,0), cut

ij→ij for the scattering particles in the fundamental or
the adjoint representations, we find agreement with the Regge-pole factorisation breaking
term R

(2),0,[8]
ij , which was defined in refs. [30, 32] based on considerations about the infrared

singularities of the amplitudes rather than direct calculation.
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Another proposed separation is that of Fadin and Lipatov in ref. [34], which we will
name the FL scheme. It can be achieved by not only absorbing the leading-colour component
of f (2,0)

ij into the Regge-pole term, but also the κ(Ri) terms from the decomposition of
(T2

s−u)2 in eq. (5.8). The impact factors are shifted from the MRS scheme by

C
FL,(2)
i = C

(2)
i + (rΓ)2 π2

(
N2
c

12 + 4κ(Ri)
)
S(2)(ε) (5.47)

and CFL,(2)
j can be found by replacing C(2)

i → C
(2)
j and κ(Ri) → κ(Rj) above. Then the

Regge-cut term in the FL scheme can be found to be

M(−,2,0),FL-cut
ij→ij = π2(rΓ)2S(2)(ε)

(
(T2

s−u)2 − C2
A

4 − 4
(
κ(Ri) + κ(Rj)

))
Mtree

ij→ij . (5.48)

The colour structure of eq. (5.48) for the different processes aligns completely with the
CCij coefficients of ref. [34]. This can be checked using eq. (5.40) and the definition of the
κ(Ri) in eq. (5.7). Upon using eq. (5.8) to substitute for (T2

s−u)2 in eq. (5.48) we see that
the Regge-cut term in the FL scheme at two loops may be written directly in terms of
commutators of T2

t and T2
s−u.

5.4.2 Three loops

At three loops, the SRS terms obtained from the expansion of eq. (5.34) read:

p
(3,1)
ij = Nc

[
α(3)
g (t) + α(2)

g (t)
(
C

(1)
i + C

(1)
j

)
+ α(1)

g (t)
(
C

(1)
i C

(1)
j + C

(2)
i + C

(2)
j

)]
, (5.49)

while the MRS contribution is obtained from eq. (5.35) and using the expression from the
first line of eq. (5.39) we have

(iπ)2(rΓ)3f
(3,1)
ij Mtree,[8a]

ij→ij = M̂(−,3,1) + α(1)
g (t)T2

t (iπ)2(rΓ)2f
(2,0)
ij Mtree,[8a]

ij→ij , (5.50)

where M̂(−,3,1) is given by eq. (5.17). Taking the planar part of the above equation and
using eq. (5.18) we obtain (upon dropping an overall factor of (iπ)2):

r3
Γf

(3,1)
ij

∣∣∣
planar

= r3
Γ S

(3)
C (ε)N3

c c
[8a]
ij + α(1)

g (t)Nc(rΓ)2f
(2,0)
ij

∣∣∣
planar

= r3
ΓN

3
c

[
S

(3)
C (ε)− 1

12εS
(2)(ε)

]
c

[8a]
ij

= r3
ΓN

3
c

[ 1
108ε3 + ζ3

54 + ζ4
36ε+O(ε2)

]
c

[8a]
ij ,

(5.51)

where in the second line we used eq. (5.41) and in the third we substituted the explicit
expansions of S(2)(ε) and S(3)

C (ε) from eqs. (5.9) and (5.15c), respectively.
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As a check, let us evaluate f (3,1)
ij for the different partonic processes,

f (3,1)
qq =

[
N3
c

( 1
108ε3 + ζ3

54 + ζ4
36ε

)
+Nc

(
− 1

12ε3 + 11ζ3
6 + 11ζ4

6 ε

)
+ 1
Nc

( 5
24ε3 −

31ζ3
12 −

31ζ4
8 ε

)
+O(ε2)

]
c[8]
qq

+
√
N2
c − 1N

2
c − 4
Nc

[( 1
48ε3 + ζ3

24 + ζ4
16ε

)
+O(ε2)

]
c[1]
qq , (5.52a)

f (3,1)
gg =

[
N3
c

( 1
108ε3 + ζ3

54 + ζ4
36ε

)
+Nc

( 1
3ε3 + 2ζ3

3 + ζ4ε

)
+O(ε2)

]
c[8a]
gg

+

√
N2
c − 4
2 Nc

( 7
24ε3 −

65ζ3
12 −

65ζ4
8 ε+O(ε2)

)
c[10+1̄0]
gg , (5.52b)

f (3,1)
qg =

[
N3
c

( 1
108ε3 + ζ3

54 + ζ4
36ε

)
+Nc

( 1
48ε3 + 61ζ3

24 + 61ζ4
16 ε

)
+O(ε2)

]
c[8a]
qg . (5.52c)

It is then clear that the leading-colour component of c[8a]
ij is the same, consistently with

the general result of eq. (5.51). Now, as before, we change to the Regge-cut scheme by
expanding the pole term in eq. (5.36) to three loops

p̃
(3,1)
ij = Nc

[
α̃(3)
g (t) + α(2)

g (t)
(
C

(1)
i + C

(1)
j

)
+ α(1)

g (t)
(
C

(1)
i C

(1)
j + C̃

(2)
i + C̃

(2)
j

)]
. (5.53)

Note that again, since the pole term at NLL is uniquely defined, we have α̃(2)
g (t) = α

(2)
g (t).

The f̃ (3,1)
ij is found by subtracting the planar piece of eq. (5.51)

f̃
(3,1)
ij = f

(3,1)
ij − f

(3,1)
ij

∣∣∣
planar

. (5.54)

Using eq. (5.37) we then have

(iπ)2r3
Γ f

(3,1)
ij

∣∣∣
planar

= −
(
p

(3,1)
ij − p̃(3,1)

ij

)
c

[8a]
ij (5.55)

= −Nc

[
α(3)
g (t)− α̃(3)

g (t) + α(1)
g (t)

(
C

(2)
i − C̃

(2)
i + C

(2)
j − C̃

(2)
j

)]
c

[8a]
ij ,

where we used the expressions for p(3,1)
ij and p̃(3,1)

ij in eqs. (5.49) and (5.53), respectively.
Substituting the value of the difference of the impact factors in eq. (5.44) we can see that
the ensuing term directly cancels the S(2)(ε) term of f (3,1)

ij

∣∣∣
planar

in eq. (5.51). Thus, upon

rearranging for α̃(3)
g (t), we find

α̃(3)
g (t) = α(3)

g (t)− (rΓ)3N2
c π

2S
(3)
C (ε). (5.56)

We can evaluate α̃(3)
g (t) explicitly in N = 4 SYM, as α(3)

g (t) in the MRS scheme was
extracted in ref. [35] upon comparison to the three-loop four-gluon amplitude of ref. [60].
There it is found that

α(3)
g (t)|SYM = N2

c

(
− ζ2

144
1
ε3

+ 49ζ4
192

1
ε

+ 107
144ζ2ζ3 + ζ5

4 +O(ε)
)
. (5.57)
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Then, using eq. (5.56) and the value for S(3)
C (ε) in eq. (5.15c), we conclude that

α̃(3)
g (t)|SYM = N2

c

(11
48ζ4

1
ε

+ 5
24ζ2ζ3 + ζ5

4 +O(ε)
)
. (5.58)

As expected from the discussion around eq. (2.40), this new definition of the Regge trajectory
in the Regge-cut scheme has the same singularity structure as K(3), the integral of the
three-loop coefficient of the lightlike cusp anomalous dimension. This can be verified
when one substitutes the maximal transcendental part of γ(3)

K = 11
4 ζ4 from eq. (B.2) into

K(3) of eq. (A.2a), remembering that the beta function coefficients vanishes in N = 4
SYM. It is in complete agreement with the result from the planar theory [113–115], in line
with the expectation that it is an eikonal quantity, featuring only maximally non-Abelian
colour structures.

Let us also express the three-loop amplitude in the Regge-cut scheme as

M(−,3,1)
ij→ij =

[
p̃

(3,1)
ij c

[8a]
ij + (iπ)2(rΓ)3f̃

(3,1)
ij

]
Mtree,[8a]

ij→ij (5.59)

where, upon comparison to eq. (5.36), we have after substituting f̃ (3,1)
ij from eq. (5.54) and

using theM(−,2,0), cut
ij→ij of eq. (5.46)

M(−,3,1), cut
ij→ij = (iπ)2r3

Γ

[
S

(3)
A (ε)T2

s−u[T2
s−u,T2

t ] + S
(3)
B (ε)[T2

s−u,T2
t ]T2

s−u

]
Mtree

ij→ij

+ α(1)
g T2

tM
(−,2,0), cut
ij→ij . (5.60)

We verify that the contribution ofM(−,3,1), cut
ij→ij to the colour octet matches the factorisation

breaking term in the infrared singularities of the three-loop amplitudes, defined as the
function R(3),1,[8]

ij in refs. [30, 32].
In the FL scheme, the three-loop Regge trajectory is still found according to the

definition in eq. (5.56). Therefore, the expression for the FL cut will be eq. (5.60) with the
replacement ofM(−,2,0), cut

ij→ij byM(−,2,0),FL-cut
ij→ij of eq. (5.48) and it agrees with the results of

refs. [33, 34].

5.4.3 Four loops

At four loops the expansions of eqs. (5.34) and (5.35) in the MRS scheme give

p
(4,2)
ij =N2

c

[
α(1)
g (t)α(3)

g (t) + 1
2
(
α(2)
g (t)

)2
+ α(1)

g (t)α(2)
g (t)

(
C

(1)
i + C

(1)
j

)
+ 1

2
(
α(1)
g (t)

)2 (
C

(1)
i C

(1)
j + C

(2)
i + C

(2)
j

) ]
, (5.61)

and

(iπ)2(rΓ)4f
(4,2)
ij Mtree,[8a]

ij→ij = M̂(−,4,2) + α(1)
g T2

tM̂(−,3,1)

+ 1
2
(
α(1)
g

)2 (
T2
t

)2
(iπ)2(rΓ)2f

(2,0)
ij Mtree,[8a]

ij→ij . (5.62)
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As discussed following eq. (5.32) the MRS result for M̂(−,4,2) is non-planar. Therefore, the
only planar corrections to f (4,2)

ij in eq. (5.62) come from the other terms, which, as discussed
previously, are universal. Evaluating f (4,2)

ij for the different processes we find

f (4,2)
qq =

[
N4
c

( 7
3456ε4 + 43ζ3

1728ε + 43ζ4
1152

)
−N2

c

( 3
128ε4 −

9ζ3
32ε −

27ζ4
64

)
+ 7

128ε4 −
ζ3
2ε −

3ζ4
4 +O(ε)

]
c[8]
qq +

√
N2
c − 1N

2
c − 4
256

( 1
ε4
− 2ζ3

ε
− 3ζ4 +O(ε)

)
c[1]
qq ,

(5.63a)

f (4,2)
gg =

[
N4
c

( 7
3456ε4 + 43ζ3

1728ε + 43ζ4
1152

)
+N2

c

( 17
192ε4 −

217ζ3
96ε −

217ζ4
64

)
+ 1

16ε4 −
101ζ3

8ε − 303ζ4
16 +O(ε)

]
c[8a]
gg

+

√
N2
c − 4
512

[
N2
c

( 15
8ε4 −

305ζ3
4ε − 915ζ4

8

)
+ 1

2ε4 −
101ζ3
ε
− 303ζ4

2 +O(ε)
]
c[10+1̄0]
gg ,

(5.63b)

f (4,2)
qg =

[
N4
c

( 7
3456ε4 + 43ζ3

1728ε + 43ζ4
1152

)
+N2

c

(5ζ3
16ε + 15ζ4

32

)
+O(ε)

]
c[8a]
qg . (5.63c)

In the Regge-cut scheme we have instead

p̃
(4,2)
ij =N2

c

[
α(1)
g (t)α̃(3)

g (t) + 1
2(α(2)

g (t))2 + α(1)
g (t)α(2)

g (t)
(
C

(1)
i + C

(1)
j

)
+ 1

2(α(1)
g (t))2

(
C

(1)
i C

(1)
j + C̃

(2)
i + C̃

(2)
j

) ]
, (5.64)

for the pole term in the amplitude of eq. (5.36). Thus, the resulting shift is

p
(4,2)
ij − p̃(4,2)

ij = N2
c

[
α(1)
g (t)

(
α(3)
g (t)− α̃(3)

g (t)
)

+ 1
2
(
α(1)
g (t)

)2 (
C

(2)
i − C̃

(2)
i + C

(2)
j − C̃

(2)
j

)]
= N4

c (rΓ)4π2 1
2ε

[
S

(3)
C (ε)− 1

24εS
(2)(ε)

]
, (5.65)

where we have substituted eqs. (5.56) and (5.44). Then, using eq. (5.37) we have

(iπ)2(rΓ)4f̃
(4,2)
ij = (iπ)2(rΓ)4f

(4,2)
ij +

(
p

(4,2)
ij − p̃(4,2)

ij

)
c

[8a]
ij (5.66)

= (iπ)2(rΓ)4
[
f

(4,2)
ij −N4

c

( 7
3456ε4 + 43ζ3

1728ε + 43ζ4
1152 +O(ε)

)
c

[8a]
ij

]
.

Comparing eq. (5.66) with the explicit results of the different processes in eq. (5.63) it is
clear that f̃ (4,2)

ij is non-planar in the octet, as expected. This cut contribution in eq. (5.66),
after some algebra using eq. (5.65) and the two and three-loop cut amplitudes in eqs. (5.46)
and (5.60) respectively, can be written as

M(−,4,2), cut
ij→ij = M̂(−,4,2) + α(1)

g (t)T2
tM

(−,3,1), cut
ij→ij − 1

2(α(1)
g (t))2(T2

t )2M(−,2,0), cut
ij→ij . (5.67)
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We have shifted all planar contributions arising from the three-Reggeon exchange and
its mixing with a single Reggeon into the redefined two-loop impact factors C̃(2)

i and the
three-loop Regge trajectory α̃(3)

g (t), rendering the cut contribution non-planar. This will
remain true to all loop orders,

M(−,n,n−2), cut
ij→ij =

n−4∑
m=0

1
m!
(
α(1)
g (t)T2

t

)m
M̂(−,n−m,n−m−2) (5.68)

+ 1
(n− 3)!

(
α(1)
g (t)T2

t

)n−3
M(−,3,1), cut

ij→ij − n− 3
(n− 2)!

(
α(1)
g (t)T2

t

)n−2
M(−,2,0), cut

ij→ij .

With the expectation that the reduced amplitude at four loops and beyond will be non-planar
(which, at least at four loops, is realised through cancellation of the planar contributions in
the pure 3→ 3 transitions with the entire contribution due to the 1→ 3 and 3→ 1 mixing),
eq. (5.68) shows that the NNLL cut contribution to the amplitude in the cut scheme will
also be non-planar. We stress that the freedom we used to define this scheme at two and
three loops is no more there at four loops and beyond, so forM(−,n,n−2), cut

ij→ij to comply with
the general expectation [1, 3, 4] that the cut is non-planar, the reduced amplitude at four
loops and beyond must indeed be non-planar.

6 Intersection of Regge and infrared factorisation

In addition to the high-energy limit of scattering amplitudes, where Regge factorisation
and exponentiation are observed, there is a complementary picture of factorisation and
exponentiation which is valid in general kinematics, namely infrared factorisation in fixed-
angle scattering. The latter is governed by the soft anomalous dimension. In this section
we will explore the intersection of these two, namely the soft anomalous dimension in the
asymptotic high-energy limit. We will use the four-loop NNLL reduced amplitude computed
in eq. (5.32) to study infrared divergences at the same logarithmic accuracy.

6.1 Infrared factorisation in the high-energy limit

It is well known that long-distance singularities factorise from generic massless n-particle
scattering amplitudesMn (which we assume to have been ultraviolet-renormalised) in the
following way [47–50, 116, 117]

Mn

(
{sij}, µ, αs(µ2), ε

)
= Zn

(
{sij}, µ, αs(µ2), ε

)
· Hn

(
{sij}, µ, αs(µ2), ε

)
, (6.1)

where sij are the kinematic invariants and ε is the dimensional regulator. Eq. (6.1) is the
n-particle generalisation of eq. (2.23). The divergences of the amplitude Mn as ε → 0
are captured in an infrared-renormalisation factor we denote by Zn, leaving a finite, so-
called hard function H. The soft anomalous dimension Γn is defined by the evolution
equation [47–56, 118, 119]

µ
d

dµ
Zn
(
{sij}, µ, αs(µ2), ε

)
= −Zn

(
{sij}, µ, αs(µ2), ε

)
Γn({sij}, µ, αs(µ2)) , (6.2)

– 59 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
3

whose solution is the exponential

Zn
(
{sij}, µ, αs(µ2), ε

)
= P exp

{
−1

2

∫ µ2

0

dλ2

λ2 Γn({sij}, λ, αs(λ2))
}
. (6.3)

Here P stands for “path” ordering of the colour matrices appearing in the expansion of the
exponential in correspondence with the scale λ, such that harder instances of Γn appear
closer to the hard function H. The anomalous dimension is expanded in terms of the
d = 4 − 2ε dimensional coupling (2.25b), such that integration over this coupling in the
exponent of eq. (6.3) generates the infrared poles in ε as λ → 0. The soft anomalous
dimension is known through three loops [55, 56] and we present an ansatz for it at four
loops in section 7.1 following ref. [54], which we then constrain using the high-energy limit.

In the high-energy limit of 2→ 2 scattering, the soft anomalous dimension takes the
form of eq. (2.26) which we repeat here for clarity [35, 45, 46]

Γij→ij
(
αs(λ2), L, −t

λ2

)
= 1

2γK(αs)
[
LT2

t + iπT2
s−u

]
+ Γi

(
αs,
−t
λ2

)
+ Γj

(
αs,
−t
λ2

)

+
∞∑
`=3

(
αs
π

)` `−1∑
m=0

Lm∆(`,m),

(6.4)

where Γi is the anomalous dimension generating collinear singularities, defined in eq. (2.29),
γK is the component of the cusp anomalous dimension (2.29) proportional to the quadratic
Casimir, L the signature-even large logarithm of eq. (2.9), i corresponds to the projectile and
j to the target. The first line of eq. (6.4) is the so-called dipole formula in the high-energy
limit. Through two loops there are only dipole correlations, as there are no tripole terms in
massless scattering [49–51, 53]. All terms that do not conform to this structure are collected
in ∆, which starts at three loops (see appendix E).

Instead of using the full amplitude computed in the Regge limit to compare to the
factorisation formula in eq. (6.1), we will work here directly with the reduced amplitude in
eq. (2.44). Using the latter along with eq. (6.1) we can write

M̂ = e−T2
tαg(t)LZ−1

i Z−1
j ZH

≡ e−T2
tαg(t)L Z̃H

(6.5)

where Zi is determined by Γi according to eq. (2.42) and we defined a modified infrared-
renormalisation factor Z̃, which generates no collinear singularities. This will itself have a
modified soft anomalous dimension

Γ̃ (L,αs) ≡ Γij→ij
(
αs, L,

−t
λ2

)
− Γi

(
αs,
−t
λ2

)
− Γj

(
αs,
−t
λ2

)

= 1
2γK(αs)

[
LT2

t + iπT2
s−u

]
+
∞∑
`=3

(
αs
π

)` `−1∑
m=0

Lm∆(`,m) , (6.6)

such that the corresponding infrared-renormalisation factor we defined in eq. (6.5) is
obtained, similarly to eq. (6.3), by

Z̃
(
L,αs(µ2), ε

)
= P exp

{
−1

2

∫ µ2

0

dλ2

λ2 Γ̃(L,αs(λ2))
}
. (6.7)
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Just as the amplitude can be separated by signature, so can Γ̃. Since Γ̃ appears as the
coefficient of the 1

ε poles multiplying the tree-level amplitude in eq. (2.5), which itself is
odd, Γ̃(±) corresponds to M̂(∓). We have Γ̃ = Γ̃(+) + Γ̃(−) with

Γ̃(+) (L,αs) = 1
2γK(αs)LT2

t +
∞∑
`=3

(
αs
π

)` `−1∑
m=0

Lm∆(+,`,m) , (6.8a)

Γ̃(−) (L,αs) = 1
2γK(αs)iπT2

s−u +
∞∑
`=3

(
αs
π

)` `−1∑
m=0

Lm∆(−,`,m) , (6.8b)

where we note that Γ̃(+) is even under s↔ u whereas Γ̃(−) is odd.
Upon inverting eq. (6.5) we have

H = Z̃−1eT
2
tαg(t)LM̂. (6.9)

By demanding H to be finite, we can use our knowledge of M̂ to determine Z̃. Specifically,
we can find the single-pole behaviour of Z̃, corresponding to the soft anomalous dimension
coefficients ∆(`,m) in eq. (6.6). Furthermore, the expansion provides a highly non-trivial
consistency check on the higher-order poles of the high-energy amplitude through four loops.

6.2 Expanding the factorisation formula in the high-energy limit

We now proceed to expand eq. (6.9) to four loops and NNLL accuracy. The expansion of Z̃
is not only complicated by it being a matrix exponential but also the path ordering present
in eq. (6.7) dictates the order of different instances of Γ̃ evaluated at different scales. It
is clear that the latter difficulty only starts being relevant at four loops, where there is a
term from the interference of the one-loop γ(1)

K and the three-loop ∆(3) in the expansion
of the exponential with Γ̃ of eq. (6.6) as the exponent. The term contributing to the odd
amplitude at NNLL is proportional to∫ µ2

0

dλ2

λ2

∫ λ2

0

dξ2

ξ2

{
γ

(1)
K (αs(ξ2))

[
T2
t∆(+,3,1)(αs(λ2)) + iπT2

s−u∆(−,3,2)(αs(λ2))
]

+
[
∆(+,3,1)(αs(ξ2))T2

t + iπ∆(−,3,2)(αs(ξ2))T2
s−u

]
γ

(1)
K (αs(λ2))

}
. (6.10)

By explicit calculation of ∆(3) [35, 55] we have

∆(−,3,2) = ∆(+,3,1) = 0 , (6.11)

see appendix E. As such (6.10) vanishes, so path-ordering does not in fact complicate
the expansion relevant for our NNLL analysis of the odd amplitude. We mention though
that path-ordering does need to be taken into account if we were to examine the NNLL
even amplitude or the N3LL odd amplitude, since the non-zero ∆(−,3,1) and ∆(+,3,0)

will contribute.
To proceed we recall the definition of K in eq. (2.30a) and define the integral of ∆,

both of which appear in the exponent in eq. (6.7),

K(αs(µ2)) = −1
4

∫ µ2

0

dλ2

λ2 γK(αs(λ2)) , Q∆(αs(µ2)) = −1
2

∫ µ2

0

dλ2

λ2 ∆(αs(λ2)) .

(6.12)
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Explicit results for γK(αs) are provided in eq. (B.2). Expressions for ∆(αs) at three loops
are summarised in appendix E and corresponding ones at four loops will be determined in
the present section.

We may now expand the exponentials in eq. (6.5) using the Zassenhaus formula [120],
as follows:

Z̃ = exp
[
K(LT2

t + iπT2
s−u) +Q∆

]
(6.13a)

= exp
[
K(LT2

t + iπT2
s−u)

]
eQ∆ + . . . (6.13b)

= eKXeKY e−
K2
2 [X,Y ] exp

[
K3

6
(
2[Y, [X,Y ]] + [X, [X,Y ]]

)]

× exp
[
−K

4

4!
(
[[[X,Y ], X], X] + 3[[[X,Y ], X], Y ] + 3[[[X,Y ], Y ], Y ]

)]
eQ∆ + . . .

(6.13c)

where for simplicity we defined X ≡ LT2
t and Y ≡ iπT2

s−u. The ellipses in eqs. (6.13b)
and (6.13c) denote terms that do not contribute to our required accuracy. The inverse of
eq. (6.13c) can then be easily found to be

Z̃−1 = (1−Q∆)
(

1+K4

4!
(
[[[X,Y ],X],X]+3[[[X,Y ],X],Y ]+3[[[X,Y ],Y ],Y ]

))

×
(

1−K
3

3!
(
2[Y, [X,Y ]]+[X, [X,Y ]]

))1+K2

2 [X,Y ]+ 1
2

(
K2

2 [X,Y ]
)2
e−KY e−KX ,

(6.14)

again, up to corrections irrelevant for NNLL accuracy through four loops. Then, following
ref. [35], we define a cusp-subtracted Regge trajectory

α̂g ≡ αg(t)−K (αs(−t)) . (6.15)

This definition is inspired by eq. (2.32), where we have seen that α̂(1)
g and α̂(2)

g are finite. It
is important to keep in mind though, that α̂(3)

g (in the MRS scheme,14 in which we work
here) is divergent. Using the definition of α̂g in eq. (6.15) the hard function in eq. (6.9)
admits

H = (1−Q∆)
(

1 + K4

4!
(
[[[X,Y ], X], X] + 3[[[X,Y ], X], Y ] + 3[[[X,Y ], Y ], Y ]

))

×
(

1− K3

3!
(
2[Y, [X,Y ]] + [X, [X,Y ]]

))(
1 + K2

2 [X,Y ] + K4

8 [X,Y ]2
)
e−KY eα̂gXM̂.

(6.16)

We will now expand the left and right hand side of eq. (6.16) in terms of αs/π and L. As
Y is logarithmically suppressed compared to X, we notice that Q∆, which is a pure pole in

14We have seen in section 5.4.2, that in the MRS scheme α̂(3)
g is divergent, while in the Regge-cut scheme

ˆ̃α(3)
g = α̃

(3)
g −K(3) is finite (see (A.10)).
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ε, cannot receive contributions at LL accuracy. Furthermore, the leading-logarithmic hard
function H(n,n) comes from only the first term in the expansion of the last exponential in
eq. (6.16). It is given solely by the one-loop α̂(1)

g

H(−,n,n) = 1
n!
(
α̂(1)
g T2

t

)n
M̂tree, (6.17)

and H(+,n,n) = 0. Without knowing the result for α̂(1)
g , eq. (6.17) immediately implies that

it must be finite. Indeed, using the explicit quantities, namely γ(1)
K of eq. (B.2) in (6.12)

along with eq. (2.7), we have

K(1) = 1
2ε ; α̂(1)

g = α(1)
g (t)−K(1) = rΓ

2ε −
1
2ε = O(ε) , (6.18)

which we have seen from eq. (2.31).

6.3 Extracting information from lower-loop orders

If we were to proceed directly to the four-loop NNLL hard function, H(4,2) in the expansion
of eq. (6.16) using the results of section 5 for M̂, we would find that it depends on αg
and Di. A priori these quantities are theory-dependent and are found after matching to the
full scattering amplitude calculation. However, using lower-loop results we will see that the
divergent terms of these quantities are universal (to the required logarithmic accuracy) and
do not depend on the underlying theory. The derivation of the formulae presented in this
section, up to three loops, follows closely section 4 of ref. [35].

6.3.1 One loop

At one loop the expansion of eq. (6.16) at NLL accuracy gives for the hard function

H(1,0) = M̂(1,0) − iπK(1)T2
s−uM̂tree. (6.19)

Taking the real and imaginary parts of eq. (6.19) we gain access to the odd and even
parts of the amplitude, respectively,

H(−,1,0) = M̂(−,1,0) =
(
D

(1)
i +D

(1)
j

)
M̂tree (6.20a)

H(+,1,0) = M̂(+,1,0) − iπK(1)T2
s−uM̂tree = iπ

(
rΓ
2ε −K

(1)
)

T2
s−uM̂tree (6.20b)

where we have used the results for M̂(+,1,0) and M̂(−,1,0) in eqs. (2.46a) and the one-
loop (2.45), respectively. We can then deduce that the one-loop impact factors need to be
finite. After matching to the one-loop amplitude, they are given by [35]

D(1)
g = −Nc

(67
72 − ζ2

)
+ 5

36nf +O(ε), (6.21a)

D(1)
q = Nc

(13
72 + 7

8ζ2

)
+ 1
Nc

(
1− 1

8ζ2

)
− 5

36nf +O(ε). (6.21b)

Higher-order terms in ε can be found in appendix A.
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6.3.2 Two loops

The expansion of eq. (6.16) at two loops gives the following expressions for the hard function
at NLL and NNLL,

H(2,1) = M̂(2,1) + α̂(1)
g T2

tM̂(1,0) + α̂(2)
g T2

tM̂tree

+ iπK(1)
(1

2K
(1)[T2

t ,T2
s−u]− α̂(1)

g T2
s−uT2

t

)
M̂tree, (6.22a)

H(2,0) = M̂(2,0) − π2

2 (K(1)T2
s−u)2M̂tree − iπ

(
K(2)T2

s−uM̂tree +K(1)T2
s−uM̂(1,0)

)
.

(6.22b)

We now take the odd part of eq. (6.22a) and using the result for the reduced amplitudes
M̂(−,1,0) in eq. (2.45) and that M̂(−,2,1) = 0 we have

H(−,2,1) =
(
α̂(2)
g + α̂(1)

g

(
D

(1)
i +D

(1)
j

))
T2
tM̂tree. (6.23)

As α̂(1)
g and D(1)

i are finite in eq. (6.23) then we know that α̂(2)
g needs to be finite. For the

real part of eq. (6.22b) we have

H(−,2,0) =
[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j −

π2

12(rΓ)2S(2)(ε)C2
A

+ π2
(

(rΓ)2S(2)(ε) + 1
2(K(1))2 +K(1)α̂(1)

g

)
(T2

s−u)2
]
M̂tree,

(6.24)

where we have used the result of M̂(−,2,0) in eq. (5.9). Using eq. (6.24) and the explicit
expressions for S(2)(ε) in eq. (5.10), and K(1) and α̂(1)

g in eq. (6.18), we find the universal
divergent terms of the two-loop impact factors,

D
(2)
i +D

(2)
j = −D(1)

i D
(1)
j + π2

12(rΓ)2S(2)(ε)C2
A +O(ε0)

= −C2
A

ζ2
16ε2 +O(ε0).

(6.25)

It may seem surprising that the collinear-subtracted impact factors contain further
divergences. We point out that the coefficients in eq. (6.25) depend on the choice of MRS
scheme. In the Regge-cut scheme, we define impact factors C̃i(t), which include universal
terms that arise from three-Reggeon exchanges according to eq. (5.44). The associated
collinear-subtracted impact factors are given by

C̃i/j(t) = Zi/j(t) D̃i/j(t). (6.26)

With this scheme choice, we collect contributions factorising in a Regge pole form eq. (2.39),

M(−),pole
ij→ij = Zi(t) D̃i(t)Zj(t) D̃j(t) eCAα̃g(t)LMtree

ij→ij . (6.27)

It is customary to rearrange the expression above into the crossing-symmetric sum of
exponential factors [121]

M(−),pole
ij→ij = Zi(t) D̄i(t)Zj(t) D̄j(t)

[(−s− i0
−t

)CAα̃g(t)
+
(−u− i0
−t

)CAα̃g(t)
]
Mtree

ij→ij ,

(6.28)
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where D̄i/j(t) = 1 + O(αs), are finite through two loops when ε → 0 [32]. We compare
eqs. (6.27) and (6.28), finding

D̃i/j(t) = D̄i/j(t)
√

cos
(
π CAα̃g(t)

2

)
= D̄i/j(t)

[
1−

(
αs
π

)2 π2 r2
Γ

64ε2 N
2
c +O(α3

s)
]
, (6.29)

where we used the one-loop Regge trajectory, eq. (2.7) and set the renormalisation scale
µ2 = −t.

Given that D̄i/j(t) is finite through two loops, eq. (6.29) implies that, by defining
D̃i/j(t) = 1 +∑

n>0 D̃
(n)
i/j

(
αs(−t)
π

)n
, we must have

D̃
(1)
i = O(ε0), D̃

(2)
i = −π

2N2
c

64ε2 +O(ε0), (6.30)

where the divergence in D̃(2)
i/j is fully fixed by the Regge trajectory according to eq. (6.29).

Eq. (6.30) is consistent with our results in the MRS scheme for the collinear-subtracted
impact factors at one and two loops, D(1)

i/j and D
(2)
i/j in eqs. (6.21) and (6.25), respectively.

Indeed, by using C̃(1)
i = C

(1)
i and eq. (5.44), we find

C̃i(t) = Ci(t) +
(
αs(−t)
π

)2
π2r2

Γ S
(2)(ε) N

2
c

12 +O(α3
s). (6.31)

Upon dividing by Zi on both sides and expanding in the strong coupling, we obtain the
coefficients of the collinear-subtracted impact factors in the cut scheme

D̃
(1)
i = D

(1)
i = O(ε0), (6.32)

D̃
(2)
i = D

(2)
i + π2r2

Γ S
(2)(ε) N

2
c

12 = −π
2N2

c

64ε2 +O(ε0), (6.33)

where we used the expansion of S(2)(ε) in eq. (5.10). Eq. (6.33) agrees with eq. (6.29), thus
explaining the origin of the divergence in eq. (6.25).

6.3.3 Three loops

At three loops we first see the appearance of the correction to the dipole formula, ∆.
Expanding eq. (6.16) to three loops we will only require the real part of the NNLL
amplitude:

H(−,3,1) = M̂(−,3,1) −Q(+,3,1)
∆ M̂tree + α̂(2)

g T2
tM̂(−,1,0) + α̂(1)

g T2
tM̂(−,2,0) + α̂(3)

g T2
tM̂tree

+ (K(1))2π
2

6
{
K(1)

(
T2
s−u[T2

t ,T2
s−u] + [T2

t , (T2
s−u)2]

)
− 3α̂(1)

g (T2
s−u)2T2

t

}
M̂tree

+ iπK(1)
{(

K(1)

2 [T2
t ,T2

s−u]− α̂(1)
g T2

s−uT2
t

)
M̂(+,1,0) −T2

s−uM̂(+,2,1)
}

=
{
CA

(
α̂(3)
g + α̂(2)

g (D(1)
i +D

(1)
j ) + α̂(1)

g (D(2)
i +D

(2)
j +D

(1)
i D

(1)
j )

)
− C3

Aπ
2
(
r3

ΓS
(3)
C + 1

12 α̂
(1)
g r2

ΓS
(2)
)
−Q(+,3,1)

∆

}
M̂tree +O(ε0), (6.34)
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where in the final expression we have dropped finite terms and used the results of the
odd amplitudes M̂(−,2,0) in eq. (5.9), M̂(−,3,1) in eq. (5.17), and the even NLL amplitudes
M̂(+,1,0) and M̂(+,2,1) in eqs. (2.46a) and (2.46b). The two terms proportional to C3

A in
the last line of the final expression originate in M̂(−,3,1) and α̂(1)

g T2
tM̂(−,2,0), respectively.

Using the explicit result that ∆(+,3,1) = 0 from refs. [35, 55], and the fact that the singular
terms in the curly brackets in eq. (6.34) must vanish, we find

α̂(3)
g + α̂(2)

g (D(1)
i +D

(1)
j ) + α̂(1)

g (D(2)
i +D

(2)
j +D

(1)
i D

(1)
j ) =

= C2
Aπ

2
(
r3

ΓS
(3)
C + 1

12 α̂
(1)
g r2

ΓS
(2)
)

+O(ε0) = −C2
A

π2

864

( 1
ε3
− 15ζ2

4ε

)
+O(ε0) .

(6.35)

Next, using the values of α̂(1)
g in eq. (6.18), D(2)

i in eq. (6.25), and that D(1)
i and α̂(2)

g are
finite we find for the universal divergent part of α̂(3)

g :

α̂(3)
g = C2

Aπ
2 r3

ΓS
(3)
C +O

(
ε0
)

= −C2
A

(
ζ2

144ε3 −
5ζ4
192

1
ε

)
+O

(
ε0
)
. (6.36)

The universal divergence of eq. (6.36) is in line with α(3)
g in N = 4 SYM extracted in ref. [35]

and quoted in eq. (5.57). Here we use the MRS scheme in the calculation of the reduced
amplitudes, as in ref. [35]. In section 5.4.2 we saw that in the Regge-cut scheme such a
divergence is not present, as α̃(3)

g −K(3) is finite (compare eq. (5.56) with eq. (6.36)).

6.4 The four-loop soft anomalous dimension and hard function

We are now ready to compute the NNLL hard function at four loops in terms of the reduced
amplitudes of the previous section. This will facilitate extracting the soft anomalous
dimension at this accuracy. The real part of the expansion of eq. (6.16) gives

H(−,4,2) =
4∑

n=2

(α̂(1)
g T2

t )4−n

(4−n)! M̂(−,n,n−2) + α̂(2)
g T2

t

(
α̂(1)
g T2

tM̂(−,1,0) +M̂(−,2,1)
)

−
{
π2

8
(
K(1)

)4 (
[T2

t ,T2
s−u]2 + 4

3[T2
t , [T2

t ,T2
s−u]]T2

s−u+[[[T2
t ,T2

s−u],T2
t ],T2

s−u]
)

+Re
[
Q

(4,2)
∆

]
+ π2

4
(
α̂(1)
g K(1)

)2
(T2

s−u)2(T2
t )2− 1

2
(
(α̂(2)

g )2 +2α̂(1)
g α̂(3)

g

)
(T2

t )2

− π
2

6 α̂
(1)
g

(
K(1)

)3 (
2[T2

s−u, [T2
t ,T2

s−u]]T2
t +3[T2

t ,T2
s−u]T2

s−uT2
t

)}
M̂tree

+ iπ
K(1)

2

{(
K(1)[T2

t ,T2
s−u]−2α̂(1)

g T2
s−uT2

t

)
M̂(+,2,1)−2T2

s−uM̂(+,3,2)

+
[
α̂(1)
g K(1)[T2

t ,T2
s−u]T2

t −
1
3
(
K(1)

)2
[T2

t , [T2
t ,T2

s−u]]

−
(
α̂(1)
g

)2
T2
s−u(T2

t )2
]
M̂(+,1,0)

}
,

(6.37)

where we have used Q(−,3,2)
∆ = 0 and Q(+,3,1)

∆ = 0 following eq. (E.2). Using the results of
K(1) and α̂(1)

g in eq. (6.18), α̂(2)
g = O(ε0), α̂(3)

g in eq. (6.36), the odd amplitudes M̂(−,2,1) = 0,
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M̂(−,2,0) in eq. (5.9), M̂(−,3,1) in eq. (5.17), the even amplitudes in eq. (2.46) and the newly
computed M̂(−,4,2) in eq. (5.32), we find, up to finite terms

H(−,4,2) =
{
π2ζ3
48ε

(
dAA
NA
− C4

A

24 + 1
4T2

t [T2
t , (T2

s−u)2] + 3
4[T2

s−u,T2
t ]T2

tT2
s−u

)

−Q(+,4,2)
∆ +O(ε0)

}
M̂tree. (6.38)

Using the fact that H(−,4,2) is finite, this equation directly amounts to determining Q(+,4,2)
∆ .

To determine ∆(+,4,2) using eq. (6.12) it is sufficient to use the leading-order expression for
the running coupling in eq. (2.25b), which yields ∆(+,4,2) = 8εQ(+,4,2)

∆ + . . . , so we obtain15

∆(+,4,2) = ζ2ζ3

{
dAA
NA
− C4

A

24 + 1
4T2

t [T2
t , (T2

s−u)2] + 3
4[T2

s−u,T2
t ]T2

tT2
s−u

}
≡ ζ2ζ3C

(+,4,2)
∆ ,

(6.39)

where in the second line we defined the colour structure C(+,4,2)
∆ . We note that the latter

is entirely non-planar, as it is subleading in the large-Nc limit compared to N4
c . This can

easily be seen as, according to the argument of eq. (4.50), commutators are inherently
subleading and that the term proportional to the identity behaves in the large-Nc limit as
eq. (5.31).

The finite term of the hard function in eq. (6.37) can be found to be

H(−,4,2) =
{
C2
A

2
(
α̂(2,0)
g

)2
+ 3

16ζ4ζ2C
(+,4,2)
∆ +O(ε)

}
M̂tree, (6.40)

where we encounter again the very same colour structure C(+,4,2)
∆ defined in eq. (6.39)

and α̂
(2,0)
g is the O(ε0) term of the finite α̂(2)

g . Since the term proportional to C
(+,4,2)
∆

is universal, eq. (6.40) conveniently displays the theory dependence of H(−,4,2), which is
restricted to the two-loop α̂(2)

g . One can also interpret eq. (6.40) as dressing Reggeons with
two infrared-renormalised Regge trajectory insertions associated with the Regge pole, plus
non-planar corrections stemming from the multi-Reggeon cuts.

We can find α̂
(2,0)
g for QCD, which is calculated using the explicit two-loop Regge

trajectory in eq. (2.35) and the two-loop K(2) of eq. (2.30a) with the values for γK in
eq. (B.2). It is just the finite parts of α(2)

g (t),

α̂(2,0)
g = CA

(101
108 −

ζ3
8

)
− 7

27TRnf . (6.41)

Inserting this into eq. (6.40) we have

H(−,4,2)
QCD =

{
C2
AT

2
Rn

2
f

49
1458 + C3

ATRnf

( 7ζ3
216 −

707
2916

)
(6.42)

+ C4
A

(
ζ2

3
128 −

101ζ3
864 + 10201

23328

)
+ 3

16ζ4ζ2C
(+,4,2)
∆ +O(ε)

}
M̂tree.

15This result was first reported in ref. [36].
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The N = 4 SYM result is

H(−,4,2)
SYM =

{
C4
A

128ζ
2
3 + 3

16ζ4ζ2C
(+,4,2)
∆ +O(ε)

}
M̂tree, (6.43)

which is precisely the maximal weight terms of the QCD result in eq. (6.42), using the
well-known relations between quantities in these theories [83–86]. In the planar limit only
the first term survives and matches the well-known BDS ansatz [122].

6.5 The soft anomalous dimension in the Regge limit — summary

The soft anomalous dimension in the high-energy limit is given in eq. (6.4). In this section,
we review the corrections to the dipole formula that start at three loops

∆ =
∞∑
`=3

(
αs
π

)` `−1∑
m=0

∆(`,m)Lm, (6.44)

where ` is the loop order and L the signature-even logarithm of eq. (2.9).
Non-vanishing corrections to the dipole formula at three-loop order in the high-energy

limit of 2→ 2 scattering, begin at NNLL with a purely signature-odd contribution [35, 55],
namely

∆(3) = 0L2 + iπ
[
T2
t , [T2

t ,T2
s−u]

]11
4 ζ3L+O(L0), (6.45)

where O(L0) terms are summarised in appendix E.
At NLL, there is a tower of signature-odd contributions to the soft anomalous dimension

(i.e. signature-even amplitude) emanating from two-Reggeon-exchange ladder diagrams,
which have been determined to high orders [24, 26] (the singularities at NLL are in fact
known to all loops [24]). These contributions start at four loops with [23]

∆(−,4,3) = −iπ ζ3
24
[
T2
t , [T2

t ,T2
s−u]

]
T2
t = −iπ ζ3

24C
(−,4,3)
∆ . (6.46)

Note that both eqs. (6.45) and (6.46) contain a single power of iπT2
s−u, consistently with

the odd signature.
The even signature part of the soft anomalous dimension at NLL is two-loop exact [10,

12, 24], that is, the terms ∆(+,`,`−1) vanish at three loops and above. In particular, at
four loops,

∆(+,4,3) = 0. (6.47)

At NNLL, the odd contribution ∆(−,4,2) is not yet known. The even contribution is given
by eq. (6.39). Using the results of eqs. (6.46), (6.47), (6.39) we can write eq. (6.4) displaying
all the explicitly-known contributions

Γ(4)
ij→ij(L) =− L3iπ

ζ3
24
[
T2
t , [T2

t ,T2
s−u]

]
T2
t + L2∆(−,4,2)

+ L2ζ2ζ3

(
dAA
NA
− C4

A

24 −
1
4T2

t [(T2
s−u)2,T2

t ] + 3
4[T2

s−u,T2
t ]T2

tT2
s−u

)
+O(L),

(6.48)
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where ∆(−,4,2) and corrections at O(L) and O(L0) are still to be determined. The fact
that the NNLL corrections in ∆ are all non-planar is to be expected: only diagrams that
correlate up to two partons survive in the anomalous dimension in the planar limit.

It is important to point out that all the corrections displayed explicitly in eq. (6.48) are
universal, namely they are independent on the matter content of the theory considered.16
Specifically, these corrections are generated by purely gluonic diagrams, and therefore do not
involve the matter content. Furthermore, in operator form they are completely independent
of the representation of the scattered particles (of course, as we have seen in section 5.4,
such dependence would show up once acted on the tree-level amplitude and projected onto
a colour basis).

7 Infrared singularities in 2→ 2 scattering in the high-energy limit

In the previous section we have obtained the soft anomalous dimension in the high-energy
limit s� t, for 2→ 2 parton scattering. In particular, starting from the formula of eq. (6.4),
we have determined the non-dipole contributions at three and four loops, as summarised
in section 6.5. This result proves useful to constrain the structure of the soft anomalous
dimension in general kinematics, too. The latter was determined by direct computation
to three loops in ref. [55]. Later, it was shown that it can also be determined by means of
a bootstrap approach [56]: indeed, the functional form of the three-loop soft anomalous
dimension in general kinematics was recovered in ref. [56] using the colour structure, the
analytic properties of the relevant class of integrals, factorisation and symmetry constraints,
along with constraints from various kinematic limits. In this perspective, the structure of
the soft anomalous dimension in the high-energy limit determined in section 6.5 provides
useful information for a future bootstrap approach at four loops.

The purpose of this section is to perform a preliminary analysis, determining the
implications of the high-energy result for a parametrisation of the soft anomalous dimension
recently constructed through four loops in ref. [54]. After a short introduction of the colour
and kinematic variables in the general n massless parton case, we focus on 2→ 2 scattering.
Specialising further to the high-energy limit, we identify the functions contributing through
NNLL accuracy at four-loop order in eq. (7.37). Subsequently, in section 7.2 the colour
structures are expressed in terms of a so-called Regge-limit basis of colour operators which
we construct using commutators of T2

t and T2
s−u, based on the definitions introduced at

the end of section 2.1 and the identities derived in section 4.2. Furthermore, the (unknown)
kinematic functions are specialised to the high-energy limit and are expressed in terms of
the signature-even logarithm L in section 7.2.4. At this point, in section 7.3 we are able to
constrain the form of these kinematic functions by comparing the parametrisation of the
four-loop soft anomalous dimension with the expressions we computed through NNLLs, as
summarised in section 6.5. Finally, in section 7.4 we discuss the four-loop soft anomalous
dimension in the high-energy limit beyond NNLLs. We generalise the relation in eq. (2.40)

16In contrast, ∆(−,4,2) and N3LL corrections, are expected to involve non-universal corrections, as can
be inferred from the high-energy limit perspective. Theory dependence would enter for example through
running-coupling effects, subleading corrections to the Balitsky-JIMWLK Hamiltonian and impact factors.
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between the singularities of the gluon Regge trajectory and the cusp anomalous dimension to
four loops, taking into account quartic Casimir contributions, and discuss the implications
of this generalisation on the structure of the soft anomalous dimension.

7.1 Introduction to the soft anomalous dimension

Given a scattering amplitude M involving n coloured partons and any number of other
(colourless) particles, the soft anomalous dimension Γn defined in eq. (6.2) [47–56, 118, 119]
depends on the kinematic invariants formed between the partons,

(−sij) ≡ 2|pi · pj |e−iπσij , (7.1)

where pi represents the momentum of parton i, and σij = 1 if both partons i and j are in
the initial or final state, otherwise σij = 0. In addition, it depends on the colour generators
{Ti}ni=1 associated to the external partons, which have been defined after eq. (2.5). Γn is
defined subject to colour conservation

n∑
i=1

TiM =
n∑
i=1

TiH = 0 , (7.2)

where H is the hard function of eq. (2.23).
The form of the soft anomalous dimension is strongly constrained. Setting aside

collinear singularities (which are captured by the collinear anomalous dimension γi, and
depend on individual scattered partons, namely their spins and colour representations, but
involves no kinematic nor colour-flow dependence) all remaining contributions to the soft
anomalous dimension follow from the ultraviolet divergence of the corresponding Wilson-line
correlator. Specifically, to describe the singularities of an amplitude of n massless partons,
one defines a correlator of a product of n semi-infinite lightlike Wilson lines emanating
from a single hard-interaction vertex, following the classical trajectories of the n partons.
The ultraviolet divergences of this correlator, associated with the vertex where they meet,
map to the soft divergences of the amplitude [66, 67, 123, 124]. This observation can be
used to compute the anomalous dimension in a process-independent way [55, 125], rather
than extracting it from partonic amplitudes. It also allows one to understand the salient
all-order properties [51–56, 118] of the soft anomalous dimension, notably,

1. its colour structure is highly constrained by the non-Abelian exponentiation theo-
rem [111, 112, 126, 127]: it consists of fully connected diagrams;17

2. it admits Bose symmetry under permutations of any of the Wilson lines, independently
of whether these represent quarks or gluons;

3. its kinematic dependence is largely constrained by the invariance under scaling of
individual Wilson-line velocities.

17Here connected refers to the gluon web representing the colour structure, which must be fully con-
nected after the Wilson lines have been removed. See refs. [127–133] for further details on diagrammatic
exponentiation in the context of correlators of multiple Wilson lines.
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While the first property dictates the colour structure of the soft anomalous dimension, the
third strongly constrains its kinematic dependence. Finally, owing to the second property,
colour and kinematics are directly correlated.

The third property, namely rescaling invariance, is violated only through the so-
called collinear anomaly, namely overlapping soft and collinear divergences, which are
responsible for an explicit dependence of Γn

(
{skl}, λ, αs(λ2)

)
on the scale λ, beyond its

indirect dependence on the scale through the running coupling. Stated differently, the
factorisation property of soft and collinear singularities, combined with the aforementioned
rescaling property of Wilson-line velocities, translates into the following set of all-order
constraints [51–54] on the soft anomalous dimension Γn

(
{skl}, λ, αs(λ2)

)
:

∑
j 6=i

dΓn
(
{skl}, λ, αs(λ2)

)
d(lij)

= Γcusp
i (αs(λ2)), (7.3)

for all i, where
lij ≡ log −sij

λ2 . (7.4)

Here Γcusp
i (αs) is the cusp anomalous dimension in the representation of parton i, which

can be expanded in Casimirs as in eq. (2.28):

Γcusp
i (αs(λ2)) = 1

2γK(αs(λ2))Ci +
∑
R

gR(αs(λ2))dRRi
NRi

+O(α5
s) . (7.5)

The collinear anomaly constraints are key to understanding the structure of higher-order
corrections to the soft anomalous dimension.

To understand the implications of eq. (7.3) note first that it is a matrix equation: while
the left-hand-side is a non-trivial colour matrix, the right-hand side is proportional to
the unit matrix in colour space. Upon solving the differential equations in eq. (7.3) one
obtains an inhomogeneous solution, which is strictly linear in the logarithms lij and in
the cusp anomalous dimension Γcusp

i (αs) plus a homogeneous solution. The latter contains
non-trivial structures in colour space and must be invariant under rescaling of any of the
Wilson-line velocities, and is therefore a function of the so-called conformally invariant
cross-ratios (CICRs)

ρijkl = (−sij)(−skl)
(−sik)(−sjl)

, (7.6)

whose logarithm

βijkl = log ρijkl = log (−sij)(−skl)
(−sik)(−sjl)

= lij + lkl − lik − ljl, (7.7)

satisfies ∑
v 6=u

dβijkl
dluv

= 0 , (7.8)

for any u ∈ {i, j, k, l}. The logarithm of CICRs has the symmetry properties:

βijkl = βjilk = −βikjl = −βljki = βklij . (7.9)
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Returning to the inhomogeneous component, a particular solution for n ≥ 3 is given
by [134]:

Γ′n
({

sij
λ2

}
, αs

)
= 1

2(n− 1)

n∑
i=1

n∑
j 6=i

lij

Γcusp
i (αs) + Γcusp

j (αs)−
1

(n− 2)

n∑
k 6=i,j

Γcusp
k (αs)

 ,
(7.10)

implying that the general solution of (7.3) takes the form

Γn ({sij}, λ, αs) = Γ′n
({

sij
λ2

}
, αs

)
+ δΓn ({βijkl}, αs) , (7.11)

where the second term depends on the kinematics only through a function of the CICRs. It
is clear at the outset, that while Γ′n satisfies eq. (7.3) — and is therefore useful to understand
some of its features — it cannot on its own be considered a candidate for Γn, not even
at leading order. One way to see this is to note that any function arising from Feynman
diagram calculation of the above-mentioned Wilson-line correlator has the property that
dependence on a kinematic variable associated with a given Wilson line must only appear in
terms that feature colour generators of that line. The simplest term that complies with the
latter property is a dipole interaction, Ti ·Tj lij , which is the coefficient of the single-pole
divergence arising from a single gluon exchange between lines i and j. Indeed, it is well
known that the complete result through two loops for the soft anomalous dimension in
massless scattering with general kinematics takes the form of a sum over colour dipoles:

Γdip.
n ({sij}, λ, αs) = −1

4γK(αs)
∑
(i,j)

Ti ·Tj lij +
n∑
i

γi(αs), (7.12)

where the sum goes over all pairs (i, j) that are formed between the n scattered partons.
Upon substituting Γdip.

n of eq. (7.12) into the left-hand side of eq. (7.3) and using colour
conservation, one obtains the quadratic Casimir component of Γcusp

i (αs), as required. As
already mentioned, while Γn receives non-dipole corrections from three loops [55], the
anomalous dimensions entering eq. (7.12) are known to four loops in QCD [68–72, 74, 75]:
γi is the collinear anomalous dimension [32, 76–78] corresponding to the parton i, while
γK(αs) is the coefficient of the quadratic Casimir in the cusp anomalous dimension of
eq. (7.5).

In view of our goal of understanding the structure of the soft anomalous dimension to
higher orders, there are several immediate questions raised by the discussion above. One
is how to reconcile the sum-over-dipoles formula (7.12) with the solution of eqs. (7.11)
and (7.10). A related one, noting that the quartic Casimir is absent in eq. (7.12), is how
higher Casimir corrections enter there. The latter was addressed at four loops in ref. [54]; we
connect the two questions in appendix F, where we discuss the form of the CICR-dependent
function δΓn, which is linear in the logarithms for both the quadratic Casimir and quartic
Casimir components.

A separate aspect, which is salient to the simplicity of eq. (7.12) is the absence of
“tripole” type contributions connecting three Wilson lines at two loops. Such corrections do
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appear for non-lightlike lines, but are forbidden by the constraint of (7.3) (conformal cross
ratios cannot be formed out of three Wilson-line velocities). A very interesting argument18
has been given by Vladimirov in ref. [135] stating that only terms consisting of an even
number of generators can appear in the soft anomalous dimension at any order, thus
excluding for example terms with five generators at four loops and beyond.

At three loops, an explicit computation has been performed [55] fixing the form of the
soft anomalous dimension at this order. As was expected, three loop corrections to the
dipole formula (7.12) depend exclusively on CICRs. The structure of the result is of direct
relevance to the functions we shall encounter at four loops, and therefore we shall review it
below in the context of the general form the anomalous dimension takes at four loops.

Taking into account the complete set of connected colour structures complying with the
non-Abelian exponentiation theorem [111, 112, 127], Becher and Neubert wrote down [54]
a general parametrisation19 — with unknown kinematic functions — which satisfied the
aforementioned collinear anomaly constraints of eq. (7.3) along with Bose symmetry. The
contributions appearing through four loops can be classified as follows:

Γn
(
{sij}, λ, αs(λ2)

)
= Γdip.

n ({sij}, λ, αs) + Γn,4T−3L (αs) + Γn,4T−4L ({βijkl}, αs)

+ Γn,Q4T−2,3L ({sij}, λ, αs) + Γn,Q4T−4L ({βijkl}, αs)

+ Γn,5T−4L ({βijkl}, αs) + Γn,5T−5L ({βijkl}, αs) +O(α5
s) ,

(7.13)

where the subscript for each term includes, in addition to the number of partons n, the
following attributes of each (connected) colour factor:Q for a quartic Casimir related
contribution; a number followed by T to indicate the number generators, and a number
followed by L to indicate the number of distinct lines that interact.

The first term in eq. (7.13) is the sum-over-dipoles formula, which is the complete
result for Γn to two loops, while all others start contributing at three (the second and third
terms) and four loops (all others). Notice that this formula includes terms with explicit
dependence on the scale (the first and the fourth) as well as terms that depend exclusively
on CICRs (all others). The former can be identified with those that constitute a particular
solution satisfying eq. (7.3) (through four loops) and are strictly linear in lij , while the
latter involve higher transcendental functions of the CICRs. The last two terms, consisting
of five generators, are excluded based on the argument of ref. [135]. We retain them here to
see, independently of the latter argument, what constraints emerge from the Regge-limit
analysis. Let us now introduce explicitly each term of eq. (7.13) in turn, where we adopt
much of the notation from ref. [54].

The second and third terms in (7.13) start at three loops, where they were explicitly
computed [55]. These terms involve the colour and kinematic degrees of freedom of subsets

18The argument is based on the colour decomposition of a different Wilson-line correlator associated
with multi-parton scattering, which was shown to be related to the soft anomalous dimension via a
conformal mapping.

19Previous work along these lines has been done e.g. in refs. [51, 56, 87, 118, 136].
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of three or four partons, they are non-planar and depend exclusively on CICRs. They read:

Γn,4T−3L (αs) = f(αs)
∑

(i,j,k)
T iijk, (7.14)

Γn,4T−4L ({βijkl}, αs) =
∑

(i,j,k,l)
T ijkl F(βijlk, βiklj ;αs), (7.15)

where the summation is over tuples (with no restriction on the relative order of indices).
The colour structure involves four generators:

T ijkl ≡ fadef bce{Ta
i ,Tb

j ,Tc
k,Td

l }+. (7.16)

Notice that the curly brackets represent symmetrisation, defined as

{Ta1
i ,T

a2
j , . . .T

an
l }+ ≡

1
n!
∑
π

Taπ(1)
i Taπ(2)

j . . .Taπ(n)
l , (7.17)

where the sum is over all permutations of the indices. The symmetrisation only acts on
generators attached to the same line, as those attached to distinct lines commute. For
example,

T iijk = fadef bce{Ta
i ,Tb

i}+Tc
jTd

k = 1
2f

adef bce
(
Ta
iTb

i + Tb
iTa

i

)
Tc
jTd

k.

The functions f(αs) and F(βijlk, βiklj ;αs) have a perturbative expansion

f(αs) =
(
αs
π

)3
f (3) +

(
αs
π

)4∑
R

f
(4)
R +O(α5

s), (7.18)

and

F(βijlk, βiklj ;αs) =
(
αs
π

)3
F (3)(βijlk, βiklj) +

(
αs
π

)4∑
R

F (4)
R (βijlk, βiklj) +O(α5

s) , (7.19)

where f (`) are transcendental constants while F (`) are transcendental functions of the
CICRs defined in eq. (7.6). At four loops, these two functions involve a sum over the gauge
group representations R, which we write explicitly in eqs. (7.18) and (7.19). This is a
general feature of the colour structures appearing in the anomalous dimension: there is an
implicit sum over the representations, once they are considered at a loop order higher than
when they first appear. This is a manifestation of the fact that any structure first appears
owing to a purely gluonic diagram, and, as such, it has a universal nature, being entirely
independent of the matter contents of the theory.

The functions f(αs) and F(βijlk, βiklj ;αs) have been calculated at three loops [55].
Expressing the CICRs in terms of variables zijkl and z̄ijkl:

ρijkl = zijklz̄ijkl, ρilkj = (1− zijkl)(1− z̄ijkl), (7.20)

the function F(αs) reads

F (3)(βijlk, βiklj) = 1
32

(
F (1− zijlk)− F (zijlk)

)
, (7.21)

– 74 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
3

where in turn F (z) is a function of single-valued harmonic polylogarithms [137–140]:

F (z) ≡ L10101(z) + 2ζ2
[
L001(z) + L100(z)

]
, (7.22)

while

f (3) = 1
4 (ζ5 + 2ζ2ζ3) . (7.23)

The other terms in eq. (7.13) start at four loops. The quartic term involving four
generators with attachments to two and three legs can be expressed as [54]

Γn,Q4T−2,3L ({sij},λ,αs) =−1
2
∑
R

gR(αs)

∑
(i,j)

(
DR
iijj +2DR

iiij

)
lij +

∑
(i,j,k)
DR
ijkk lij

 , (7.24)

where the colour operator is defined as

DR
ijkl ≡

1
4!
∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
Ta
iTb

jTc
kTd

l . (7.25)

Similarly to the dipole term, Γn,Q4T−2,3L is part of the inhomogeneous solution of eq. (7.3):
upon substituting eq. (7.24) into the left-hand side of eq. (7.3) and using colour conservation,
one obtains the quartic Casimir component of Γcusp

i (αs), where

DR
iiii = dRRi

NRi

= 1
4!
∑
σ∈S4

TrR
[
T σ(a)T σ(b)T σ(c)T σ(d)

]
Ta
iTb

iTc
iTd

i , (7.26)

and where gR(αs) is the function multiplying dRRi
NRi

in eq. (7.5). As discussed in section 2.3,
the function gR(αs) begins at four loops and is known at this order [72–74]. The result is
quoted in eq. (B.3). We provide a more detailed discussion concerning the relation between
Γn(αs) and Γcusp

i (αs) in appendix F.
The remaining terms in (7.13) are part of the solution to the homogeneous equation

associated to eq. (7.3), therefore, the functions appearing in these terms depend exclusively
on CICRs. The term Q4T− 4L involves the quartic Casimir operator as well, and reads20

Γn,Q4T−4L ({βijkl}, αs) =
∑
R

∑
(i,j,k,l)

DR
ijkl GR(βijlk, βiklj ;αs). (7.27)

Finally, there are then two terms involving five colour generators: they are given by

Γn,5T−4L ({βijkl}, αs) =
∑

(i,j,k,l)
T ijkliH1(βijlk, βiklj ;αs), (7.28a)

Γn,5T−5L ({βijkl}, αs) =
∑

(i,j,k,l,m)
T ijklmH2(βijkl, βijmk, βikmj , βjiml, βjlmi;αs), (7.28b)

20Owing to the complete permutation symmetry of the colour factor DRijkl with respect to i, j, k and l,
the kinematic function GR admits a similar symmetry. Consequently, GR may be factored out of the sum
over the permutations of a given subset of indices.
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where the colour structure is defined as

T ijklm = ifadff bcgf efg{Ta
i ,Tb

j ,Tc
k,Td

l ,Te
m}+. (7.29)

The functions GR(αs), H1(αs) and H2(αs) start at four loops, and have not yet been
computed. Similarly, the four-loop contributions to the functions f(αs) and F(αs) are
to date unknown. In all these cases, the structure of these functions can be constrained
by analysing amplitudes in specific kinematic limits, where additional information can
be obtained. The collinear limit offers one such instance [54, 56, 87, 118], and we briefly
summarise below what constraints it provides based on ref. [54], before returning to the
Regge limit.

It is well known that when two particles in either the initial or final state become
collinear, the amplitude Mn factorises into a splitting amplitude Sp and the parent
amplitudeMn−1 [141–145], with

lim
p1||p2

Mn ({p1, . . . , pn}, λ, αs) = Sp ({p1, p2}, λ, αs)Mn−1 ({p1 + p2, p3, . . . pn}, λ, αs) .

(7.30)
The splitting amplitude has an anomalous dimension defined as

d

d log λSp ({p1, p2}, λ, αs) = ΓSp ({p1, p2}, λ, αs)Sp ({p1, p2}, λ, αs) (7.31)

which, just like the function Sp itself, is independent of the momenta and colour generators
of the particles that are not collinear. Performing infrared factorisation of each of the
ingredients in eq. (7.30), one obtains [87, 118]

ΓSp ({p1, p2}, λ, αs) = lim
p1||p2

Γn ({p1, . . . , pn}, λ, αs)− Γn−1 ({p1 + p2, p3, . . . , pn}, λ, αs) .

(7.32)
This provides the non-trivial constraint on Γn itself: the splitting amplitude anomalous
dimension on the left-hand side only depends on the two particles that become collinear,
hence so must the right-hand side of eq. (7.32). This translates into concrete constraints for
the functions in eq. (7.13). The functions f(αs) and F(αs) are related by the condition [54,
56, 87, 118]

lim
β12ij→−∞

F(β12ij , 0;αs) = f(αs)
2 , (7.33)

which, in particular, provide a constraint for the coefficients f (4)
R and F (4)

R . Similarly, the
functions GR(αs) and gR(αs) are related by [54]

lim
β12ij→−∞

GR(β12ij , 0;αs) = −gR(αs)
12 β12ij . (7.34)

Furthermore, one has [54]
lim

β12ij→−∞
H1(β12ij , 0;αs) = 0 . (7.35)

Last, we have constraints from the high-energy limit, which is of course the topic of this
section. Given our explicit calculation of 2→ 2 parton scattering in this limit, we are able
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to determine the four-loop contribution to the functions appearing in eq. (7.13) in this limit.
In order to proceed we need first to specialise eq. (7.13) to the case of two-parton scattering,
and then take the high-energy limit. In this kinematic configuration no constraints can
be obtained for H(4)

2 , which involves at least five partons. However, we are able to obtain
constraints for F (4) and G(4)

R , as well as H(4)
1 .

7.2 The soft anomalous dimension in the high-energy limit

We now take the general form of the soft anomalous dimension as written in eq. (7.13), and
specialise it to the case of 2→ 2 particle scattering in the high-energy limit. In short, the
procedure is as follows.

• In eq. (7.13) we drop the contributions which only appear for more than four external
partons, i.e., we do not consider H2.

• We express the colour operators of eq. (7.13) in what we call a Regge-limit basis,
i.e., in terms of a minimal21 set of colour operators made out of T2

t , T2
s−u, their

commutators and quartic Casimir operators, as discussed in section 4.2. Notice
that, in particular, this will naturally split the terms in eq. (7.13) into even and odd
signature contributions.

• We specialise the kinematic functions appearing in eq. (7.13) to the high-energy
limit. First, owing to Bose symmetry, each kinematic function will acquire a definite
signature symmetry, matching the symmetry of the corresponding colour operator it
multiplies. Furthermore, each function will be implicitly understood as an expansion
in the high-energy logarithm L defined in eq. (2.9).

We expand the soft anomalous dimension in powers of the strong coupling, according to

Γn({sij}, λ, αs) =
∑
`

(
αs
π

)`
Γ(`)
n ({sij}, λ) , (7.36)

where ` is the loop order. In what follows we are interested to obtain constraints on the
coefficient functions appearing in Γ(4)

4 by using the results for the NLL, O(α4
sL

3), and the
NNLL, O(α4

sL
2), in the anomalous dimension, summarised in section 6.5. The four-loop

order coefficients γ(4)
K,R, g

(4)
R , f (4)

R are associated exclusively with linear and kinematically-
independent contributions, O(L1) and O(L0), and we will not consider them in this section.
Their high-energy limit is considered instead in appendix G, and we will return to analyse
the resulting O(L1) terms in section 7.4. This leaves the terms proportional to F , GR and
H1, i.e. we consider

Γ(4)
4 ({sij}, λ) = Γ(4)

4T−4L ({βijkl}) + Γ(4)
Q4T−4L ({βijkl}) + Γ(4)

5T−4L ({βijkl}) +O(L) , (7.37)

where for individual terms we drop the subscript indicating the number of partons, since
we focus exclusively on the n = 4 case below. The remaining subscripts are the defining
characteristics of the colour operator as in eq. (7.13).

21By using the matrix expression of T2
t and T2

s−u, obtained by specialising to projectile and target states
either in the fundamental or in the adjoint representation [35], we verified that there are no linear relations
among the colour structures appearing in the reduced amplitude of eq. (5.30).
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7.2.1 Four-generator four-line term (4T − 4L)

We start by considering the first term in eq. (7.37), i.e.

Γ4T−4L({βijkl}, αs) ≡
∑

(i,j,k,l)
fadef bceTa

iTb
jTc

kTd
l F(βijlk, βiklj ;αs). (7.38)

An expression for this term that is specialised to two-parton scattering in the high-energy
limit has been discussed already in refs. [35, 56], however, we provide here a short derivation
for pedagogical purposes, in order to introduce useful notation for the elaboration of the
other terms in eq. (7.37).

The colour structure in eq. (7.38) is antisymmetric under the exchange of i↔ l or j ↔ k.
Due to Bose symmetry, the function F(αs) must be antisymmetric under the exchange
of the same indices. Under this exchange one has F(βijlk, βiklj ;αs) = −F(βiklj , βijlk;αs).
Using this property, we write eq. (7.38) for the case of two-parton scattering as

Γ4T−4L({βijkl}, αs) =8Ta
1Tb

2Tc
3Td

4

[
fabef cdeF(β1324, β1423;αs)

+ facef bdeF(β1234, β1432;αs)

+ fadef bceF(β1243, β1342;αs)
]
.

(7.39)

As we have seen, in the high-energy limit, signature symmetry plays a major role. In
eq. (7.39) it can be implemented by considering symmetric and antisymmetric combinations
under the exchange 2↔ 3. This leads us to introduce the following two functions:

F (+)({βijkl}, αs) ≡
1
2

{
F(β1324, β1423;αs) + F(β1234, β1432;αs)

}
,

F (−)({βijkl}, αs) ≡
1
2

{
F(β1234, β1432;αs)−F(β1324, β1423;αs)

}
+ F(β1243, β1342;αs),

(7.40)

such that eq. (7.39) becomes

Γ4T−4L({βijkl}, αs) =8Ta
1Tb

2Tc
3Td

4

[ (
fabef cde + facef bde

)
F (+)({βijkl}, αs)

+ fadef bceF (−)({βijkl}, αs)
]
.

(7.41)

Due to Bose symmetry, the symmetry of F (±) must be mirrored into the colour structure.
This becomes evident when expressing the colour operators in eq. (7.41) in our Regge-limit
basis. Using the colour algebra identity of eq. (4.34), i.e. fabcTc = −i[Ta,Tb], we have
for instance

fabef cdeTa
1Tb

2Tc
3Td

4 = −
[
T1 ·T2, [T3 ·T4,T1 ·T3]

]
= −1

8
[
T2
s, [T2

s,T2
u]
]

= 1
16
([

T2
t , [T2

t ,T2
s−u]

]
+ 2

[
T2
s−u, [T2

s−u,T2
t ]
])
, (7.42)
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where we used the definitions in eqs. (2.17) and (2.19), and any Casimirs arising vanish
in the commutators. With similar steps, the two other colour operators in eq. (7.41) are
written as

facef bdeTa
1Tb

2Tc
3Td

4 = 1
16
(
−
[
T2
t , [T2

t ,T2
s−u]

]
+ 2

[
T2
s−u, [T2

s−u,T2
t ]
])

, (7.43a)

fadef bceTa
1Tb

2Tc
3Td

4 = −1
8
[
T2
t , [T2

t ,T2
s−u]

]
. (7.43b)

Inserting the expressions in eqs. (7.42) and (7.43) into eq. (7.41) we get

Γ4T−4L({βijkl}, αs) = 2F (+)({βijkl}, αs)
[
T2
s−u, [T2

s−u,T2
t ]
]

−F (−)({βijkl}, αs)
[
T2
t , [T2

t ,T2
s−u]

]
.

(7.44)

It is easy to see that the symmetry properties of F (±) are nicely mirrored into the colour
structure: the first nested commutator is signature-even, containing two T2

s−u operators,
while the second is odd, having a single T2

s−u.
At three loops, using the properties of the variables zijkl introduced in (7.20):

zijkl = 1
zikjl

= 1− zilkj = zijlk
zijlk − 1 , (7.45)

one can write the functions F (±) as

F (+,3) ({βijkl}) = 1
64F1(z1234),

F (−,3) ({βijkl}) = 1
64
(
F2(z1234)− F3(z1234)

)
,

(7.46)

where the functions F1, F2 and F3 have been introduced in ref. [56], and read

F1(z) ≡ F (1− 1/z)− F (1/z) + F (1− z)− F (z),
F2(z) ≡ F (1/z)− F (1− 1/z) + F (1/(1− z))− F (z/(z − 1)),
F3(z) ≡ F (z)− F (1− z) + F (z/(z − 1))− F (1/(1− z)) = −F1(z)− F2(z).

(7.47)

Here we consider the four-loop contribution to eq. (7.44). Taking into account the
perturbative expansion introduced in eq. (7.19) one has

Γ(4)
4T−4L({βijkl}) = 2

(∑
R

F (+,4)
R ({βijkl})

)[
T2
s−u, [T2

s−u,T2
t ]
]

−
(∑

R

F (−,4)
R ({βijkl})

)[
T2
t , [T2

t ,T2
s−u]

]
,

(7.48)

where we recall that the sum over representations starts at this order due to an additional
internal loop, which gives rise to either a factor of CA, or nfTF , depending on the particles
propagating in the loop.22 The first term in eq. (7.48) is signature even, and the second

22Here we have only considered QCD particle types: adjoint gluons and fundamental quarks. The factor
will change depending on the gauge theory considered.
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signature odd. It is worthwhile recalling that, upon expansion, the soft anomalous dimension
in eq. (7.48) will be multiplied by the odd tree-level amplitude in eq. (2.5): hence, odd
signature in the amplitude corresponds to even signature in the soft anomalous dimension.
Taking this into account, we can already make a few observations. At NLL accuracy there
are only gluonic contributions in the even amplitude, as calculated in ref. [24]. Therefore,
only F (−,4)

A |NLL will be non-zero in eq. (7.48), while F (−,4)
F |NLL = 0. Similarly, the NNLL

contribution to the odd amplitude, first presented in ref. [36] and discussed in detail in
section 5 above, is also given in terms of gluonic contributions only. Following the reasoning
above, we expect that F (+,4)

A |NNLL may be non-zero and F (+,4)
F |NNLL = 0. No predictions

for F (−,4)
R |NNLL can be made at this stage, however, given that the even amplitude is still

unknown at this logarithmic accuracy.

7.2.2 Quartic Casimir four-generator four-line term (Q4T − 4L)

The quartic Casimir term only appears starting at four loops. Restricting to the case of
2→ 2 scattering and writing explicitly the colour structure, eq. (7.27) becomes

ΓQ4T−4L({β1234}, αs) =
∑
R

GR(β1243, β1342;αs)

×
∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
Ta

1Tb
2Tc

3Td
4 ,

(7.49)

where again there is a sum over the representations R propagating in the loop. Here we
extracted the function GR out of the sum over permutations of the legs (i, j, k, l) using its
symmetry: the colour structure is symmetric under the exchange of any pair of indices due
to the symmetrised trace. Having done that, we performed the sum over permutations
(i, j, k, l) on the colour structure. Because GR(βijlk, βiklj ;αs) is a completely symmetric
function under permutations, G(−)

R = 0, and we can identify G(+)
R = GR.

In order to conveniently express eq. (7.49), we first introduce some new colour notation
for terms involving a symmetrised trace over four generators attached to four numbered
partonic generators. The colour structures can be expressed using the colour-flow channels
defined in eq. (2.17), with

DR
pppp ≡

1
4!
∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
Ta
pTb

pTc
pTd

p, (7.50)

where p ∈ {s, t, u}, for example

DR
ssss = 1

4!
∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
Ta
sTb

sTc
sTd

s

= DR
1111 + 4DR

1112 + 6DR
1122 + 4DR

1222 +DR
2222.

(7.51)

A general formula is

DR
pppp = DR

kkkk + 4DR
kkkl + 6DR

kkll + 4DR
klll +DR

llll, (7.52)
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where

DR
pppp =


DR
ssss (k, l) ∈ {(1, 2), (3, 4)}
DR
uuuu (k, l) ∈ {(1, 3), (2, 4)}
DR
tttt (k, l) ∈ {(1, 4), (2, 3)}.

(7.53)

The expression in eq. (7.52) is symmetric under k ↔ l. For each of the channels, corre-
sponding to the respective Mandelstam invariants p ∈ {s, t, u}, the indices (k, l) can be
assigned to be either of the two combinations shown in eq. (7.53).

Using colour conservation, we can write the colour structure of eq. (7.49) as∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
Ta

1Tb
2Tc

3Td
4Mtree

=
[
2
(
DR
ssss +DR

uuuu +DR
tttt

)
− 4

(
dRRi
NRi

+
dRRj
NRj

)]
Mtree, (7.54)

where the quartic Casimirs correspond to the projectile i (partons 1 and 4) and the target j
(partons 2 and 3). The whole expression is signature-even as expected. This expression
is useful as it holds for any representation. We will see in eqs. (7.83) and (7.84) and in
appendix G that the colour structures multiplying the quartic component of the cusp
anomalous dimension gR can be expressed in a similar way.

Adjoint representation. In the following we restrict our attention to the four-loop
coefficient G(+,4)

R in the adjoint representation, R = A. The reason we focus specifically on
this representation was already explained at the end of the previous section considering
F (+,4)
R , that is: the result for the signature-odd amplitude at NNLL accuracy, presented

in section 5, only receives a contribution from purely gluonic diagrams. Thus, only G(+,4)
A

contributes to the sum over R in eq. (7.49) at NNLL accuracy. It is then possible to use
the identity [54]∑

σ∈S4

Tr
(
F σ(a)F σ(b)F σ(c)F σ(d)

)
= 12

[
Tr
(
F aF bF cF d

)
+ Tr

(
F dF cF bF a

)]
+ 4CA

(
fabef cde − fadef bce

)
,

(7.55)

to write

Γ(4)
Q4T−4L,A({βijkl}) =

(
Q(4),A

1 + Q(4),A
2

)
G(+,4)
A (β1234, β1432), (7.56)

where we have defined

Q(4),A
1 = 12 Ta

1Tb
2Tc

3Td
4

[
Tr
(
F aF bF cF d

)
+ Tr

(
F dF cF bF a

)]
, (7.57a)

Q(4),A
2 = 4CA Ta

1Tb
2Tc

3Td
4

(
fabef cde − fadef bce

)
, (7.57b)

and (F x)ab ≡ ifaxb. The second term, i.e. Q(4),A
2 , can readily be written in a Regge-limit

basis by using the identities in eqs. (7.42) and (7.43b). We get

Q(4),A
2 = CA

4
(
3
[
T2
t , [T2

t ,T2
s−u]

]
+ 2

[
T2
s−u, [T2

s−u,T2
t ]
])
. (7.58)
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Concerning Q(4),A
1 , repeated use of the commutator relation eq. (4.34) allows us to write

it as

Q(4),A
1 = 12

{[[
Tb

1,Te
1
]
,Tf

1

]
Tb

2

[[
Td

3,T
f
3
]
,Te

3

]
Td

4 + Ta
1

[
Te

2,
[
Tf

2 ,Ta
2
]]

Tc
3

[
Tf

4 ,
[
Te

4,Tc
4
]]}

.

(7.59)
Notice that we apply the commutator relation such as to obtain an expression with manifest
target-projectile symmetry (where, as usual, partons 1 and 4 represent the projectile while
partons 2 and 3 the target). At this point we recall that the colour operator in the soft
anomalous dimension acts on the tree-level amplitude, to give the part of the four-loop
amplitude from which the single-pole singularities are extracted. Therefore, it is sufficient
to obtain a representation for the colour operator Q(4),A

1 when acting on the tree-level
colour structure Ti ·Tj , as defined in eq. (2.5). The commutators in eq. (7.59) can then
be expressed as attachments to the projectile (i) or target (j), as in section 4.2.3, so
eq. (7.59) becomes

Q(4),A
1 (Ti ·Tj) = 12

(
T([[b,e],f ],x,d)

)
i

(
T(b,x,[[d,f ],e])

)
j

+ i↔ j. (7.60)

It is now in a suitable form to apply the identities in section 4.2 and appendix C, converting
the operator to the Regge-limit basis:

Q(4),A
1 (Ti ·Tj) =

{
2
(
dAA
NA
− C4

A

24

)
− 3CA

4
[
T2
t , [T2

t ,T2
s−u]

]

− 1
2T2

t [(T2
s−u)2,T2

t ] + 3
2[T2

s−u,T2
t ]T2

tT2
s−u

}
(Ti ·Tj).

(7.61)

Inserting eqs. (7.58) and (7.61) into eq. (7.56) we have

Γ(4)
Q4T−4L,A({βijkl})Mtree = G(+,4)

A (β1234, β1432)
{

2
(
dAA
NA
− C4

A

24

)
− 1

2T2
t [(T2

s−u)2,T2
t ]

+ 3
2[T2

s−u,T2
t ]T2

tT2
s−u + CA

2
[
T2
s−u, [T2

s−u,T2
t ]
]}
Mtree.

(7.62)

Notice that after a cancellation of the signature-odd commutator term between Q(4),A
1 and

Q(4),A
2 , the resulting colour operator in eq. (7.62) is manifestly signature-even, as anticipated

at the beginning of the section. Importantly, we observe that the quartic four-generator
four-leg term Γ(4)

Q4T−4L,A is entirely non-planar, given that the commutators in eq. (7.62) and
the combination dAA/NA − C4

A/24 are separately non-planar (see eq. (5.31)). Γ(4)
Q4T−4L,A

now is expressed in the Regge-limit basis, and eq. (7.62) will be used in section 7.3, along
with the other terms, to derive constraints based on the explicit NNLL results of section 5.

Finally, we can also equate eq. (7.54) to eq. (7.62) in the adjoint representation to
express the previously-unknown signature-even combination of quartic s and u channel
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operators acting on the tree amplitude, in terms of nested commutators:
(
DA
ssss +DA

uuuu

)
Mtree =

(
2
(
dARi
NRi

+
dARj
NRj

)
− C4

A

24 −
1
4T2

t [(T2
s−u)2,T2

t ]

+ 3
4[T2

s−u,T2
t ]T2

tT2
s−u + CA

4
[
T2
s−u, [T2

s−u,T2
t ]
])
Mtree,

(7.63)

while the quartic t-channel operator acting on the tree amplitude simply gives

DA
ttttMtree = dAA

NA
Mtree. (7.64)

These results will be useful in appendix G, where we analyse the colour structures multiplying
the quartic component of the cusp anomalous dimension gR.

7.2.3 Five-generator four-line term (5T − 4L)

The third term in eq. (7.37) reads

Γ5T−4L ({βijkl}, αs) =
∑

(i,j,k,l)
T ijkliH1(βijlk, βiklj ;αs)

=
∑

(i,j,k,l)
ifadgf bchf egh {Ta

i ,Te
i}+Tb

jTc
kTd

l H1(βijlk, βiklj ;αs).
(7.65)

The colour structure is antisymmetric under j ↔ k so T ijkli = −T ikjli and therefore H1 is
antisymmetric under a swap of its arguments, due to Bose symmetry. We want to write an
expression with manifest symmetry under s↔ u, which can be achieved by exploiting the
symmetries under swaps of 2↔ 3 or 1↔ 4 of T ijkli and H1. Similarly to F(βijlk, βiklj , αs),
let us introduce symmetric and antisymmetric combinations under 2↔ 3 of H1:

H(+)
1 ({βijkl}, αs) ≡

1
2
{
H1(β1324, β1423;αs) +H1(β1234, β1432;αs)

}
, (7.66a)

H(−)
1 ({βijkl}, αs) ≡

1
2
{
H1(β1324, β1423;αs)−H1(β1234, β1432;αs)

}
, (7.66b)

H̃(−)
1 ({βijkl}, αs) ≡ H1(β1243, β1342;αs). (7.66c)

As shown in appendix G, with these definitions we can write eq. (7.65) as

Γ(4)
5T−4L({βijkl})Mtree =

[
H(+,4)

1 ({βijkl})
(
− CA

2
[
T2
s−u, [T2

s−u,T2
t ]
]

+ CAT2
s−u[T2

s−u,T2
t ]

− 1
6T2

t [(T2
s−u)2,T2

t ]
)

+ 1
4H̃

(−,4)
1 ({βijkl})

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]]

+H(−,4)
1 ({βijkl})

(
− 1

2

[
T2
s−u,

[
T2
s−u,

[
T2
s−u,T2

t

]]]
+ 1

8

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]])]

Mtree,

(7.67)

with all colour operators expressed in terms of nested commutators. Thus, as expected, all
three terms in eq. (7.37), given in eqs. (7.48), (7.62) and (7.67), are strictly non-planar.
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7.2.4 The Regge limit of the soft anomalous dimension

We have now specialised eq. (7.37) to the case of two-parton scattering, and expressed
the colour operators involved in these terms in a Regge-limit basis in eqs. (7.48), (7.62)
and (7.67). In order to compare the resulting expression for the soft anomalous dimension
with the high-energy limit calculation summarised in section 6.5 we formally consider each
of the kinematic functions as an expansion in the high-energy logarithm L, for instance:

F (−,4)
A (L) = F (−,4,3)

A L3 + F (−,4,2)
A L2 + F (−,4,1)

A L+ F (−,4,0)
A , (7.68)

with unknown coefficients F (−,`,n)
A for ` = 4 and n = 3, 2, 1, 0, which we expect on general

grounds to be transcendental numbers of weight 2`− 1− n = 7− n or lower.
Separating the four-loop soft anomalous dimension Γ(4) into components with definite

signature symmetry, we have at four loops

Γ(4)
Regge = Γ(+,4)

Regge + Γ(−,4)
Regge , (7.69)

where we added the subscript Regge, to indicate that the Regge limit has been taken.
Explicitly, using the results in eqs. (7.48), (7.62) and (7.67) we obtain

Γ(+,4)
Regge(L)Mtree =

{
2F (+,4)

A (L)
[
T2
s−u, [T2

s−u,T2
t ]
]

+ G(+,4)
A (L)

(
2
(
dAA
NA
− C4

A

24

)
− 1

2T2
t [(T2

s−u)2,T2
t ]

+ 3
2[T2

s−u,T2
t ]T2

tT2
s−u + CA

2
[
T2
s−u, [T2

s−u,T2
t ]
])

+H(+,4)
1 (L)

(
− 1

2CA
[
T2
s−u, [T2

s−u,T2
t ]
]

+ CAT2
s−u[T2

s−u,T2
t ]

− 1
6T2

t [(T2
s−u)2,T2

t ]
)}
Mtree +O(L),

(7.70)

for the signature-even part, while the odd component reads

Γ(−,4)
Regge(L)Mtree =

{
−
(∑

R

F (−,4)
R (L)

)[
T2
t , [T2

t ,T2
s−u]

]
+H(−,4)

1 (L)
(
− 1

2

[
T2
s−u

[
T2
s−u,

[
T2
s−u,T2

t

]]]
+ 1

8

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]])

+ 1
4H̃

(−,4)
1 (L)

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]]}

Mtree +O(L). (7.71)

Functions that do not contribute through NNLL, i.e., only generate O(L) and O(L0)
contributions, are not shown in eqs. (7.70) and (7.71). We discuss these in section 7.4 and
appendix G.
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7.3 Constraints on the kinematic functions in the soft anomalous dimension

We are now ready to compare the general parametrisation of the four-loop soft anomalous
dimension to the explicit results of our calculation in the high-energy limit. Before consid-
ering the four-loop case, where the kinematic functions are unknown, it is useful to conduct
a similar exercise at three loops, where the functions are known [55] and their high-energy
limit has been previously obtained [35, 56].

Using eqs. (7.44) and (G.41) we have

∆(+,3)
Regge(L)Mtree =

{
2
(
F (+,3,2)L2 + F (+,3,1)L+ F (+,3,0)

)[
T2
s−u, [T2

s−u,T2
t ]
]

+ f (3)
([

T2
s−u, [T2

s−u,T2
t ]
]

+ C3
A

2 − 6 dARi
NRiCi

− 6
dARj
NRjCj

)}
Mtree

(7.72a)
∆(−,3)

Regge(L)Mtree = −
(
F (−,3,2)L2 + F (−,3,1)L+ F (−,3,0)

)[
T2
t , [T2

t ,T2
s−u]

]
Mtree (7.72b)

Matching these expressions to ∆ in appendix E we obtain the following expansion coefficients:

F (+,3,2) = 0, F (+,3,1) = 0, F (+,3,0) = 1
8 (4ζ3ζ2 − ζ5)

F (−,3,2) = 0, F (−,3,1) = − iπ4 ζ3, F (−,3,0) = −11iπ
4 ζ4 ,

(7.73)

consistently with refs. [35, 55, 56, 60]. A similar procedure will be followed below at four
loops where there are more functions contributing, all of which are yet unknown. To this
end we consider the expressions in eqs. (7.70) and (7.71) in the Regge-limit basis, which we
comapre with the explicit results we obtained through NNLL accuracy in eq. (6.48).

Constraints at four loops NLL for signature-odd functions. We start by consid-
ering the signature-odd contribution to the soft anomalous dimension at NLL accuracy. We
expand the functions in eq. (7.71) as in eq. (7.68), and match it to eq. (7.71) order by order
in the high-energy logarithm L. At O(L3), equating eq. (7.71) to eq. (6.46), we have

−iπ ζ3
24
[
T2
t , [T2

t ,T2
s−u]

]
T2
t

!= −
[
T2
t , [T2

t ,T2
s−u]

]
F (−,4,3)
A

− 1
2

[
T2
s−u,

[
T2
s−u,

[
T2
s−u,T2

t

]]]
H(−,4,3)

1

+ 1
8

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]] (

2H̃(−,4,3)
1 +H(−,4,3)

1

)
.

(7.74)

Firstly, H(−,4,3)
1 is the only term involving a colour operator ∝ (T2

s−u)3, which does not
appear on the left-hand side, so we conclude that H(−,4,3)

1 = 0. Next, H̃(−,4,3)
1 multiplies

a fully nested commutator, which also cannot be matched to the colour operators on the
left-hand side, so it must vanish as well. In order to match the single term that remains,
we recall that at four loops the soft anomalous dimension acts directly on the tree-level
amplitude, so we can use T2

tMtree = CAMtree. This is consistent with the expectation that
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F (−,4,3)
A should contain a factor of CA, while F (−,4,3)

F does not contribute at NLL accuracy
(see the discussion following eq. (7.48)). We deduce

F (−,4,3)
A = iπCA

ζ3
24 F (−,4,3)

F = 0 (7.75a)

H(−,4,3)
1 = 0 H̃(−,4,3)

1 = 0 . (7.75b)

We note that the even amplitude at four loops for NNLL (and beyond) is still unknown.
As a consequence, Γ(−,4,m) = Im[Γ(4,m)], with m = {0, 1, 2} remain unconstrained.

Constraints at four loops NLL for signature-even functions. Consider now kine-
matic functions multiplying signature-even colour structures, which must be real and
symmetric under s↔ u.

We express eq. (7.70) at L3 order and equate it to the relevant L3 coefficient in eq. (6.47),
which vanishes identically, getting

0 !=
[
T2
s−u, [T2

s−u,T2
t ]
]{

2F (+,4,3)
A + CA

2
(
G(+,4,3)
A −H(+,4,3)

1

)}
+
(

2dAA
NA
− C4

A

12 −
1
2T2

t [(T2
s−u)2,T2

t ] + 3
2[T2

s−u,T2
t ]T2

tT2
s−u

)
G(+,4,3)
A

+
(

T2
s−u[T2

s−u,T2
t ]T2

t −
1
6T2

t [(T2
s−u)2,T2

t ]
)
H(+,4,3)

1 .

(7.76)

The only function that multiplies quartic Casimir terms is G(+,4,3)
A so it must be zero. In

the last line H(+,4,3)
1 multiplies linearly independent colour structures so it must vanish as

well. While F (+,4,3)
A appears in combination with other functions, those vanish hence so

does F (+,4,3)
A . At L3 order we thus obtain the following constraints:

F (+,4,3)
A = 0 F (+,4,3)

F = 0 (7.77a)

G(+,4,3)
A = 0 G(+,4,3)

F = 0 (7.77b)

H(+,4,3)
1 = 0. (7.77c)

These results are of course in line with the fact that the signature-even NLL anomalous
dimension is two-loop exact.

Constraints at four loops NNLL for signature-even functions. At L2 order, upon
equating the relevant terms of eq. (7.70) to eq. (6.39) we have

ζ2ζ3C
(+,4,2)
∆

!= 2C(+,4,2)
∆ G(+,4,2)

A +
(

T2
s−u[T2

s−u,T2
t ]T2

t −
1
6T2

t [(T2
s−u)2,T2

t ]
)
H(+,4,2)

1

+
[
T2
s−u, [T2

s−u,T2
t ]
]{

2F (+,4,2)
A + CA

2
(
G(+,4,2)
A −H(+,4,2)

1

)}
.

(7.78)
We immediately see the same colour term C

(+,4,2)
∆ , defined in eq. (6.39), on the left-hand

side and multiplying G(+,4,2)
A on the right-hand side. This fixes G(+,4,2)

A and implies that the
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combination of the other terms must be zero. H(+,4,2)
1 multiplies colour operators that are

linearly independent of the others, and must vanish. Finally the combination of functions
in the second line of eq. (7.78) multiplying the fully-nested commutator must vanish, and
since H(+,4,2)

1 = 0, it implies a simple relation between F (+,4,2)
A and G(+,4,2)

A . The constraints
at L2 order for even-signature functions are then

F (+,4,2)
A = −CA

ζ2ζ3
8 F (+,4,2)

F = 0 (7.79a)

G(+,4,2)
A = ζ2ζ3

2 G(+,4,2)
F = 0 (7.79b)

H(+,4,2)
1 = 0. (7.79c)

The expressions for ∆(+,4,m) = Re[∆(4,m)], m = {0, 1} are currently not known, so our
firm constraints for the even signature part of the soft anomalous dimension at four loops
end at NNLL accuracy. The m = 1 term, however, has a rather special status due to its
connection with the cusp anomalous dimension, which we discuss in the next section before
summarising the complete set of constraints.

7.4 The soft anomalous dimension at four loops

In this section, we present expressions parametrising the four-loop soft anomalous dimension
in the high-energy limit through all powers of the high-energy logarithm L. Although this
goes beyond the logarithmic accuracy of any explicit calculation of the amplitude, we also
discuss here the generalisation of the relation in eq. (2.40) between the cusp anomalous
dimension and the singularities of the gluon Regge trajectory to four loops. We show that
this generalisation is natural despite the presence of quartic Casimir contributions and it
leads to an extra set of constraints on the soft anomalous dimension.

The soft anomalous dimension at four loops. To begin, it is useful to define an
operator representation of the cusp anomalous dimension

Γcusp
p ≡ 1

2γK(αs)T2
p +

∑
R

gR(αs)DR
pppp +O(α5

s), (7.80)

associated with a channel p ∈ {s, t, u}, where we suppress corrections containing sextic and
higher Casimir operators. The quartic operator DR

pppp is defined in eq. (7.52).
When the t-channel operators act on the tree amplitude, they reproduce it, multiplied

by the respective adjoint Casimir, namely

T2
tMtree = CAMtree, DR

ttttMtree = dRA
NA
Mtree, (7.81)

which yields
Γcusp
t Mtree = Γcusp

A Mtree , (7.82)

where Γcusp
A on the right-hand side is simply the cusp anomalous dimension defined by

an adjoint Wilson line. In contrast, when DR
ssss and DR

uuuu act on the tree amplitude
they generate mixing into other colour states, similarly to their quadratic counterparts T2

s
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and T2
u. In particular, their adjoint signature-even combination is given in eq. (7.63) and

signature-odd combination is given in eq. (G.35).
With these definitions and properties in place we are ready to present the general

form of the soft anomalous dimension for 2→ 2 scattering in the high-energy limit. The
signature-even part reads

Γ(+,4)
ij→ij

(
L,
−t
λ2

)
Mtree =

{
LΓcusp,(4)

t + log −t
λ2

(
Γcusp,(4)
i + Γcusp,(4)

j

)
+ 2γ(4)

i + 2γ(4)
j

+
(∑

R

f (4,R)
)([

T2
s−u, [T2

s−u,T2
t ]
]

+ C3
A

2 − 6 dARi
NRiCi

− 6
dARj
NRjCj

)

+ 2
∑
R

(
G(4)
R (L)− g

(4)
R

6 L

)(
DR
tttt +DR

ssss +DR
uuuu − 2

(
dRRi
NRi

+
dRRj
NRj

))

+ 2
(∑

R

F (+,4)
R (L)

)[
T2
s−u, [T2

s−u,T2
t ]
]

+H(+,4)
1 (L)

(
CAT2

s−u[T2
s−u,T2

t ]

− 1
2CA

[
T2
s−u, [T2

s−u,T2
t ]
]
− 1

6T2
t [(T2

s−u)2,T2
t ]
)}
Mtree,

(7.83)
while the signature-odd part is

Γ(−,4)
ij→ij(L)Mtree =

{
iπ

2

[
Γcusp,(4)
s − Γcusp,(4)

u

]
−
(∑

R

F (−,4)
R (L)

)[
T2
t , [T2

t ,T2
s−u]

]
+H(−,4)

1 (L)
(
− 1

2

[
T2
s−u,

[
T2
s−u,

[
T2
s−u,T2

t

]]]
+ 1

8

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]])

+ H̃(−,4)
1 (L) 1

4

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]]}

Mtree.

(7.84)

These two expressions generalise eqs. (7.70) and (7.71), respectively, to include O(L1) and
O(L0) terms. The derivation of these contributions is presented in appendices F and G.

In both the signature-even expression of eq. (7.83) and the odd one in eq. (7.84) we
have restored the full p-channel (p ∈ {s, t, u}) cusp anomalous dimension Γcusp

p of eq. (7.80),
consisting of both the quadratic and quartic components. Specifically, the function γK ,
which was originally used to express the dipole term in eq. (7.13), only appears now as part
of the full cusp anomalous dimension Γcusp

p , along with its quartic counterpart gR. The way
the full Γcusp

p gets restored is explained in appendix F.
Note that, in line with the general expectation, all the contributions that survive in the

planar limit — the terms in the first line of eq. (7.83) and the first term in the first line of
eq. (7.84) — involve just one or two partons, while all those involving three or four partons
are non-planar. For most terms the behaviour in the large-Nc limit is already manifest
in the above equations owing to the (nested) commutator structure, which is inherently
non-planar, or the behaviour of the quartic Casimir contributions given in eq. (5.7). There
are a couple of terms for which a closer examination is required: the first of these is the
third line in eq. (7.83), where in the adjoint representation one may use eq. (7.62) to obtain
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a manifestly non-planar expression (while the fundamental representation contribution is
automatically subleading in the large-Nc limit). The second is the first term in the first
line of eq. (7.84), which contains planar as well as non-planar contributions, as one may
verify using eq. (F.15b) to express the linear terms.

For pure Yang-Mills, or SYM, where only the adjoint representation is relevant, one
may substitute eq. (7.62) and (F.15b) into the above equations to obtain more explicit
expressions the soft anomalous dimension in the high-energy limit, separated by signature,
including all powers of L. The signature-even part is

Γ(+,4)
ij→ij, (S)YM(L)Mtree =

{
LΓcusp,(4)

t + log −t
λ2

(
Γcusp,(4)
i + Γcusp,(4)

j

)
+ 2γ(4)

i + 2γ(4)
j

+ f (4,A)
([

T2
s−u, [T2

s−u,T2
t ]
]

+ C3
A

2 − 6 dARi
NRiCi

− 6
dARj
NRjCj

)

+
(
G(4)
A (L)− g

(4)
A

6 L

)(
2
(
dAA
NA
− C4

A

24

)
− 1

2T2
t [(T2

s−u)2,T2
t ]

+ 3
2[T2

s−u,T2
t ]T2

tT2
s−u + CA

2
[
T2
s−u, [T2

s−u,T2
t ]
])

+ 2F (+,4)
A (L)

[
T2
s−u, [T2

s−u,T2
t ]
]

+H(+,4)(L)
(
− 1

2CA
[
T2
s−u, [T2

s−u,T2
t ]
]

+ CAT2
s−u[T2

s−u,T2
t ]−

1
6T2

t [T2
s−u,T2

t ]T2
s−u

)}
Mtree,

(7.85)
and the signature-odd part is

Γ(−,4)
ij→ij, (S)YM(L)Mtree =

{
iπ

CA
Γcusp,(4)
A T2

s−u −F
(−,4)
A (L)

[
T2
t , [T2

t ,T2
s−u]

]

+ 2 iπg(4)
A

(
dARi
CiNRi

+
dARj
CjNRj

− 2dAA
CANA

− C3
A

16

)
T2
s−u

− iπg
(4)
A

16

(
3
[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
+
[
T2
t , [T2

t ,T2
s−u]

]
T2
t − 3T2

t [T2
t ,T2

s−u]T2
t

)
+H(−,4)

1 (L)
(
− 1

2

[
T2
s−u,

[
T2
s−u,

[
T2
s−u,T2

t

]]]
+ 1

8

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]])

+ 1
4H̃

(−,4)
1 (L)

[
T2
t ,
[
T2
t ,
[
T2
t ,T2

s−u
]]]}

Mtree.

(7.86)
These expressions make manifest the fact that the planar contributions are all captured by
the Γcusp and collinear anomalous dimension terms.

The singularities of the Regge trajectory and the cusp anomalous dimension.
We have seen that the connection [43, 44] between the infrared singularities of the gluon
Regge trajectory and the integral of the cusp anomalous dimension (2.40), namely

α̃g(t) = K +O(ε0) , (7.87)
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where

K(αs(µ2)) ≡ −1
4

∫ µ2

0

dλ2

λ2 γK(αs(λ2)) =
∞∑
n=0

(
αs(µ2)
π

)n
K(n) = 1

2ε
αs(µ2)
π

+ . . . , (7.88)

extends to three loops, despite the presence of a Regge cut contribution at this order,
i.e. O(α3

sL
1). For clarity we recall that this is contingent on defining the trajectory α̃g in the

Regge-cut scheme, which we defined by absorbing all planar contributions generated at two
and three loops into the Regge-pole term. Specifically, the trajectory α̃g was related to the
one in the MRS scheme by eq. (5.56), and the resulting cut-scheme subtracted trajectory is
finite (see eq. (A.10)):

ˆ̃αg(t) ≡ α̃g(t)−K = O(ε0) . (7.89)

From the perspective of the soft anomalous dimension this entails a remarkably simple
structure through three loops, namely its even-signature part takes the form

Γ(+)
ij→ij

(
αs, L,

−t
λ2

)
= 1

2γK(αs)LT2
t + Γi

(
αs,
−t
λ2

)
+ Γj

(
αs,
−t
λ2

)
+ ∆(+,3,0)

(
αs
π

)3
+O(α4

s) ,
(7.90)

where, crucially, we used the fact that23 ∆(+,3,1) = 0 [35, 55]. We thus see that the only
term in the (signature-even) soft anomalous dimension which is linear in the high-energy
logarithms L is the one proportional to the cusp anomalous dimension. Consequently, the
exponentiation of the singularities via eq. (6.3) directly determines the singularities of the
exponent of (s/(−t)), which is precisely the singular part of the gluon Regge trajectory.

This naturally generalises to four loops, where quartic Casimir contributions become
relevant, as displayed in the definition of the cusp anomalous dimension eq. (7.5). In order
to write an equation such as eq. (7.87) valid through four loops (and beyond), let us define

Kcusp(αs(µ2)) ≡ −1
2

∫ µ2

0

dλ2

λ2 Γcusp
A (αs(λ2)) . (7.91)

Generalising eq. (7.87), we have

CAα̃g(t) = Kcusp +O(ε0) (7.92)

through four loops, now including the quartic Casimir contributions. The Regge-pole
exponential in eq. (2.39) can then be expressed as exp(KcuspL).

Linear terms in the soft anomalous dimension at four loops. Let us now analyse
the implications of this relation from the perspective of the soft anomalous dimension. We
do that by directly comparing the two exponentiation pictures, that of the singularities via
eq. (6.3) on the one hand and that of the high-energy logarithms as a Regge pole, on the
other. The exponents in the two pictures take the form:

− 1
2

∫ µ2

0

dλ2

λ2 Γ(+)
ij→ij

(
αs, L,

−t
λ2

)
←→ CAα̃g(t)L . (7.93)

23Note that its signature-odd counterpart, ∆(−,3,1) is non-vanishing, see appendix E for details.
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For the two to agree for the terms that are simultaneously O(1/ε) and O(L1), one requires,
just as in eq. (7.90) at three loops, that the linear term in L within Γ(+)

ij→ij would be
given precisely by LΓcusp

t , where Γcusp
t is defined in eq. (7.80). Upon acting on the tree

amplitude, the t-channel operators produce Casimirs in the adjoint representation according
to eq. (7.81), and one recovers the cusp anomalous dimension in the adjoint representation
as in eq. (7.82). In this way the singularities of the gluon Regge trajectory satisfy eq. (7.92).

We thus conclude that the natural generalisation of the relation of eq. (7.92) between
the gluon Regge trajectory and the cusp anomalous dimension amounts to the requirement
that the terms linear in L within the signature-even part of the soft anomalous dimension
would simply be LΓcusp

t . This conjecture can also be formulated as

d

dL
Γ(+)
ij→ij

(
αs(µ2), −t

µ2

)∣∣∣∣
L=0
Mtree

ij→ij = Γcusp
A (αs(−t))Mtree

ij→ij , (7.94)

which of course holds through three loops using eq. (7.90) and (7.80), where only the
quadratic Casimir term T2

t is present in Γcusp
t . In contrast, at four loops also the DR

tttt

becomes relevant.
With this in mind, let us examine the general structure of the signature-even soft

anomalous dimension at four loops in eq. (7.83). The expected LΓcusp,(4)
t term is indeed

there. So, for our conjecture to hold, all other terms which depend on L must not contain
any further linear contribution. Differentiating eq. (7.83) and suppressing higher logarithms
one finds:

dΓ(+,4)
ij→ij,Regge
dL

∣∣∣∣
L=0
Mtree =

{
Γcusp,(4)
t + 2

(∑
R

F (+,4,1)
R

)[
T2
s−u, [T2

s−u,T2
t ]
]

+ 2
∑
R

(
G(4,1)
R − g

(4)
R

6

)(
DR
tttt +DR

ssss +DR
uuuu − 2

(
dRRi
NRi

+
dRRj
NRj

))

+H(+,4,1)
(
− 1

2CA
[
T2
s−u, [T2

s−u,T2
t ]
]

+ CAT2
s−u[T2

s−u,T2
t ]

− 1
6T2

t [(T2
s−u)2,T2

t ]
)}
Mtree ,

(7.95)

which satisfies the conjectured relation in eq. (7.94) subject to the following constraints

F (+,4,1)
R = 0, G(4,1)

R = g
(4)
R

6 , H(+,4,1)
1 = 0 . (7.96)

The coefficients g(4)
R are known in QCD [68–75]; see eq. (B.3). We stress that the constraints

in eq. (7.96), which concern the uncharted territory of N3LLs, have a very different status
as compared to those of eqs. (7.75), (7.77) and (7.79): while the latter are based on explicit
calculations in the high-energy limit, the former relies on a conjectured generalisation of
the relation between the gluon Regge trajectory and the cusp anomalous dimension. One
may note the intriguing similarity between the constraint on G(4)

R in eq. (7.96) and the
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Signature even Signature odd
L3 L2 L1 (conj.) L3 L2 L1

F (+,4)
A 0 −CA

8 ζ2ζ3 0 F (−,4)
A iπCA24 ζ3 ? ?

F (+,4)
F 0 0 0 F (−,4)

F 0 ? ?

G(+,4)
A 0 1

2ζ2ζ3
1
6g

(4)
A

G(+,4)
F 0 0 1

6g
(4)
F

H(+,4)
1 0 0 0 H(−,4)

1 0 ? ?

H̃(−,4)
1 0 ? ?

Table 1. Constraints on the high-energy limit of the kinematic functions entering the soft anomalous
dimension at four loops, separated by signature. Note that G only has a signature-even component,
and H(4)

1 is purely gluonic. All constraints at order L3 and L2 in this table are based on explicit
computations in the high-energy limit, while those for order L1 are based on the conjectured
generalisation of the relation between cusp singularities and the Regge pole to four loops. The
coefficients g(4)

R are known in QCD [68–75] and are quoted in eq. (B.3).

collinear constraint [54] on the same function in eq. (7.34). We stress that these are different
kinematic limits. Whereas in the high-energy limit the function G(4)

A does have a double
logarithmic contribution — see eq. (7.79a) — in the collinear limit eq. (7.34) forbids any
non-linear dependence on the relevant logarithm.

Summary: Regge-limit constraints on Γ(4)
n . We derived the soft anomalous dimen-

sion in the high-energy limit and used it to constrain the kinematic functions parametrising
this quantity in general kinematics as proposed in ref. [54]. The computed four-loop result,
taking into account NLLs of both even and odd signature, along with the newly-computed
NNLL of even signature, appears in eq. (6.48). In turn, upon taking the general-kinematics
parametrisation and specialising it to 2 → 2 kinematics in the Regge limit, we obtained
eqs. (7.70) and (7.71). Having chosen a common basis of colour operators for both the
computed result and the parametrised one, the values of the expansion coefficients of the
unknown kinematic functions in powers of L can be directly deduced, and are summarised
in eqs. (7.75), (7.77) and (7.79).

In addition, analysing the connection between the gluon Regge trajectory and the cusp
anomalous dimension originally proposed in refs. [43, 44], we conjectured that the linear
term in the soft anomalous dimension in the Regge limit is given precisely by Γcusp

t L such
that eq. (7.94) holds. This directly implies an additional set of constraints on the N3LL
signature-even contributions to the soft anomalous dimension according to eq. (7.96).

The full set of constraints on the four-loop kinematic functions is summarised in table 1.
Here, the left half of the table summarises the constraints on signature-even (real) functions,
while the right half the signature-odd (imaginary) ones. While the function GR multiplying
the quartic four-line term is by construction signature-even, the two other kinematic
functions FR and H1 have both even and odd components and their decomposition is
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given in eqs. (7.40) and (7.66), respectively. We note that our current knowledge of the
signature-even contributions is far greater than that of the odd. In the table we represented
unknown expansion coefficients by question marks.

As a final note we emphasise that the above constraints are fully consistent with the
result by Vladimirov [135], that only colour operators consisting of an even number of
generators can appear in the soft anomalous dimension. This implies that the functions
multiplying the five generator term H1 and H2 in the soft anomalous dimension in eq. (7.13)
vanish identically. This is in line with the last row in table 1, as well as the collinear-limit
constraints on these functions in ref. [54].

8 Conclusion

In this work we take a step forward in the understanding of 2→ 2 gauge-theory amplitudes
in the high-energy limit, by studying the tower of NNLL in the signature-odd (real)
amplitude and computing these explicitly through four loops. This tower of corrections
is particularly interesting for the analysis of the Regge limit, because amplitudes at this
logarithmic accuracy develop a rich structure, featuring both a Regge pole and a Regge
cut. Furthermore, taking the high-energy limit gives us access to properties of four-loop
amplitudes, which are beyond the reach of perturbative calculations with state-of-the-art
techniques. Chief among these is the long-distance singularity structure in fixed-angle
scattering, for which the high-energy limit is highly constraining.

In order to compute amplitudes in the Regge limit, we employ the method described in
refs. [23, 35]. In essence this approach allows us to compute transition amplitudes between
the projectile and the target at widely separated rapidities, each described by a state
consisting of a given numbers of Reggeons. The Balitsky-JIMWLK Hamiltonian is then
used to evolve the Reggeon states to the same rapidity. At NNLL accuracy this involves,
beyond the single Reggeon state, also triple-Reggeon states and mixing amongst these. The
sum of all transition amplitudes defines a reduced amplitude, which is related to the full
amplitude by simple multiplicative factors, eq. (2.44).

We classify the transition amplitudes entering the NNLL of the reduced amplitude to all
loop orders, in eq. (3.37). These fall into two distinct categories, one being a purely Single
Reggeon State (SRS) transition and the other including four transitions involving Multiple
Reggeon States (MRS). The former features a single Reggeon in both the projectile and the
target, undergoing trivial rapidity evolution as a single Reggeon across the entire rapidity
interval. The latter include all transitions in which a triple-Reggeon state is generated at
any stage during the evolution, be it at the projectile or the target ends, or during the course
of rapidity evolution. Specifically, the aforementioned four are: 3→ 3 transitions, 1→ 3 or
3→ 1 and 1→ 1 which are mediated by a triple-Reggeon state in the evolution. We show
that at NNLL accuracy MRS transition amplitudes can be computed to any perturbative
order by iterating the leading-order Balitsky-JIMWLK Hamiltonian. Thus, the MRS are
universal quantities in any gauge theory, which do not depend on the matter content.

We computed the reduced amplitudes through four loops, given in eqs. (5.9), (5.17)
and (5.32), providing a detailed derivation of results presented in ref. [36]. In particular, we
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developed a new method to calculate the colour factor of the amplitude, when the target
and the projectile belong to general representations of the gauge group. This allowed us
to derive new colour identities and obtain expressions of the reduced amplitudes in an
operator form, which is suitable to investigate universal features of both the infrared and of
the high-energy factorisation. We found that only the 3→ 3 transitions feature non-trivial
colour structure, where different colour components mix during evolution. All the other
MRS transitions are proportional to the colour octet exchange to all perturbative orders.
We observed that 3 → 1 and 1 → 3 transitions at three and at four loops, in eqs. (5.16)
and (5.26) respectively, cancel exactly against corresponding terms (which involve quartic
Casimirs associated with the representations of the projectile and the target) in the 3→ 3
exchanges of eqs. (5.14) and (5.22). We conjecture that such a mechanism is in place to
all perturbative orders and that it completely removes all contributions to the amplitude
from 3 → 1 and 1 → 3 transitions. As a result, only the 1 → 1 transition generates
mixing between states with one and three Reggeons, as we check explicitly at four loops.
There, a further cancellation takes place: the 1→ 1 contribution in eq. (5.28) cancels the
planar terms of 3→ 3 transitions in eq. (5.22), to all orders in ε. This renders the reduced
amplitude at four loops, eq. (5.30), manifestly non-planar.

The complete cancellation of the contributions emerging from mixing between single
and triple Reggeon states, against corresponding terms associated with quartic Casimirs
in the 3 → 3 evolution, is highly suggestive of a general pattern, extending to all orders
in this tower of logarithms. As we have seen, it leads to a partial cancellation of planar
contributions in the reduced amplitude at three loops, and a complete cancellation of such
at four loops. Our expectation is that the reduced amplitude will be non-planar at any
order beyond four loops. The only planar contributions in the reduced amplitude then occur
at two and three loops, before the full set of single-triple Reggeon transitions opens up.

The non-planar nature of the total contribution to the reduced amplitude from multiple
Reggeon states at four loops (and likely beyond) points to a simple relation between these
quantities and Regge cuts, which are known to arise only from non-planar diagrams [1, 3, 4].
However, the separation between single-Reggeon state (SRS) and multiple-Reggeon state
(MRS) contributions to the amplitude as defined in our calculation, is not in one-to-one
correspondence with the separation between the Regge pole and the Regge cut contributions.
This is already clear at two and at three loops, where MRS do contain planar contributions.
Hence, the MRS give rise to both pole and cut contributions, while the SRS contributes
exclusively to the Regge-pole exchange.

In order to elucidate the separation between Regge cut and pole, we rely again on the
structure of the reduced amplitudes in the planar limit. We find that MRS contributions
that are leading in Nc appear only in the colour octet component and are independent
of the process, both at two loops, eq. (5.11), and at three loops, eq. (5.18). Following
this analysis of colour factors, we show that both the SRS contribution and the planar
terms of the MRS contribution may be described by Regge-pole factorisation, while all
remaining non-planar MRS terms define a cut contribution, as done in eq. (5.36). We
name this separation of the amplitude the Regge-cut scheme. It departs from the one
adopted in ref. [35], dubbed MRS scheme, where the SRS contribution alone is factorised
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as a Regge pole. The change of scheme modifies the definition of the impact factors and
of the Regge trajectory, which determine the Regge pole contribution, by the planar part
of the MRS contribution. Notably, the two-loop impact factors and the three-loop Regge
trajectory completely characterise the Regge-pole contribution to the NNLL to all orders.
At four loops and beyond there is no parameter which could allow one to shuffle planar
MRS contributions to the Regge pole. Therefore, starting at four loops the MRS transition
amplitudes must contribute exclusively to the cut and must be entirely non-planar. This is
indeed what we find in our four-loop calculation, eqs. (5.30) and (5.32).

In section 5.4 we construct the complete amplitudes and then we distinguish pole and
cut contributions to the amplitude according to the Regge-cut scheme (5.36). At two loops,
we provide in eq. (5.46) the definition of the Regge cut coefficientM(−,2,0), cut

ij→ij in an operator
form, which is valid to all orders in ε for every colour component in any process. This
coincides with the MRS contribution of eq. (5.9), with its planar limit, eq. (5.11), subtracted.
We find that, in the octet component,M(−,2,0), cut

ij→ij agrees with the Regge-pole factorisation
breaking term R

(2),0,[8]
ij , defined in refs. [30, 32] on the basis of infrared factorisation. We

determine the corresponding quark and gluon impact factors in this scheme, eq. (5.44), by
giving their relation with the results in the MRS scheme [35]. Remarkably, it is possible to
move into the impact factors further terms that appear inM(−,2,0), cut

ij→ij and are subleading
in Nc, as done in eq. (5.47). This follows from the structure of the non-planar terms in the
reduced amplitude at two loops, given in eq. (5.8). By following this redefinition, we obtain
a new cut,M(−,2,0),FL-cut

ij→ij , defined in eq. (5.48), which agrees with the two-loop Regge cut
AeikC

C
ij computed by Fadin and Lipatov [33, 34].

At three loops, the Regge cut M(−,3,1), cut
ij→ij takes the form of eq. (5.60). It includes

a term proportional to M(−,2,0), cut
ij→ij plus the reduced amplitude at three loops M̂(−,3,1)

ij→ij ,
eq. (5.17), with its planar part subtracted. The latter is assigned to the Regge pole and
thus it enters the Regge trajectory at three loops. Eq. (5.56) provides the relation between
the three-loop trajectory in the Regge-cut scheme and in the MRS scheme of ref. [35]. In
that work, the three-loop trajectory was determined in the MRS scheme for N = 4 SYM.
There, it was also pointed out that the MRS scheme breaks a well-known relation [43, 44]
between the infrared singularities of the gluon Regge trajectory and K(αs) of eq. (2.30a), the
integral over the lightlike cusp anomalous dimension. This relation holds for the two-loop
Regge trajectory, but it is violated at three loops in the MRS scheme. In contrast, we find
that the three-loop Regge trajectory in the Regge-cut scheme, α̃(3)

g , features precisely the
singularities predicted by the cusp anomalous dimension, as shown in eq. (5.58).

We compute also the finite contribution to α̃(3)
g in N = 4 SYM in full colour. Notably,

we find that the latter agrees with the known result in the planar theory [113, 114], without
any non-planar correction. In other words, the trajectory features a maximally non-Abelian
colour factor, which is in line with the expected eikonal origin for this quantity [43, 44, 77].

Our three-loop analysis suggests that the Regge-cut scheme captures the analytic
structure of high-energy amplitudes. As a confirmation, we find that, in this scheme, the
Regge cut agrees with the function R(3),1,[8]

ij→ij of refs. [30, 32], which contains the factorisation-
breaking singularities in the octet component. However, different choices are also possible. In
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particular, as mentioned above, using eq. (5.8) we identify a specific set of non-planar terms
in the reduced two-loop amplitude that are consistent with Regge-pole factorisation. Absorb-
ing these into the Regge-pole term at two loops (eq. (5.48)) modifies the contribution of the
Regge cut at three loops of eq. (5.60), only by replacingM(−,2,0), cut

ij→ij with the expression of
the cut in the new scheme,M(−,2,0),FL-cut

ij→ij . We verify that the three-loop cut defined in this
way coincides with the cut contribution, −AeikC

C
ij (CR + C3), in refs. [33, 34]. Notably, the

three-loop Regge trajectory is not affected by colour subleading terms and, even with the FL
definition of the cut, it maintains its relation with the lightlike cusp anomalous dimension,
as well as its maximally non-Abelian colour factor. Therefore, our new analysis of the colour
factors in the reduced amplitudes, allows us to find the precise relation between the compu-
tational scheme introduced in refs. [23, 35] and the study of factorisation breaking and of the
Regge cut, performed respectively in refs. [30–32] and [33, 34], finding complete agreement.

Our expression for the Regge cut at four loops is given in eq. (5.67), in terms of the
reduced amplitude at four loops and the cut contributions at two and three loops. Since
the former, eq. (5.32), is non-planar by direct computation, and the latter two terms are
defined in the Regge-cut scheme to be non-planar by construction, we find the four-loop
cut contribution to the amplitudeM(−,4,2),cut

ij→ij is non-planar as a whole. Furthermore, we
show in eq. (5.68) that by the same mechanism, in this scheme the non-planar nature of
the reduced amplitude ensures that the cut remains non-planar to all loop orders.

In sections 6 and 7 we proceed with the investigation of infrared factorisation at four
loops, employing our explicit NNLL calculation as an input. The comparison between
the exponentiation of infrared singularities and that of high-energy logarithms is useful
in several ways. First, it is a highly non-trivial check of the results. Second, it provides
a rich source of constraints on the yet-unknown soft anomalous dimension at four loops
(see below). Third, it allows us to extract the hard function containing finite terms in
the amplitude through four loops, both in QCD and in N = 4 super Yang-Mills (SYM),
finding an intriguing relation between the hard function and the finite parts of the gluon
Regge trajectory, eq. (6.40). The planar terms in the hard function in SYM agree with the
predicted large-Nc limit [113, 122].

We study the soft anomalous dimension through four loops. In the high-energy limit,
we separate the contributions of the dipole formula [51–53, 87], from a general remainder ∆
that starts at three loops, expanding both in powers of the signature-even logarithm L,
defined in eq. (2.9). While dipole contributions are at most linear in L, the remainder
contains higher powers of the logarithm, for instance its imaginary part contains terms L3

at four loops [23, 24]. Notably, the real part of the remainder at three loops ∆(+,3) does
not depend on L [55]. In particular, since it lacks linear terms in L, it does not contribute
to the tower of NNLLs in the soft anomalous dimension to that order [35]. Here we
compute the real part of the remainder to four loops, ∆(+,4), through NNLL, i.e. O(α4

sL
2),

finding the first non-vanishing contribution to the NNLL tower, eq. (6.39). This quantity
is manifestly non-planar: it is written in terms of commutators of the channel operators
and the combination of Casimir invariants dAA

NA
− C4

A
24 , which is subleading in the large-Nc

limit. This is a strong check on our calculation, because in the planar limit only diagrams
connecting up to two legs can contribute to the soft anomalous dimension.
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We characterise our result for the soft anomalous dimension in eq. (6.39) further, by
comparing it with the general parametrisation for the four-loop soft anomalous dimension
in general kinematics [54], which consists of all connected [127] colour structures that may
arise at this order, each multiplying a yet-unknown kinematic function. We compute the
high-energy limit of this parametrisation of the soft anomalous dimension through NNLLs,
both in the real part, eq. (7.70), and in the imaginary part, eq. (7.71). Focusing on the terms
in the real part of the anomalous dimension, we find only three contributions. Two of them
involve colour quadrupole correlations, featuring four generators, one on each of the four
lines. Of these one colour structure is of the same form that appears at three loops [55, 56]
multiplied by the kinematic function F (+,4)

A , while the second involves a quartic Casimir
type structure (a symmetric trace of four adjoint generators) multiplied by G(+,4)

A . In the
Regge-limit both are expressed in terms of nested commutators of channel colour operators,
where the second also features the combination dAA

NA
− C4

A
24 . The final potential contribution to

the soft anomalous dimension, featuring the unknown function H(+,4)
1 , generates correlations

among four lines using five colour generators. Matching the general parametrisation with
our result of the anomalous dimension provides non-zero constraints on the high-energy
limit of the functions F (+,4)

A , in eq. (7.79a), and G(+,4)
A , in eq. (7.79b). Interestingly, the

function H(+,4)
1 must vanish to this logarithmic accuracy. This is consistent with the result

of ref. [135], which shows that the correlation of an odd number of colour operators is
always prohibited in the soft anomalous dimension. We determine all constraints on the
parametrisation in ref. [54] that can be derived from the available information on the Regge
limit and we summarise our findings in table 1.

We expect that the interplay between high-energy and infrared factorisation will pro-
vide further insight into gauge-theory dynamics. This conclusion is already suggested by
arguments about the gluon Regge trajectory. We have pointed out that this quantity —
both its singular and its finite parts — is expected to be associated to the anomalous
dimension of Wilson-line geometries [43, 44, 77]. Here we verified, up to three loops, the
correspondence between the infrared singularities of the Regge trajectory and the terms
proportional to the quadratic Casimir in the lightlike cusp anomalous dimension. We
conjecture that this relation generalises to four loops and beyond as in eq. (7.92), where
we identify the singularities of the Regge trajectory with the integral of the complete
cusp anomalous dimension, eq. (7.5), including quartic Casimir (and higher) contributions.
This has profound implications on the structure of the soft anomalous dimension, beyond
the accuracy of our calculation. Specifically, at four loops, the N3LL contribution to
the soft anomalous dimension must be related to the four-loop Regge trajectory. More
generally, if our conjecture holds, linear terms in L in the real part of the soft anomalous
dimension in the Regge limit must be simply proportional to complete cusp anomalous
dimension in the adjoint representation, or equivalently we expect eq. (7.94) should hold
to all orders. At four loops this provides three new constraints on the soft anomalous
dimension, given in eq. (7.96). The vanishing of H(+,4)

1 is of course consistent with the
finding of ref. [135]. The results are included in table 1, which provides important input
to the bootstrap program to determine the soft anomalous dimension in general kine-
matics, which has already been successful at the three-loop level [56]. Our work paves
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the way for bootstrapping this quantity to four loops, where direct calculations are not
yet feasible.
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A Coefficients of the Regge pole amplitude

In this appendix we collect the coefficients describing the Regge pole part of the two-parton
scattering amplitude, namely, the Regge trajectory and impact factors. As discussed
in section 2.1, this component of the amplitude is scheme-dependent, starting at NNLL
accuracy. Below we begin by compoiling the coefficients in the MRS scheme of eq. (2.38)
and then proceed to discuss the cut scheme of eq. (2.39).

Following the definition in eq. (6.15), we split the Regge trajectory into a component
proportional to the integral of the cusp anomalous dimension, K(αs) defined in eq. (2.30a),
and a remainder, α̂g:

αg(t) = K (αs(−t)) + α̂g(t). (A.1)

Expanding the term in this equation according to eq. (2.6), in QCD one has

K(1) = γ
(1)
K

4ε ,

K(2) = γ
(2)
K

8ε −
b0 γ

(1)
K

32ε2 ,

K(3) = γ
(3)
K

12ε −
b0 γ

(2)
K + b1 γ

(1)
K

48ε2 + b20 γ
(1)
K

192ε3 ,

(A.2a)

where the coefficients γ(i)
K are given in (B.2). The remainder, cusp-subtracted trajectory

α̂g(t) is known up to two loops in QCD. Its coefficients read [10, 12, 79–82]

α̂(1)
g = 1

2ε(rΓ − 1) = −1
4ζ2 ε−

7
6ζ3 ε

2 +O(ε3), (A.3a)

α̂(2)
g = CA

(101
108 −

ζ3
8

)
− 7nf

54 +O(ε) . (A.3b)

The cusp-subtracted trajectory at three loops has been calculated in N = 4 SYM, [35],
extracting it from the two-parton scattering amplitude obtained in ref. [60]. It reads

α̂(3)
g |SYM = C2

A

(
− ζ2

144ε3 + 5ζ4
192

1
ε

+ 107
144ζ2ζ3 + ζ5

4 +O (ε)
)
. (A.4)
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The description of the Regge-pole component of the amplitude is completed by the
information provided by the quark and gluon impact factors. Following the definition in
eq. (2.41), we split the impact factors into a term Zi/j(t), defined as the integral of the
anomalous dimension Γi/j , see eq. (2.42), and a collinear-subtracted remainder Di/j(t):

Ci/j(t) = Zi/j(t)Di/j(t). (A.5)

In terms of the coefficients in eqs. (B.4) and (B.5), and setting µ2 = −t, the perturbative
expansion of Zi(t) (see eq. (2.43a)) reads

Z
(0)
i = 1,

Z
(1)
i = −Ci γ(1)

K

1
4ε2 + γ

(1)
i

ε
,

Z
(2)
i = C2

i

(
γ

(1)
K

)2 1
32ε4 + Ci

[
1
ε3
γ

(1)
K

4

(3b0
16 − γ

(1)
i

)
− 1
ε2
γ

(2)
K

16

]

+ 1
ε2
γ

(1)
i

2

(
γ

(1)
i −

b0
4

)
+ γ

(2)
i

2ε .

(A.6)

The one- and two-loop coefficients of the quark and gluon collinear-subtracted impact
factors have been calculated in the MRS scheme of eq. (2.38) in [35]. For instance, at one
loop one has

D(1)
g =−Nc

(67
72−ζ2

)
+ 5

36nf +ε

[
Nc

(
−101

54 + 11
48ζ2 + 17

12ζ3
)

+nf
( 7

27−
ζ2
24

)]
+ε2

[
Nc

(
−607

162 + 67
144ζ2 + 77

72ζ3 + 41
32ζ4

)
+nf

(41
81−

5
72ζ2−

7
36ζ3

)]
+O(ε3) ,

(A.7a)

D(1)
q =Nc

(13
72 + 7

8ζ2
)

+ 1
Nc

(
1− 1

8ζ2
)
− 5

36nf +ε

[
Nc

(10
27−

ζ2
24 + 5

6ζ3
)

+ 1
Nc

(
2− 3

16ζ2−
7
12ζ3

)
+nf

(
− 7

27 + ζ2
24

)]
+ε2

[
Nc

(121
162−

13
144ζ2−

7
36ζ3 + 35

64ζ4
)

+ 1
Nc

(
4− ζ2

2 −
7
8ζ3−

47
64ζ4

)
+nf

(
−41

81 + 5
72ζ2 + 7

36ζ3
)]

+O(ε3) .

(A.7b)

At two loops:

D(2)
g =− ζ2

32ε2N
2
c +N2

c

(
− 26675

10368 + 335
288ζ2 + 11

18ζ3−
ζ4
64

)
+Ncnf

(
2063
3456−

25
144ζ2 + ζ3

72

)
+ nf
Nc

(
− 55

384 + ζ3
8

)
− 25

2592n
2
f +O(ε) ,

(A.8a)

D(2)
q =− ζ2

32ε2N
2
c +N2

c

(
22537
41472 + 87

64ζ2 + 41
144ζ3−

15
256ζ4

)
+ 28787

10368 + 19
32ζ2

− 205
288ζ3−

47
128ζ4 + 1

N2
c

(
255
512 + 21

64ζ2−
15
32ζ3−

83
256ζ4

)
+Ncnf

(
− 325

648−
ζ2
4 −

23
144ζ3

)
+ nf
Nc

(
− 505

1296−
ζ2
16−

19
144ζ3

)
+ 25

864n
2
f +O(ε) .

(A.8b)
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The whole impact factors Ci can be found inserting the results from eqs. (A.6)–(A.8b)
into eq. (A.5), and expanding order by order in the strong coupling. At one loop we get

C(1)
q =− CF

2ε2 −
3CF
4ε + CA

(3ζ2
4 + 85

72

)
+ CF

(
ζ2
4 − 2

)
− 5nf

36 + ε

[
CA

(64
27 −

11ζ2
48 + ζ3

4

)
+ CF

(3ζ2
8 + 7ζ3

6 − 4
)

+ nf
(
ζ2
24 −

7
27

) ]
+ ε2

[
CA

(769
162 −

85ζ2
144 −

77ζ3
72 −

3ζ4
16

)
+ CF

(
ζ2 + 7ζ3

4 + 47ζ4
32 − 8

)
+ nf

(5ζ2
72 + 7ζ3

36 −
41
81

) ]
+O(ε3), (A.9a)

C(1)
g =− CA

2ε2 −
b0
4ε + CA

(
ζ2 −

67
72

)
+ 5nf

36 + ε

[
CA

(11ζ2
48 + 17ζ3

12 −
101
54

)
+ nf

( 7
27 −

ζ2
24

) ]
+ ε2

[
CA

(67ζ2
144 + 77ζ3

72 + 41ζ4
32 −

607
162

)
+ nf

(41
81 −

5ζ2
72 −

7ζ3
36

) ]
+O(ε3). (A.9b)

In the Regge-cut scheme, the one-loop and two-loop Regge trajectories are identical to
the MRS scheme, since multiple-Reggeon exchanges do not contribute to the odd amplitude
at LL and NLL. Thus, with ˆ̃αg = α̃g −K, and using eq. (5.56) for the three-loop case,
we have

ˆ̃α(1)
g = α̂(1)

g = 1
2ε(rΓ − 1), (A.10a)

ˆ̃α(2)
g = α̂(2)

g = CA

(101
108 −

ζ3
8

)
− 7nf

54 +O(ε), (A.10b)

ˆ̃α(3)
g |SYM = N2

c

( 5
24ζ2ζ3 + ζ5

4 +O(ε)
)
. (A.10c)

Similarly, the impact factors at one loop in the Regge-cut scheme are identical to the
MRS scheme: C̃(1)

i = C
(1)
i for both quarks and gluons. However, due to eq. (5.44), at two

loops we have, in the cut scheme

C̃(2)
q = C2

F

8ε4 + 1
ε3

(
11CACF

32 + 3C2
F

8 −
CFnf

16

)
+ 1
ε2

[
C2
F

(41
32−

ζ2
8

)
− 3C2

Aζ2
32 + CFnf

24

−CACF
(5ζ2

16 + 23
48

)]
+ 1
ε

[
CACF

(
−19ζ2

24 + 11ζ3
16 −

1513
576

)
+C2

F

(221
64 −

4ζ3
3

)
+CFnf

(
ζ2
24 + 89

288

)]
+C2

A

(73ζ2
32 −

43ζ3
48 −

19ζ4
32 + 13195

3456

)
−CACF

(1171ζ2
576 −

175ζ3
48 −

17ζ4
8 + 40423

3456

)
+C2

F

(1151
128 + 17ζ2

32 −
29ζ3

8 −
65ζ4
32

)
+CFnf

(265
216 + 17ζ2

288 + ζ3
6

)
−CAnf

(385
432 + 5ζ2

16 + 7ζ3
24

)
+ 25

864n
2
f +O(ε), (A.11a)

C̃(2)
g = C2

A

8ε4 + 1
ε3

(
77C2

A

96 −
7CAnf

48

)
+ 1
ε2

[
C2
A

(103
96 −

17ζ2
32

)
− 49CAnf

144 + n2
f

36

]
+ 1
ε

[
C2
A

(853
864−

11ζ2
12 −

31ζ3
48

)
+CAnf

(
ζ2
6 −

19
72

)
+ CFnf

16 + 5n2
f

216

]
+C2

A

(415ζ2
576 −

11ζ3
9 −

ζ4
2 + 10525

10368

)
+CAnf

(
− ζ216 + 17ζ3

36 −
113
324

)
+CFnf

( 55
192−

ζ3
4

)
+n2

f

( 29
864−

ζ2
144

)
+O(ε). (A.11b)
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B Anomalous dimensions

In this appendix we collect the coefficients of the various anomalous dimensions considered
in the main text. All anomalous dimensions are expanded in powers of the strong coupling
according to

γφ =
∞∑
`=1

(
αs
π

)`−1
γ

(`)
φ . (B.1)

First of all we have the cusp anomalous dimension, defined in eq. (2.28), which involves
quadratic and quartic Casimir terms, recently calculated up to four loops in QCD [68–
75, 146, 147]. In QCD, the quadratic Casimir component, γK(αs), has the following
expansion coefficients through three loops24 [66, 67, 149]:

γ
(1)
K = 2,

γ
(2)
K =

(67
18 − ζ2

)
CA −

10
9 TRnf ,

γ
(3)
K = C2

A

96

(
490− 1072

3 ζ2 + 88ζ3 + 264ζ4

)
+ CFTRnf

32

(
−220

3 + 64ζ3

)
+ CATRnf

96

(
−1672

9 + 320
3 ζ2 − 224ζ3

)
−

2T 2
Rn

2
f

27 , (B.2)

where the fundamental trace is TR = Tr(tata) = 1
2 . The second term, gR(αs), multiplying

the quartic Casimir, starts at four loops, and depends on the gauge-group representation R.
Its coefficients for R = A (adjoint) and R = F (fundamental) in QCD read

g
(4)
A = ζ3

6 −
3ζ2

3
2 + 55ζ5

12 −
ζ2
2 −

31ζ6
8 ,

g
(4)
F = nf

(
ζ2 −

ζ3
3 −

5ζ5
3

)
.

(B.3)

The contribution in N = 4 SYM, for γK(αs) and gA(αs), is obtained, according to principle
of maximum trascendentality, by retaining only the terms with highest trascendental weight
at each order.

Next, we have the collinear anomalous dimension γi corresponding to the parton i [32, 76–
78], which is part of the anomalous dimension Γi and Γj defined in eq. (2.29). The collinear
anomalous dimension γi has been recently calculated up to four loops [74, 75]. We provide
here its coefficients up to two loops, as needed in the main text, for quarks and gluons. One

24Three-loop contributions to lightlike cusp anomalous dimension were first determined in [148, 149], by
using the connection between this quantity and the large-x limit of non-singlet splitting functions [123]. The
complete calculation of the non-singlet three-loop splitting functions has been recently confirmed in ref. [150].
Independent calculations of the three-loop cusp anomalous dimension were also obtained by computing form
factors [76, 151] and cusped Wilson loop [152, 153] to this loop order. More recently, such calculations have
been completed at four loops [68–75, 146, 147].
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has [76, 151]

γ(1)
q = −3

4 CF ,

γ(2)
q = C2

F

16

(
−3

2 + 12ζ2 − 24ζ3

)
+ CACF

16

(
−961

54 − 11ζ2 + 26ζ3

)
+ CFTRnf

16

(130
27 + 4ζ2

)
, (B.4)

for quarks, and

γ(1)
g = −b04 ,

γ(2)
g = C2

A

16

(
−692

27 + 11
3 ζ2 + 2ζ3

)
+ CATRnf

16

(256
27 −

4
3ζ2

)
+ CFTRnf

4 , (B.5)

for gluons.

C Computing colour factors for arbitrary representations

In this appendix we review computational techniques to evaluate the colour factors of the
transition amplitudes. Universality of the Regge limit implies that the colour structure of
every amplitude is given by the same colour operators, regardless whether the scattering
process involves quarks or gluons in the initial and final state. In order to determine
such operators, we need to develop techniques to evaluate colour tensors for general
representations of the external particles. Indeed, while it is straightforward to compute
directly colour Feynman rules by specialising the representations of the scattering particles,
such explicit results would completely obscure universality of the Regge limit. Instead,
we would like to express our results in terms of Casimir operators of the colour channel
operators defined in eq. (2.22)

T2
t , T2

s−u = T2
s −T2

u

2 , (C.1)

which manifest the signature properties under s ↔ u crossing. These operators emerge
naturally in diagrams that feature connections among the outermost Reggeon indices,
for example

M4 = (Ta
1 ·Ta

2) M4,

= 1
2

(
T2
s−u −

T2
t

2

)
M4.

(C.2)

where, in the second line, we applied colour conservation according to eq. (2.18). The
result above is independent on the four-point matrix element M4, thus providing a graph-
ical derivation of the relation in eq. (4.32a). We apply a similar procedure whenever a
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(a) (b)

Figure 11. Diagrammatic representation of the irreducible configurations: (a) dA in eq. (C.3) and
(b) dB in eq. (C.4).

(a) (b)

Figure 12. Both the double cross diagram (a) and the saltire diagram (b) are immediately written
in terms of colour dipole operators by commuting the pair of Reggeon emission vertices at the end
of either the top or of the bottom line.

Reggeon is emitted from an initial-state parton and absorbed by a final-state one, accord-
ing to eq. (4.32b). Therefore, colour structures up to two loops are written for general
representations by

(i) Using the Lie algebra, eq. (4.34), to write three-point vertices (F a)bc in terms of
Reggeons connecting the target and the projectile.

(ii) Applying repeatedly eqs. (4.32a) and (4.32b) to obtain the colour-channel operators
of eq. (C.1), acting on the tree-level amplitude.

The second step may not applicable for diagrams where all Reggeons have one or more
internal attachment, namely they are all either emitted or absorbed between two other
Reggon vertices. We refer to these irreducible configurations as entangled colour structures.

Indeed, entangled colour structures may occur starting at three loops. At three loops,
we find two such colour tensors25 corresponding to the graphs in figure 11a and 11b.

While these diagrams drop out the three-loop amplitude, such entangled configurations
do not cancel in general and we will encounter them in the four-loop calculation. Hence, we
need to extend the techniques summarised above.

Permutation diagrams

We begin by introducing a compact notation for colour factors involving k Reggeon at-
tachments on both target and projectile. These configuration are naturally associated to

25At three loops there are two additional irreducible configurations, depicted in figure 12a and 12b. These,
however, can be recast into the form of eq. (C.2) using commutation relations.
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(a) (b)

Figure 13. Diagrammatic representation of the terms on the right hand side of eq. (C.5).

permutations of k indices. Choosing the top line as target state i, the diagram in figure 11a
is written as

dA =
(
Ta1Ta2Ta3Ta4

)
i

(
Ta3Ta1Ta4Ta2

)
j
≡
(
a1 a2 a3 a4
a3 a1 a4 a2

)
. (C.3)

Similarly, the diagram in figure 11b is

dB =
(
Ta1Ta2Ta3Ta4

)
i

(
Ta2Ta4Ta1Ta3

)
j
≡
(
a1 a2 a3 a4
a2 a4 a1 a3

)
. (C.4)

We do not have an expression of dA and dB separately which is valid for general representa-
tions. However, we are interested only in the combination dA + dB, which manifests the
symmetry under the interchanged of the projectile and the target. For this combination we
have the following identity:

dA + dB =
(
a1 a2 a3 a4
a4 a1 a3 a2

)
+
(
a1 a2 a3 a4
a1 a4 a2 a3

)
, (C.5)

which we will prove below. The two terms on right-hand side of eq. (C.5), depicted in
figures 13a and 13b, feature outmost Reggeon interactions represented by the indices a1
and a4, respectively. Therefore, these terms are easily written in terms of colour channel
operators by applying eqs. (4.32a) and (4.32b), as described in step (ii) above. The resulting
two-loop graphs are again reducible, and one obtains:

dA + dB = 1
4

{(
T2
s−u

)3
− 1

4
(
T2
t

)2
T2
s−u + CA

4 T2
tT2

s−u −
C2
A

4 T2
s−u

}
Ta
i Ta

j , (C.6)

Eq. (C.6) is a general expression of dA+dB for arbitrary representations of external particles.
This is the only relation needed to compute three-loop colour structures. The identity (C.5)
was crucial to obtain the result. This identity is conveniently derived by starting from an
auxiliary three-loop configuration

d̃(3) =
(
Ta1Ta2Ta3

)
i

(
TxTa1Ta3TxTa2

)
j
. (C.7)

The colour factor above is not associated to a permutation of indices, because it features a
boomerang, namely the contraction of a pair of indices on the same line (in this case the
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projectile). Using the Lie algebra relations, there are two ways of moving the x on line i:
either by commuting x with a1 or x with a3. We find respectively

d̃
(3)
1 =

(
C2 (j)− CA

2

)
(Ta1Ta2Ta3)i (Ta1Ta3Ta2)j (C.8a)

+ ifa3xk (Ta1Ta2Ta3)i
(
TxTa1TkTa2

)
j
,

d̃
(3)
2 =

(
C2 (j)− CA

2

)
(Ta1Ta2Ta3)i (Ta1Ta3Ta2)j (C.8b)

+ ifxa1k (Ta1Ta2Ta3)i
(
TkTa3TxTa2

)
j
.

The two expressions are of course identical, so their difference must vanish

0 = i (Ta1Ta2Ta3)i
[
fa3xk

(
TxTa1TkTa2

)
j
− fa1xk

(
TxTa3TkTa2

)
j

]
. (C.9)

Finally, writing the structure constants in terms of commutators on line i, we obtain
eq. (C.5), concluding the proof.

Four-loop colour factors

All the colour structures appearing at four loops are written in terms of contractions of five
pairs of generators, by applying repeatedly the Lie algebra. We identify eight independent
colour factors that cannot be reduced in terms of T2

s−u and T2
t by following steps (i) and

(ii) above. We choose to collect them into the following terms:

d1 =
(
a1 a2 a3 a4 a5
a2 a5 a3 a1 a4

)
+
(
a1 a2 a3 a4 a5
a4 a1 a3 a5 a2

)
, (C.10a)

d2 =
(
a1 a2 a3 a4 a5
a2 a4 a1 a5 a3

)
+
(
a1 a2 a3 a4 a5
a3 a1 a5 a2 a4

)
, (C.10b)

d3 =
(
a1 a2 a3 a4 a5
a2 a4 a5 a1 a3

)
+
(
a1 a2 a3 a4 a5
a4 a1 a5 a2 a3

)
, (C.10c)

d4 =
(
a1 a2 a3 a4 a5
a2 a5 a1 a4 a3

)
+
(
a1 a2 a3 a4 a5
a3 a1 a5 a4 a2

)
, (C.10d)

d5 =
(
a1 a2 a3 a4 a5
a3 a2 a5 a1 a4

)
+
(
a1 a2 a3 a4 a5
a4 a2 a1 a5 a3

)
, (C.10e)

d6 =
(
a1 a2 a3 a4 a5
a3 a4 a1 a5 a2

)
+
(
a1 a2 a3 a4 a5
a3 a5 a1 a2 a4

)
, (C.10f)

d7 =
(
a1 a2 a3 a4 a5
a3 a5 a1 a4 a2

)
, (C.10g)

d8 =
(
a1 a2 a3 a4 a5
a4 a2 a5 a1 a3

)
, (C.10h)

where each term d1 . . . d8 is manifestly symmetric under target-projectile exchange i ↔ j. In
addition, d1 is symmetric under signature symmetry, because the two terms in eq. (C.10a) are
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related to each other by reversing the order of indices on one of the lines. In order to express
these colour factors in terms of channel operators, we consider again the configurations
generated by operating with the Lie algebra on the corresponding boomerang diagrams. In
particular, we consider the following four-loop diagrams

d̃
(4)
L =

(
Ta1Ta2Ta3Ta4

)
i

(
TxTaσ(1)Taσ(2)TxTaσ(3)Taσ(4)

)
j
,

d̃
(4)
R =

(
Ta1Ta2Ta3Ta4

)
i

(
Taσ(1)Taσ(2)TxTaσ(3)Taσ(4)Tx

)
j
,

d̃
(4)
C =

(
Ta1Ta2Ta3Ta4

)
i

(
Taσ(1)TxTaσ(2)Taσ(3)TxTaσ(4)

)
j
,

(C.11)

which generalise the three-loop boomerang of eq. (C.7) by including one more pair of indices,
and the target-projectile symmetric configurations obtained from eq. (C.11). Starting
from these boomerang configurations, we operate as in eqs. (C.8) and (C.9) and we get
six independent linear relations for d1 . . . d8. We derive one more constraint from the
colour factor

d̃
(4)
P = Tr

[
F xF aF bF c

]
Tr
[
F yF aF bF c

]
Tx
i Ty

j =
(
dAA
NA

+ C4
A

12

)
Tx
i Tx

j , (C.12)

which can be written as a combination of d1 . . . d8 by using the Lie algebra to replace traces of
generators in the adjoint representation with commutators of Ti or Tj . The seven identities
obtained in this way determine the signature-odd contributions to d1 . . . d8. In turn, this is
sufficient in order to express the real part of the amplitude, thus allowing us to perform
the calculations of section 4.2. However, we need one more equation in order to determine
also contributions of even signature. In particular, such terms were needed to compute the
Regge limit of the soft anomalous dimension, discussed in section 7. The last constraint
was determined by writing a general ansatz for d3 in terms of products of Casimir operators
T2
s−u and T2

t acting on the tree-level amplitude Tx
i Tx

j . The unknown coefficients were
fitted by comparing the ansatz with explicit results obtained by specialising the generators
Ti and Tj in eq. (C.10c) either in the adjoint or in the fundamental representation. We
report here the final expressions of the colour factors in eqs. (C.10a)–(C.10h), which all
apply for any representation of the external particles. The results are:

d1 =
{

1
12

(
dAA
NA

+ 5
96C

4
A

)
− 3

32C
2
A

(
T2
s−u

)2
+ CA

32

[
5T2

s−uT2
tT2

s−u−
7
3T2

t

(
T2
s−u

)2
]

+ 1
8

[(
T2
s−u

)4
+ 3

4

[
T2
t ,T2

s−u

]
T2
tT2

s−u−
5
12

(
T2
t

)2 (
T2
s−u

)2
]}

Tx
i Tx

j , (C.13a)

d2 =
{

1
12

(
dAA
NA

+ 5
96C

4
A

)
− C2

A

8

(
T2
s−u

)2
+ CA

16

[
3T2

s−uT2
tT2

s−u−
7
6T2

t

(
T2
s−u

)2
]

+ 1
8

[(
T2
s−u

)4
− 3

4T2
s−u

(
T2
t

)2
T2
s−u+ 1

2T2
tT2

s−uT2
tT2

s−u−
1
6

(
T2
t

)2 (
T2
s−u

)2
]

− C3
A

64 T2
s−u−

C2
A

64 T2
tT2

s−u+ CA
16

[(
T2
s−u

)3
+ 3

4

(
T2
t

)2
T2
s−u

]

+ 1
16

[[
T2
s−u,T2

t

](
T2
s−u

)2
−
(
T2
s−u

)2
T2
tT2

s−u−
1
4

(
T2
t

)3
T2
s−u

]}
Tx
i Tx

j ,

(C.13b)
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d3 = d6 =
{

1
8

[(
T2
s−u

)4
− 1

4

[
T2
s−u,T2

t

]
T2
tT2

s−u−
1
4

(
T2
t

)2 (
T2
s−u

)2
]

+ C3
A

64 T2
s−u−

C2
A

16 T2
tT2

s−u−
CA
16

[(
T2
s−u

)3
− 3

2

(
T2
t

)2
T2
s−u

]

− 1
16

(
T2
s−u

[
T2
s−u,T2

t

]
T2
s−u+ 1

2

(
T2
t

)3
T2
s−u

)}
Tx
i Tx

j ,

(C.13c)

d4 = d5 =
{

1
8

[(
T2
s−u

)4
− 1

4

[
T2
s−u,T2

t

]
T2
tT2

s−u−
1
4

(
T2
t

)2 (
T2
s−u

)2
]

− C3
A

64 T2
s−u+ C2

A

16 T2
tT2

s−u+ CA
16

[(
T2
s−u

)3
− 3

2

(
T2
t

)2
T2
s−u

]

+ 1
16

(
T2
s−u

[
T2
s−u,T2

t

]
T2
s−u+ 1

2

(
T2
t

)3
T2
s−u

)}
Tx
i Tx

j ,

(C.13d)

d7 = d8 =
{

1
24

(
dAA
NA

+ 5
96C

4
A

)
− C2

A

16

(
T2
s−u

)2
+ CA

32

[
3T2

s−uT2
tT2

s−u−
7
6T2

t

(
T2
s−u

)2
]

+ 1
16

[(
T2
s−u

)4
− 3

4T2
s−u

(
T2
t

)2
T2
s−u+ 1

2T2
tT2

s−uT2
tT2

s−u−
1
6

(
T2
t

)2 (
T2
s−u

)2
]

+ C3
A

128T2
s−u+ C2

A

128T2
tT2

s−u−
CA
32

[(
T2
s−u

)3
+ 3

4

(
T2
t

)2
T2
s−u

]

− 1
32

[[
T2
s−u,T2

t

](
T2
s−u

)2
−
(
T2
s−u

)2
T2
tT2

s−u−
1
4

(
T2
t

)3
T2
s−u

]}
Tx
i Tx

j . (C.13e)

D The reduced amplitude in an explicit colour basis

It is interesting to evaluate the NNLL reduced amplitude for different external partons. We
will compute the reduced NNLL odd amplitude at two loops, three loops and four loops for
qq, gg and qg scattering. We utilise the orthornormal t-channel basis of ref. [32], and use
the same notation as in appendix B of ref. [35] with the relevant colour tensors given in
eq. (2.15).

Projecting the two-loop NNLL amplitude in eq. (5.9) in the octet channel for qq, gg
and qg scattering we find

M̂(−,2,0),[8]
qq→qq =

[
2D(2)

q +D(1)
q D(1)

q − (iπ)2r2
ΓS

(2)(ε)
(
N2
c

6 − 1 + 3
N2
c

)]
Mtree,[8]

qq→qq , (D.1a)

M̂(−,2,0),[8a]
gg→gg =

[
2D(2)

g +D(1)
g D(1)

g − (iπ)2r2
ΓS

(2)(ε)
(
N2
c

6 + 6
)]
Mtree,[8a]

gg→gg , (D.1b)

M̂(−,2,0),[8a]
qg→qg =

[
D(2)
q +D(2)

g +D(1)
q D(1)

g − (iπ)2r2
ΓS

(2)(ε)
(
N2
c

6 + 1
)]
Mtree,[8a]

qg→qg , (D.1c)

where we have normalised by the tree-amplitude octet projection defined in eq. (2.13) and
S(2)(ε) is given in eq. (5.10).
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The three-loop reduced amplitude of eq. (5.17) in the t-channel octet representation is

M̂(−,3,1),[8]
qq→qq = (iπ)2r3

Γ

(
N2
c + 18− 18

N2
c

)
Nc

864

(
− 1
ε3

+ 70ζ̂3 +O(ε2)
)
Mtree,[8]

qq→qq , (D.2a)

M̂(−,3,1),[8a]
gg→gg = (iπ)2r3

Γ

(
N2
c + 36

) Nc

864

(
− 1
ε3

+ 70ζ̂3 +O(ε2)
)
Mtree,[8a]

gg→gg , (D.2b)

M̂(−,3,1),[8a]
qg→qg = (iπ)2r3

Γ

(
N2
c + 36

) Nc

864

(
− 1
ε3

+ 70ζ̂3 +O(ε2)
)
Mtree,[8a]

qg→qg , (D.2c)

where ζ̂3 is defined in eq. (4.71).
At four loops we have from eq. (5.32)

M̂(−,4,2),[8]
qq→qq = (iπ)2r4

Γ

[
1
ε4

(
N2
c

384 −
1

384

)
− ζ̂3

ε

(
13N2

c

24 + 49
96

)
+O(ε)

]
Mtree,[8]

qq→qq (D.3a)

M̂(−,4,2),[8a]
gg→gg = (iπ)2r4

Γ

[
1
ε4

(
N2
c

64 + 1
16

)
− ζ̂3

ε

(101
32 N

2
c + 101

8

)
+O(ε)

]
Mtree,[8a]

gg→gg , (D.3b)

M̂(−,4,2),[8a]
qg→qg = (iπ)2r4

ΓN
2
c

(
1

192ε4 −
101ζ̂3
96ε +O(ε)

)
Mtree,[8a]

qg→qg . (D.3c)

As noted below eq. (5.32), M̂(−,4,2) is non-planar, which is confirmed by the subleading-Nc

nature of eqs. (D.3a)–(D.3c).
There are other non-zero components to the odd NNLL reduced amplitudes. The

singlet of qq scattering

M̂(−,2,0),[1]
qq→qq = −(iπ)2r2

Γ

(
N2
c − 4

)√
N2
c − 1 1

2N2
c

S(2)(ε)Mtree,[8]
qq→qq , (D.4a)

M̂(−,3,1),[1]
qq→qq = (iπ)2r3

Γ

(
N2
c − 4

)√
N2
c − 1 1

48Nc

( 1
ε3

+ 2ζ̂3 +O(ε2)
)
Mtree,[8]

qq→qq , (D.4b)

M̂(−,4,2),[1]
qq→qq = (iπ)2r4

Γ

(
N2
c − 4

)√
N2
c − 1 1

256

(
1
ε4
− 2ζ̂3

ε
+O(ε)

)
Mtree,[8]

qq→qq , (D.4c)

and the decuplet of gg scattering

M̂(−,2,0),[10+1̄0]
gg→gg = −(iπ)2r2

Γ

√
N2
c − 4√
2

S(2)(ε)Mtree,[8a]
gg→gg , (D.5a)

M̂(−,3,1),[10+1̄0]
gg→gg = −(iπ)2r3

Γ

√
N2
c − 4√
2

Nc

12

( 1
ε3

+ 38ζ̂3 +O(ε2)
)
Mtree,[8a]

gg→gg , (D.5b)

M̂(−,4,2),[10+1̄0]
gg→gg = (iπ)2r4

Γ

√
N2
c − 4√
2

[ 5
384ε4

(
N2
c + 12

5

)
− 91ζ̂3

192ε

(
N2
c + 1212

91

)
+O(ε)

]
Mtree,[8a]

gg→gg . (D.5c)

The other components have definite even signature and so do not contribute to the odd am-
plitudes.
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E The soft anomalous dimension in the high-energy limit

This appendix provides the known values of the corrections ∆ to the soft anomalous
dimension dipole formula in the high energy limit. ∆ start at three loops. The soft
anomalous dimension in the high-energy limit is introduced in eq. (2.26), and at three-loop
order it is

Γ(3)
ij→ij

(
L,
−t
λ2

)
= 1

2γ
(3)
K

[
LT2

t + iπT2
s−u

]
+Γ(3)

i

(−t
λ2

)
+Γ(3)

j

(−t
λ2

)
+

2∑
m=0

∆(3,m)Lm (E.1)

with ∆(3,m) being corrections to the dipole formula at three loops. The even signature part
of the soft anomalous dimension at NLL is two-loop exact [10, 12, 24], that is, the terms
∆(+,`,`−1) vanish at three loops and above. The corrections at three loops were calculated
explicitly in ref. [55], after which projections onto definite signatures and a decomposition
in a basis of colour operators suitable for the Regge limit were found in ref. [35]. They read

∆(−,3,2) = Im
[
∆(3,2)

]
= 0 (E.2a)

∆(+,3,2) = Re
[
∆(3,2)

]
= 0 (E.2b)

∆(−,3,1) = iπ
[
T2
t , [T2

t ,T2
s−u]

]1
4ζ3 (E.2c)

∆(+,3,1) = Re
[
∆(3,1)

]
= 0 (E.2d)

∆(−,3,0) = iπ
[
T2
t , [T2

t ,T2
s−u]

]11
4 ζ4 (E.2e)

∆(+,3,0) = 1
4
[
T2
s−u, [T2

s−u,T2
t ]
](

4ζ2ζ3−ζ5
)
− f

(3)

2

{
− 5

8C
2
AT2

t +fabef cde

×
[
{Ta

t ,Td
t }
(
{Tb

s−u,Tc
s−u}+{Tb

s+u,Tc
s+u}

)
+{Ta

s−u,Td
s−u}{Tb

s+u,Tc
s+u}

]}
.

(E.2f)

where f (3) = 1
4(ζ2ζ3 + ζ5). The generators in eq. (E.2f) are defined as

Ta
s−u ≡

1√
2

(Ta
s −Ta

u) Ta
s+u ≡

1√
2

(Ta
s + Ta

u) . (E.3)

These results are completely general: they require no direct action on the tree amplitude.
An alternative expression for the colour factor multiplying f (3) in eq. (E.2f) is derived in
appendix G, and given by eq. (G.41). The latter is only valid upon acting directly upon
the octet in colour space, Ta

iTa
j .

In section 6.5 we summarise the state-of-the-art knowledge of the soft anomalous
dimension at four-loop order in the high-energy limit. It may be written as

Γ(4)
ij→ij

(
L,
−t
λ2

)
= 1

2γ
(4)
K

[
LT2

t + iπT2
s−u

]
+Γ(4)

i

(−t
λ2

)
+Γ(4)

j

(−t
λ2

)
+

3∑
m=0

∆(4,m)Lm. (E.4)

At NLL, there is a tower of signature-odd contributions to the soft anomalous dimension
(i.e. signature-even amplitude) emanating from two-Reggeon-exchange ladder diagrams,
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which start at four loops [23] and they have been determined to all orders [24, 26]. In the
present paper we computed the signature-even component of the four-loop soft anomalous
dimension through NNLL, complementing information from lower logarithmic accuracy in
refs. [23, 24, 36]. The results are:

∆(+,4,3) = Re
[
∆(4,3)

]
= 0 (E.5a)

∆(−,4,3) = −iπ ζ3
24
[
T2
t , [T2

t ,T2
s−u]

]
T2
t (E.5b)

∆(+,4,2) = ζ2ζ3

(
dAA
NA
− C4

A

24 −
1
4T2

t [(T2
s−u)2,T2

t ] + 3
4[T2

s−u,T2
t ]T2

tT2
s−u

)
. (E.5c)

Note that eqs. (E.2c), (E.2e) and (E.5b) contain a single power of iπT2
s−u, consistent with

the odd signature of the soft anomalous dimension. The odd contribution ∆(−,4,2) is not
yet known, and neither are the subleading logarithms ∆(4,1) and ∆(4,0).

F The cusp and the soft anomalous dimensions

In this appendix we study the relation between the soft anomalous dimension for n-parton
scattering in general kinematics, Γn, and the lightlike cusp anomalous dimension Γcusp

i .
This relation is governed by the collinear anomaly constraint of eq. (7.3) and concerns
only terms that are linear in the logarithm lij = log −sij

λ2 . All other terms in Γn depend
on the kinematics only via conformally-invariant cross ratios (CICRs) and will not be
discussed here.

We have seen two particular solutions to the inhomogeneous equations (7.3). The
first, given by eq. (7.10), has a trivial colour structure, while the second, given by the
terms that depend on the scale in eq. (7.13), namely Γdip

n and Γn,Q4T−2,3L, has a non-
trivial colour structure, and it can be shown to satisfy eq. (7.3) using colour conservation.
We will verify that the difference between these two particular solutions is a function of
conformally-invariant cross ratios (CICRs). Specialising to four-parton scattering and using
colour conservation, the latter will be expressed in terms of colour operators that involve
generators of just two of the four partons, a representation that is convenient for deriving
the Regge limit of eqs. (7.83) and (7.84), which is the final goal of this appendix.

Relating particular solutions of the collinear anomaly constraints. The soft
anomalous dimension must satisfy the collinear anomaly constraint [51–53, 87] of eq. (7.3),
namely the inhomogeneous differential equations

∑
j 6=i

dΓn({skl}, λ, αs)
d(lij)

= Γcusp
i (αs) , (F.1)

for all i, where the derivatives on the left-hand side are taken with respect to the logarithms
lij = log −sij

λ2 in eq. (7.4), while the right-hand side is the lightlike cusp anomalous dimen-
sion [66, 154] for particle i. The latter has a simple dependence on the representation of
the Wilson line. In particular, it is proportional to the quadratic Casimir through three
loops, a property known as Casimir scaling, and it acquires additional dependence on
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the representation through a quartic Casimir starting at four loops [68–71], as stated in
eq. (2.28), namely

Γcusp
i (αs) = 1

2γK(αs)Ci +
∑
R

gR(αs)
dRRi
NRi

+O(α5
s), (F.2)

where Ci is the quadratic Casimir and dRRi
NRi

the quartic Casimir from eq. (7.26). Explicit
expressions for dAA

NA
, dAFNF

are given in eq. (4.42). In appendix B, γK is given up to three
loops in eq. (B.2) and gF and gA are provided at four-loop order in eq. (B.3).

In section 7.1 we encountered two different particular solutions to the inhomogeneous
equations (F.1): the first [134], in eq. (7.10), true for n ≥ 3, is expressed directly in terms
of Γcusp

i (αs)

Γ′n
({

sij
λ2

}
, αs

)
≡ 1

2(n− 1)

n∑
i=1

n∑
j 6=i

lij

Γcusp
i (αs) + Γcusp

j (αs)−
1

(n− 2)

n∑
k 6=i,j

Γcusp
k (αs)

 ,
(F.3)

and thus naturally incorporates all higher Casimirs. The second was presented in ref. [54],
starting with the sum-over-dipoles formula and including quartic operators coupled to two
or three partons, so as to satisfy (F.1) subject to colour conservation. It reads:

Γlin.
n ({sij}, λ, αs) ≡

(
Γdip
n ({sij}, λ, αs)−

n∑
i

γi(αs)
)

+ Γn,Q4T−2,3L({sij}, λ, αs)

=− 1
4γK(αs)

∑
(i,j)

Ti ·Tj lij

− 1
2
∑
R

gR(αs)
[∑

(i,j)

(
DR
iijj + 2DR

iiij

)
lij +

∑
(i,j,k)
DR
ijkk lij

]
,

(F.4)

where
DR
ijkl = 1

4!
∑
σ∈S4

TrR
[
T σ(a)T σ(b)T σ(c)T σ(d)

]
Ta
iTb

jTc
kTd

l . (F.5)

When all the partonic indices {i, j, k, l} are the same, it is a quartic Casimir written in
eq. (7.26).

At this point we have two particular solutions to eq. (F.1), as can be checked by
substitution and using colour conservation. Crucially, both these solutions are strictly linear
in the logarithm lij and we can directly compare them and define their difference as

δΓlin.
n ({βijkl}, αs) ≡ Γlin.

n ({sij}, λ, αs)− Γ′n
({

sij
λ2

}
, αs

)
, (F.6)

which is linear in the logarithms, and at the same time only depends on combinations that
are rescaling invariant, satisfying the homogeneous version of eq. (F.1). At n = 3 we have
δΓlin.

3 = 0, while for four or more partons δΓlin.
n is nonzero with its form given below. Note

that in this section we consider only linear terms and ignore homogeneous solutions that
could have more complicated dependence on the velocities.
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Computing the difference between eq. (F.4) and eq. (F.3) and using colour conservation
we obtain:

δΓlin.
n ({βijkl}, αs) = −

∑
(i,j,k,l)

βijkl
n− 2

[
γK(αs)
4(n− 1)Ti ·Tj+

∑
R

gR(αs)
2

( 1
(n− 1)D

R
iiij +DR

ijkk

)]
,

(F.7)
for n ≥ 4. The first term in the square brackets is related to the quadratic Casimir. The
second, which is related to the quartic Casimir, will be denoted by δΓlin.

n,Q.

Four-parton scattering. Specialising to four-parton scattering, n = 4, in eq. (F.7), we
find that further simplification is possible owing to colour conservation. The following three
ways of expressing the quartic part of eq. (F.7) are all equivalent, each using a combination
of just two of the three types of colour operators {DR

iijj ,DR
iiij ,DR

ijkk}:

δΓlin.
4,Q ({βijkl}, αs) =



−
∑
R
gR(αs)

∑
(i,j,k,l)∈S4

βijkl
(

1
12D

R
iiij + 1

4D
R
ijkk

)
−
∑
R
gR(αs)

∑
(i,j,k,l)∈S4

βijkl
(
− 1

12D
R
iijj + 1

3D
R
ijkk

)
−
∑
R
gR(αs)

∑
(i,j,k,l)∈S4

βijkl
(

1
3D

R
iiij + 1

4D
R
iijj

)
.

(F.8)

Of these three we favour using the third, where each term depends on colour generators of
just two of the four legs. With this, we can then express eq. (F.4) for four partons as

Γlin.
4

({
sij
λ2

}
, αs

)
= Γ′4

({
sij
λ2

}
, αs

)
+ δΓlin

4 ({βijkl}, αs)

= 1
6

4∑
i=1

4∑
j 6=i

lij

Γcusp
i (αs) + Γcusp

j (αs)−
1
2

4∑
k 6=i,j

Γcusp
k (αs)


−

∑
(i,j,k,l)∈S4

βijkl

[
γK(αs)

24 Ti ·Tj +
∑
R

gR(αs)
(1

3D
R
iiij + 1

4D
R
iijj

)]
.

(F.9)

The first line is proportional to the unit matrix in colour space while the second line involves
non-trivial colour operators. In appendix G, each part of this expression will be translated
to a Regge-limit colour basis and the Regge limit is then taken.

Linear contributions to the soft anomalous dimension in the Regge limit. Let
us now summarise the expressions for the cusp-related contributions in the soft anomalous
dimension in the Regge limit using eq. (F.9) with results from appendix G.

Using the result from eq. (G.8), the first line of eq. (F.9) in the Regge limit is

Γ′4
(
L,
−t
λ2 , αs

)
=
(2

3L+ log −t
λ2

)(
Γcusp
i (αs) + Γcusp

j (αs)
)
. (F.10)

The subscript i corresponds to the projectile (partons 1 and 4), while j corresponds to the
target (partons 2 and 3). The whole expression is even under the exchange of s↔ u.
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Next we consider the second line of eq. (F.9) in the Regge limit. Using results from
eqs. (G.11) and (G.14), and then separating the expression into signature-even and odd
parts, we obtain:

δΓlin.
4 (L,αs) = L

{
γK(αs)

6
(
3T2

t − 2Ci − 2Cj
)

+
∑
R

gR(αs)
3

(
2DR

tttt −DR
ssss −DR

uuuu

)}

+ iπ

2

{
γK(αs)T2

s−u +
∑
R

gR(αs)
(
DR
ssss −DR

uuuu

)}
,

(F.11)

where T2
s−u = 1

2(T2
s − T2

u) and where we use the notation in eq. (7.50) for the quartic
operators associated with the three channels. The first line in eq. (F.11) is real and
signature-even, while the second line is imaginary and signature-odd.

To proceed it is useful to define a cusp anomalous dimension operator associated with
each channel in the following way:

Γcusp
p (αs) ≡

1
2γK(αs)T2

p +
∑
R

gR(αs)DR
pppp +O(αs), (F.12)

where p ∈ {s, t, u}. We can then write eq. (F.11) as

δΓlin.
4 (L,αs) = L

(
Γcusp
t (αs)−

γK(αs)
3 (Ci + Cj)−

∑
R

gR(αs)
3

(
DR
ssss +DR

uuuu +DR
tttt

))
+ iπ

2
(
Γcusp
s (αs)− Γcusp

u (αs)
)
.

(F.13)

Combining eqs. (F.10) and (F.13) we observe that the quadratic Casimir terms multiplying
the high-energy logarithm L cancel. Separating the contributions by signature Γlin.

4 =
Γlin. (+)

4 + Γlin. (−)
4 , we find

Γlin. (+)
4

(
L,
−t
λ2 , αs

)
= LΓcusp

t (αs) + log −t
λ2

(
Γcusp
i (αs) + Γcusp

j (αs)
)

(F.14a)

+ L
∑
R

gR(αs)
3

(
−DR

tttt −DR
ssss −DR

uuuu + 2
(
dRRi
NRi

+
dRRj
NRj

))

Γlin. (−)
4 (αs) = iπ

2
(
Γcusp
s (αs)− Γcusp

u (αs)
)
. (F.14b)

We thus see that quadratic Casimir coefficient γK(αs) does not anymore appear in isolation,
but only as part of the complete channel-related cusp anomalous dimension operator of
eq. (F.12). Note that the quartic coefficient gR(αs) does feature on its own. The two
expressions in eq. (F.14) constitute part of the final expressions for the Regge-limit Γ4 in
eqs. (7.83) and (7.84), where additional contributions involving the quartic Casimir arise,
which naturally combine with the second line in eq. (F.14a).

Upon considering Γlin.
4 to be acting on the tree amplitude, and specialising to the adjoint

representation R = A, we may use results from eqs. (G.8), (G.11), (G.19) and (G.36), to
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obtain explicit expressions in terms of quartic Casimirs and commutators:

Γlin.(+)
4,A

(
L,
−t
λ2 , αs

)
Mtree =

{
LΓcusp

t + log −t
λ2

(
Γcusp
i + Γcusp

j

)
(F.15a)

− LgA(αs)
6

(
2
(
dAA
NA
− C4

A

24

)
− 1

2T2
t [(T2

s−u)2,T2
t ]

+ 3
2[T2

s−u,T2
t ]T2

tT2
s−u + CA

2
[
T2
s−u, [T2

s−u,T2
t ]
])}
Mtree

Γlin.(−)
4,A (αs)Mtree = (F.15b)

iπ

2

{[ 2
CA

Γcusp
A (αs) + 4gA(αs)

(
dARi
CiNRi

+
dARj
CjNRj

− dAA
2CANA

− C3
A

16

)]
T2
s−u

− gA(αs)
8

(
3
[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
+
[
T2
t , [T2

t ,T2
s−u]

]
T2
t − 3T2

t [T2
t ,T2

s−u]T2
t

)}
Mtree.

In these expressions we used the complete cusp anomalous dimension, rather than
the coefficient of the quadratic component, γK(αs). Recalling eq. (4.42), we see that the
remaining terms proportional to the quartic component gA(αs) are manifestly subleading
in the large-Nc limit. Thus, in the planar limit, the leading contributions come exclusively
from the Γcusp terms and the collinear anomalous dimensions.

G Converting colour structures to the Regge-limit basis

In this section, we study contributions to the soft anomalous dimension up to four loops
in eq. (7.13) at O(L0) and O(L), which have not been discussed in section 7.2. We will
translate the respective colour structures to the Regge-limit basis and then take the Regge
limit. We will also elaborate on how the Γ5T−4L colour structures in a Regge-limit basis
were derived.

First let us revisit eq. (7.13), following the analysis we conducted in appendix F of the
terms that are linear in the logarithms lij = log −sij

µ2 . These linear terms can be expressed in
terms of the particular solution to eq. (7.3) presented in eq. (7.10), plus linear homogeneous
terms provided in eq. (F.7). We can thus write eq. (7.13) as

Γ4
(
{sij},λ,αs(λ2)

)
= Γ′4 ({sij},λ,αs)+δΓlin

4 ({βijkl},αs)+Γ4,4T−3L (αs)

+
4∑

m=1
γm(αs)+Γ4,4T−4L ({βijkl},αs)+Γ4,Q4T−4L ({βijkl},αs)

+Γ4,5T−4L ({βijkl},αs) . (G.1)

The first term Γ′4 ({sij}, λ, αs) is the only one with scale dependence and it is by itself a
particular solution to the inhomogeneous equations (7.3). It is a unit matrix in colour space
(hence it is not written in boldface notation). It contributes at O(L) and (L0) with a simple
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expression in the Regge limit derived below in eq. (G.8). The second term δΓlin
4 ({βijkl}, αs)

consists of non-trivial colour operators; it depends linearly on the logarithm of CICRs, and
hence contributes at O(L) and O(L0). It comprises two contributions: one is written in
terms of colour dipoles, while the other involves quartic Casimir operators. The former
was evaluated in the Regge limit in ref. [45] and it is re-derived here in eq. (G.11), while
the latter is given in the Regge limit in eq. (G.14). The third term on the first line of
eq. (G.1), Γ4,4T−3L (αs), is independent of the kinematics, and hence only contributes
at O(L0). An expression for its colour structures in terms of operators Ta

s−u, Ta
s+u and

Ta
t was given in ref. [35]. Here we derive an alternative expression in the Regge-limit

basis, eq. (G.41), involving quartic Casimirs related to the representations of the scattered
particles. The collinear anomalous dimension γm remains unchanged in the Regge limit
and it only contributes at O(L0). The remaining two terms on the second line of eq. (G.1)
were discussed in detail in section 7.2 and will not be considered further here. Finally, the
term on the last line of eq. (G.1) was briefly discussed in section 7.2 with further details
given in the final part of this appendix.

Γ′4 in the Regge limit

This linear expression is a particular inhomogeneous solution to eq. (7.3) and is given in
eq. (F.3). The cusp anomalous dimension is discussed in the previous appendix and its
form is in eq. (7.5). For four partons, the particular inhomogenous solution is

Γ′4
({

sij
λ2

}
, αs

)
= 1

6

4∑
i=1

4∑
j 6=i

lij

Γcusp
i (αs) + Γcusp

j (αs)−
1
2

4∑
k 6=i,j

Γcusp
k (αs)

 . (G.2)

Performing the sum and using the fact that for 2→ 2 scattering the logarithms are expressed
in terms of Mandelstam variables

l34 = l12 = log se
−iπ

λ2 ; l24 = l13 = log −u
λ2 ; l23 = l14 = log −t

λ2 , (G.3)

then eq. (G.2) becomes

Γ′4 ({s} , λ, αs) = 1
6

(
log se

−iπ

λ2 + log −u
λ2 + log −t

λ2

)(
Γcusp

1 (αs) + Γcusp
2 (αs)

+ Γcusp
3 (αs) + Γcusp

4 (αs)
)
, (G.4)

where {s} = {s, t, u}. The subscript of i corresponds to partons 1 and 4 of the projectile,
while j corresponds to partons 2 and 3 of the target. Using target-projectile notation, we
therefore make the following identification

Γcusp
R1

= Γcusp
R4

= Γcusp
i and Γcusp

R2
= Γcusp

R3
= Γcusp

j , (G.5)

so eq. (G.4) becomes

Γ′4 ({s} , λ, αs) = 1
3

(
log se

−iπ

λ2 + log −u
λ2 + log −t

λ2

)(
Γcusp
i (αs) + Γcusp

j (αs)
)
. (G.6)
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Eq. (G.6) is even under the exchange of s↔ u. Upon taking the Regge limit of

s ' −u� −t,

the logarithms are expressed in terms of the signature-even logarithm L of eq. (2.9) up to
power-suppressed terms, getting

log −u
λ2 ' log s

λ2 ' L+ log −t
λ2 + iπ

2 .
(G.7)

In the Regge limit, eq. (G.6) is therefore expressed as

Γ′4
(
L,
−t
λ2 , αs

)
=
(2

3L+ log −t
λ2

)(
Γcusp
i (αs) + Γcusp

j (αs)
)
. (G.8)

This expression is signature-even and real. It is a unit matrix in colour space and contains
the complete cusp anomalous dimensions for partons i and j.

δΓlin. in the Regge limit

We now translate the colour structures multiplying CICRs in δΓlin. from eq. (F.9)

δΓlin.
4 ({βijkl}, αs) = δΓlin.

4,2T−2L ({βijkl}, αs) + δΓlin.
4,Q ({βijkl}, αs)

= −
∑

(i,j,k,l)∈S4

βijkl

[
γK(αs)

24 Ti ·Tj +
∑
R

gR(αs)
(1

3D
R
iiij + 1

4D
R
iijj

)]
,

(G.9)

into the Regge-limit basis containing T2
t and T2

s−u operators. The logarithm of the CICRs,
βijkl, is defined in eq. (7.7). The first term in eq. (G.9) is related to the dipole term and
the second to the quartic Casimir terms. We will analyse each of these terms in turn.

The dipole component in the Regge limit. The first term in eq. (G.9) is

δΓlin.
4,2T−2L ({βijkl}, αs) ≡ −

γK(αs)
24

∑
(i,j,k,l)∈S4

βijkl Ti ·Tj . (G.10)

We expand the sum and we write βijkl in terms of logarithms of the Mandelstam invariants,
using eqs. (7.4), (7.7) and (G.3). The Regge limit is taken using eq. (G.7). Then we
express the dipole operators, Ti ·Tj , in terms of the channel operators defined in eq. (2.17),
obtaining

δΓlin.
4,2T−2L (L,αs) = γK(αs)

6

[
L
(
3T2

t − 2Ci − 2Cj
)

+ 3iπT2
s−u

]
, (G.11)

where j corresponds to partons 2 and 3 and i corresponds to partons 1 and 4 in the
target-projectile notation. The first bracket is signature even and real. The term with T2

s−u
is signature odd and imaginary.
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The quartic component δΓlin.
4,Q in the Regge limit. We now turn to the second term

on the last line of eq. (G.9) given by

δΓ4,Q({βijkl}, αs) = −
∑
R

gR(αs)
∑

(i,j,k,l)∈S4

βijkl

(1
3D

R
iiij + 1

4D
R
iijj

)
, (G.12)

where the general expression DR
ijkl is given in eq. (7.25). The function gR(αs) is the quartic

component of the cusp anomalous dimension of eq. (2.28); its value at four-loop order is
given in eq. (B.3).

After expanding the sum in eq. (G.12), then using eq. (7.52), the colour structures
are expressed in terms of the operators DR

ssss, DR
tttt and DR

uuuu introduced in eq. (7.50).
The logarithms are expressed in terms of {s, t, u} with eq. (G.3), and then separating into
signature-even and odd parts, we have

δΓQ({s}, λ, αs) =
∑
R

gR(αs)
6

[(
−iπ + log s

λ2 − log −u
λ2

)(
3DR

uuuu − 3DR
ssss

)

+
(
−iπ + log s

λ2 + log −u
λ2 − 2 log −t

λ2

)(
−2DR

ssss − 2DR
uuuu + 4DR

tttt

) ]
.

(G.13)

The first line is signature odd under s↔ u in both the colour and kinematics, and the last
line is even in both. Taking the Regge limit and using eq. (G.7), the expression becomes

δΓQ (L,αs) =
∑
R

gR(αs)
{
L

3

[
−DR

ssss−DR
uuuu+2DR

tttt

]
+ iπ

2
(
DR
ssss−DR

uuuu

)}
. (G.14)

The first bracket, which contributes at N3LL at four loops, is real and signature even, while
the second is odd and imaginary. We can split them into even and odd terms with

δΓQ (L,αs) = δΓ(+)
Q (L,αs) + δΓ(−)

Q (αs) (G.15)

where
δΓ(+)

Q (L,αs) ≡
∑
R

gR(αs)
L

3

[
−DR

ssss −DR
uuuu + 2DR

tttt

]
(G.16)

and
δΓ(−)

Q (αs) ≡
iπ

2
∑
R

gR(αs)
(
DR
ssss −DR

uuuu

)
, (G.17)

which we will now consider in turn in the adjoint representation.

The even quartic component in the adjoint representation in the Regge limit.
Let us consider eq. (G.16) in the adjoint representation:

δΓ(+)
Q,A (αs) ≡ gA(αs)

L

3

[
−DA

ssss −DA
uuuu + 2DA

tttt

]
, (G.18)

which we wish to express in terms of the Regge-limit basis comprised of commutators of
T2
t and T2

s−u and quartic Casimirs. The results for the quartic channel operators acting
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on the tree amplitude in eqs. (7.63) and (7.64) from section 7.2.2 may be substituted into
eq. (G.18) to give

δΓ(+)
Q,A (L,αs)Mtree = L

3 gA(αs)
{

3dAA
NA
− 2

(
dARi
NRi

+
dARj
NRj

)
−
(
dAA
NA
− C4

A

24

)
(G.19)

+ 1
4T2

t [(T2
s−u)2,T2

t ]−
3
4[T2

s−u,T2
t ]T2

tT2
s−u −

CA
4
[
T2
s−u, [T2

s−u,T2
t ]
]}
Mtree ,

where we note that the last term in the first line is subleading in the large-Nc limit using
eq. (4.42), while the second line is readily non-planar, being written in terms of commutators
of T2

t and T2
s−u. δΓ

(+)
Q,A is combined the other terms that are linear in L in eq. (F.15b).

The adjoint quartic contributions in eq. (G.19) are separated there, because the first term
in the curly brackets, 3dAANA

, forms part of Γcusp
t once combined with the contribution from

γK , meanwhile the second forms part of the non-planar terms.

The odd quartic component in the adjoint representation in the Regge limit.
Next we consider eq. (G.17) in the adjoint representation:

δΓ(−)
Q,A (αs) = iπ

2 gA(αs)
(
DA
ssss −DA

uuuu

)
. (G.20)

In order to express it in terms of nested commutators, we first use eq. (7.52) to write(
DA
ssss −DA

uuuu

)
Mtree =

{
DA

1111 + 4DA
1112 + 6DA

1122 + 4DA
1222 +DA

2222

−
(
DA

1111 + 4DA
1113 + 6DA

1133 + 4DA
1333 +DA

3333

)}
Mtree.

(G.21)

There are three types of terms to consider. First, identifying

DA
1111 = dARi

NRi

, DA
2222 = DA

3333 =
dARj
NRj

, (G.22)

we observe that these projectile and target Casimir terms cancel out in eq. (G.21). Next we
consider operators with one attachment to one line and three attachments to the opposite
line, as shown in figure 4b, for example

DR
1112 = dabcdR

(
Ta,b,c

)
i
Td
j , (G.23)

with the fully symmetrised trace defined as

dabcdR ≡ 1
4!
∑
σ∈S4

TrR
(
T σ(a)T σ(b)T σ(c)T σ(d)

)
. (G.24)

We notice the colour factor C(3)
13 , defined in eq. (4.12), corresponds to a particular case of

eq. (G.23), in which the representation R is the adjoint. Therefore, we compute eq. (G.23)
by following the steps in eqs. (4.38a) and (4.40), getting

dabcdR

(
Ta,b,c

)
i
Td
j = ATi ·Tj = dRRi

NRiCRi
Ti ·Tj (G.25)
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where the constant A is computed by taking the trace of the first equation. This yields

DR
1112 = 1

2

(
T2
s−u −

T2
t

2

)
dRRi
NRiCi

. (G.26)

We conclude that the terms with three attachments to one line and a single attachment to
the other line in eq. (G.21) take the form

DR
klll =



1
2

(
T2
s−u −

T2
t

2

)
dRRi
NRiCi

if (k, l) ∈ {(2, 1), (3, 4)}

1
2

(
T2
s−u −

T2
t

2

)
dRRj
NRjCj

if (k, l) ∈ {(1, 2), (4, 3)}

−1
2

(
T2
s−u + T2

t

2

)
dRRi
NRiCi

if (k, l) ∈ {(3, 1), (2, 4)}

−1
2

(
T2
s−u + T2

t

2

)
dRRj
NRjCj

if (k, l) ∈ {(1, 3), (4, 2)}

(G.27)

The third type of terms in eq. (G.21) involves two attachments to both the target and
projectile, for example

DA
1122

(
Tx
i Tx

j

)
= dabcdA

(
Ta,b,x

)
i

(
Tc,d,x

)
j

=
{1

2
(
Tr
[
F aF bF cF d+F dF cF bF a

])
−CA6

(
fadef bce−fabef cde

)}
×
(
Ta,b,x

)
i

(
Tc,d,x

)
j

≡
(
DA,Tr

1122 +DA,ff
1122

) (
Tx
i Tx

j

)
.

(G.28)

The colour structure relation from eq. (7.55) gives the second line above. The terms are
then separated with superscripts Tr for the trace terms and ff for terms with two structure
constants. The first term is

D(A,Tr)
1122

(
Tx
i Tx

j

)
= 1

2
(
Tr
[
F aF bF cF d + F dF cF bF a

]) (
Ta,b,x

)
i

(
Tc,d,x

)
j

=
(
T[a,[b,c]],d,x

)
i

(
T[b,[a,d]],c,x

)
j
.

(G.29)

Upon using the identities of section 6.4 and appendix C, it yields

D(A,Tr)
1122

(
Tx
i Tx

j

)
=
{
− 1

64C
4
A −

1
32
([

T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
−T2

t [T2
t ,T2

s−u]T2
t

)

+ 1
4T2

s−u[T2
s−u,T2

t ],T2
t + 1

16T2
s−uT2

tT2
tT2

s−u

} (
Tx
i Tx

j

)
.

(G.30)

Focusing on the term involving two structure constants now, we find

DA,ff
1122

(
Tx
i Tx

j

)
= −CA6

(
fadef bce − fabef cde

) (
Ta,b,x

)
i

(
Tc,d,x

)
j

= CA
6
(
T[d,e],b,x

)
i

(
T[e,b],d,x

)
j
− C3

A

48

(
T2
s−u −

T2
t

2

) (
Tx
i Tx

j

)
, (G.31)
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where the second term is reduced to a dipole using

fabgTa
iTb

i = iCA
2 Tg

i (G.32)

and then eq. (4.32a) is employed. The commutator relation eq. (4.34) is used to express
the first term as commutators, then upon using eqs. (4.32a) and (4.32b), it becomes

(
T[d,e],b,x

)
i

(
T[e,b],d,x

)
j

= 1
24

{
(T2

s−u)2T2
t + 1

2T2
s−uT2

tT2
s−u−

1
4T2

s−u(T2
t )2

+ 1
2T2

tT2
s−uT2

t −
1
4(T2

t )2T2
s−u+ 1

8(T2
t )3
} (

Tx
i Tx

j

)
.

(G.33)

Substituting into eq. (G.31), it then reads

DA,ff
1122

(
Tx
i Tx

j

)
=
{
C4
A

64 −
C3
A

32 T2
s−u+ CA

48 T2
s−uT2

tT2
s−u−

C2
A

24 (T2
s−u)2 + C2

A

48 T2
tT2

s−u

− CA96 (T2
t )2T2

s−u

} (
Tx
i Tx

j

)
.

(G.34)

The contributions to DA
1133 can be found by simply applying crossing T2

s−u → −T2
s−u to

the DA
1122 terms. Substituting the expressions from eqs. (G.27), (G.30) and (G.34) into

eq. (G.21), we have

(
DA
ssss −DA

uuuu

)
Mtree =

{
4T2

s−u

(
dARi
NRiCi

+
dARj
NRjCj

)
+ 1

8
(
− 2C3

AT2
s−u

−
[
T2
t , [T2

t ,T2
s−u]T2

t

])
− 3

8
([

T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
−T2

t [T2
t ,T2

s−u]T2
t

)}
Mtree.

(G.35)

The imaginary contribution multiplying the gA is

δΓ(−)
Q,A (αs) Mtree = iπ

2 gA(αs)
{

4T2
s−u

(
dARi
NRiCi

+
dARj
NRjCj

)
+ 1

8

(
− 2C3

AT2
s−u

− 3
[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
−
[
T2
t , [T2

t ,T2
s−u]

]
T2
t + 3T2

t [T2
t ,T2

s−u]T2
t

)}
Mtree,

(G.36)

with j being the target and i the projectile.

The four-generator three-line term (4T−3L) in the Regge-limit basis

The third term in eq. (G.1) is given by eq. (7.14) and reads

Γn,4T−3L({sij}, λ, αs) = f(αs)
∑

(i,j,k)
T iijk = −f(αs)

∑
(i,j,k)

fabef cde{Ta
i ,Td

i }+Tb
jTc

k,

(G.37)
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with individual colour structures being symmetric under j ↔ k and the sum being symmetric
under the interchange of any two of the three partons. For these to contribute at four-loop
order they must be multiplied by either CA or nfTF so there is some dependence on the
matter content of the theory.

Considering 2→ 2 scattering, we expand the sum over four distinct partonic legs and
eq. (G.37) becomes

Γ4T−3L(αs) = −f(αs)fabef cde
{(

Ta
1Td

1 + Td
1Ta

1

)(
Tb

2Tc
3 + Tb

2Tc
4 + Tb

3Tc
4

)
+
(
Ta

2Td
2 + Td

2Ta
2

)(
Tb

1Tc
3 + Tb

1Tc
4 + Tb

3Tc
4

)
+
(
Ta

3Td
3 + Td

3Ta
3

)(
Tb

1Tc
2 + Tb

1Tc
4 + Tb

2Tc
4

)
(G.38)

+
(
Ta

4Td
4 + Td

4Ta
4

)(
Tb

1Tc
2 + Tb

1Tc
3 + Tb

2Tc
3

)}
,

where we drop the number of legs (4) in the subscript. By repeatedly using the commutation
relation in eq. (4.34), it is possible to write eq. (G.37) in terms of the product of three
generators associated to the projectile and three generators associated to the target.

As an example of following these rules, the first line of eq. (G.38) is

fabef cde
(
Ta

1Td
1 + Td

1Ta
1

)(
Tb

2Tc
3 + Tb

2Tc
4 + Tb

3Tc
4

)
(G.39)

= −
(
Ta

1[Te
1,Tc

1][Te
2,Ta

2]Tc
3 + Ta

1Td
1

[
[Tc

2,Td
2],Ta

2

]
Tc

4

+ Ta
1Td

1

[
[Tc

3,Td
3],Ta

3

]
Tc

4 + [Te
1,Tc

1]Ta
1[Te

2,Ta
2]Tc

3

+ Td
1Ta

1

[
[Tc

2,Td
2],Ta

2

]
Tc

4 + Td
1Ta

1

[
[Tc

3,Td
3],Ta

3

]
Tc

4

)
.

Similar expressions can be found for the remaining three lines of eq. (G.38). Using these
rules we write eq. (G.37) as

Γ4T−3L(αs) = −f(αs)
( ∑

(i,j,k)∈if

Ta
i [Te

i ,Tc
i ][Te

j ,Ta
j ]Tc

k + [Te
i ,Tc

i ]Ta
i [Te

j ,Ta
j ]Tc

k

+
∑

(i,j,k)∈jf

Ta
iTd

i

[
[Tc

j ,Td
j ],Ta

j

]
Tc
k +

[
[Tj ·Tk,Ti ·Tj ],Ti ·Tj

])
(G.40)

where

if = {(1, 2, 3), (2, 1, 4), (3, 1, 4), (4, 2, 3)},
jf = {(2, 1, 3), (3, 1, 2), (1, 2, 4), (4, 1, 2), (1, 3, 4), (4, 1, 3), (2, 3, 4), (3, 2, 4)}.

Then when Γ4,4T−3L(αs) acts on the tree-level amplitude we can rewrite the expression as
chains of attachments on the target and projectile. We then use the identities of eqs. (4.32)
and (4.45), to express eq. (G.37) as

Γ4T−3L(αs)Mtree = f(αs)
([

T2
s−u, [T2

s−u,T2
t ]
]

+ C3
A

2 − 6 dARi
NRiCi

− 6
dARj
NRjCj

)
Mtree,

(G.41)
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where, as usual, j is the target and i the projectile. We see that Γ4T−3L(αs) is given by
even colour structures and that it is non-planar owing to the property of commutators and
eq. (5.7).

The five-generator four-line term (5T−4L) in the Regge-limit basis

The last term in eq. (G.1) is given by eq. (7.65) which we quote again here

Γ5T−4L ({βijkl}, αs) =
∑

(i,j,k,l)
T ijkliH1(βijlk, βiklj ;αs)

=
∑

(i,j,k,l)
ifadgf bchf egh {Ta

i ,Te
i}+Tb

jTc
kTd

l H1(βijlk, βiklj ;αs).
(G.42)

We specialise to 2→ 2 scattering and our aim is to eq. (G.42) in terms of expressions with
definite symmetry under s↔ u. After introducing the functions H(+)

1 , H(−)
1 and H̃(−)

1 in
eq. (7.66), we expand the sum in eq. (G.42) and then use the properties of βijkl in eq. (7.9)
and the antisymmetry of T ijkli and H1, to obtain

Γ(4)
5T−4L({βijkl}) = 2H(+,4)

1 ({βijkl})
{
T 13421 + T 24312 + T 31243 + T 42134

+
(
T 12431 + T 21342 + T 34213 + T 43124

)}
+ 2H(−,4)

1 ({βijkl})
{
T 13421 + T 24312 + T 31243 + T 42134

− (T 12431 + T 21342 + T 34213 + T 43124)
}

+ 2H̃(−,4)
1 ({βijkl})

{
T 12341 + T 21432 + T 34123 + T 43214

}
.

(G.43)

The colour coefficient of H(+)
1 is even under the exchange of s↔ u, while the coefficients of

both H(−)
1 , H̃(−)

1 are odd. We decompose the T ijkli into two terms as

T ijkli = ifadgf bchf eghTa
iTe

iTb
jTc

kTd
l −

CA
4 fadef bceTa

iTb
jTc

kTd
l . (G.44)

By repeatedly expressing the structure constants in eq. (G.44) as commutators according
to eq. (4.34), it is possible to write an expression with three structure constants and five
generators, in terms of four generators on the projectile line i (corresponding to partons 1
and 4), and four generators on the target line j (corresponding to partons 2 and 3) acting
on the tree-level amplitude. For the four indices (i, j, k, l), there are two independent cases
to consider. First, we fix i and k on one line and then require j and l to attach to the
opposite line with the following expression:

ifadgf bchf eghTa
iTe

iTb
jTc

kTd
l = [Tg

i ,T
d
i ]Te

i

[
Tc
j , [Te

j ,T
g
j ]
]
Tc
kTd

l . (G.45)

The second case when rewriting the first term in eq. (G.44) is to fix i and l on the same
line and j and k on the opposite line. This time we apply the Jacobi identity

facef bde = fabef cde + fadef bce, (G.46)
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in such a way to avoid operators with dotted colour generators attached with both ends
on the same line which do not allow for a straightforward translation to the Regge-limit
basis. This ensures that there are four generators attached to the upper and lower lines
with the form

ifadgf bchf eghTa
iTe

iTb
jTc

kTd
l = Ta

i [Tc
i ,Th

i ]
[
Th
j , [Ta

j ,Td
j ]
]
Tc
kTd

l

+ Ta
i [Th

i ,Tb
i ]Tb

j

[
Th
k , [Ta

k,Td
k]
]
Td
l . (G.47)

Using the above relations we can write eq. (G.43) as a sum over the lists

l1 = {(1, 3, 4, 2), (2, 4, 3, 1), (3, 1, 2, 4), (4, 2, 1, 3)}

l2 = {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}

to give

Γ(4)
5T−4L({βijkl})Mtree = 2

{
H(−,4)

1 ({βijkl})
[
CAf

adef bceTa
1Tb

2Tc
3Td

4 (G.48)

+
∑

(i,j,k,l)∈l1

(
[Td

i ,T
g
i ]Te

i

[
Tc
j , [T

g
j ,T

e
j ]
]
Tc
kTd

l − [Td
i ,T

g
i ]Te

i

[
Tc
l , [T

g
l ,T

e
l ]
]
Tc
kTd

j

)]

+H(+,4)
1 ({βijkl})

[
− CA

(
facef bde + fabef cde

)
Ta

1Tb
2Tc

3Td
4

+
∑
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(
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i ,T
g
i ]Te

i

[
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j , [T
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j ,T

e
j ]
]
Tc
kTd

l + [Td
i ,T

g
i ]Te

i

[
Tc
l , [T

g
l ,T

e
l ]
]
Tc
kTd

j

)]

+ H̃(−,4)
1 ({βijkl})

[
− CAfadef bceTa

1Tb
2Tc

3Td
4

+
∑

(i,j,k,l)∈l2

(
Ta
i [Tc

i ,T
g
i ]
[
Tg
j , [Ta

j ,Td
j ]
]
Tc
kTd

l + Ta
i [T

g
i ,T

b
i ]Tb

j

[
Tg
k, [T

a
k,Td

k]
]
Td
l

)]}
Mtree.

The terms without commutators can be written in the Regge-limit basis using eqs. (7.42)–
(7.43b). The commutators can be expanded and divided into two types of terms. Firstly,
those that are just products of four dipoles can immediately be translated into the Regge limit
basis with eq. (2.17). The second type is those that appear in the entangled combinations
of d1, . . . d8 in appendix C. They are then written in a similar way to eq. (7.60) to use
the identities in section 6.3.2 and appendix C. Putting everything together we can write
eq. (G.43) as

Γ(4)
5T−4L({βijkl})Mtree =

[
H(+,4)

1 ({βijkl})
(3CA

4 T2
s−u[T2

s−u,T2
t ]−

CA
2
[
T2
s−u, [T2

s−u,T2
t ]
]

− 1
4T2

t [T2
s−u,T2

t ]T2
s−u

)
+ 1

4H̃
(−,4)
1 ({βijkl})

[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
+H(−,4)

1 ({βijkl})
(
− 1

2
[
T2
s−u,

[
T2
s−u, [T2

s−u,T2
t ]
]]

+ 1
8
[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]])]
Mtree.

(G.49)
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Finally, using eq. (4.48) we can eliminate one of the even-signature commutator terms in
eq. (G.49) by substituting

T2
t

[
T2
s−u,T2

t

]
T2
s−uMtree =

(2
3T2

t

[(
T2
s−u

)2
,T2

t

]
−T2

s−u
[
T2
s−u,T2

t

]
T2
t

)
Mtree, (G.50)

where the two commutators on the right-hand side have already been used in eq. (5.30) to
express the four-loop reduced amplitude and are part of our basis. This gives

Γ(4)
5T−4L({βijkl})Mtree =

[
H(+,4)

1 ({βijkl})
(
− CA

2
[
T2
s−u, [T2

s−u,T2
t ]
]

+ CAT2
s−u[T2

s−u,T2
t ]

− 1
6T2

t [(T2
s−u)2,T2

t ]
)

+ 1
4H̃

(−,4)
1 ({βijkl})

[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]]
+H(−,4)

1 ({βijkl})
(
− 1

2
[
T2
s−u,

[
T2
s−u, [T2

s−u,T2
t ]
]]

+ 1
8
[
T2
t ,
[
T2
t , [T2

t ,T2
s−u]

]])]
Mtree,

(G.51)

which is eq. (7.67).
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