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Abstract

A model of (n, a) knockout reactions, in which restrictions on the available
phase space for the four nucleons of the alpha-particle after the knockout is
imposed by a Pauli-blocking function, is developed and applied to analyze
excitation functions of (n, a) reactions on *8Ti, 51V, 32Cr , %¥Fe , *Mn and
59Co nuclei. It is shown that Pauli-blocking effects are important for describ-
ing (n, ) processes. A sensitivity study of the results to the values of the
model parameters, namely the local Fermi energy at the nuclear surface from
where knockout occurs and the alpha-particle preformation factor, shows that
the ranges of their variations are quite limited.

I. INTRODUCTION

The nucleon-alpha reactions provide important information on nuclear reaction mech-
anisms and on clustering in nuclei. There are a variety of competing mechanisms that
contribute to the measured cross sections. It is well-known [1] that at low energies the
(nucleon,a) reaction is dominated by the compound nucleus process and the cross sections
can be described by the Weisskopf-Ewing and Hauser-Feshbach theories. At higher energies
contributions from pre-equilibrium and direct processes become increasingly important and
their inclusion enables the higher cross sections to be understood. In general, the pick-up
process is the dominant mechanism for transitions to discrete states, though knock-out pro-
cesses can also take place. This was shown by studies of (n,a) reactions on samarium- 2], on
neodymium- [3] and on zirconium- [4] isotopes. As the incident energy increases, reactions to
the continuum become more likely, and knock-out processes may become relatively favoured,
since the density of final states increases more rapidly than that of those corresponding to
pick-up process. Thus knock-out predominates in reactions to the continuum.

The exciton model (see references in [1]) has proved able to describe the cross sections
of the intermediate energy multistep pre-equilibrium process. This model assumes either
knockout of preformed alpha-particles or coalescence of excited and bound nucleons into an



alpha-particle. The extension of the direct reaction theory to describe transitions to con-
tinuum states is the more ambitious aim of the quantum-mechanical theory of the reactions
[1).

Substantial information on the mechanism of the (n,a) reaction came from studies of
excitation functions at energies from about 12 to 20-22 MeV. It is known [2] that the study
of reactions by neutrons with these energies is important for applied physics research, e.g. for
investigations of the radiation damages caused by high fluxes of neutrons. Various problems
are encountered in the description of the (n,a) reactions so that, in general, there is still no
reliable way of calculating the absolute cross sections of these reactions. It is important to
take proper account of the Pauli principle. In [5] it was approximately taken into account by
requiring that the alpha-particles after a nucleon-alpha interaction have an energy greater
than the Fermi energy ¢r , and in this paper we study a more detailed method.

We present a model for (n, a) reactions that has close similarities to quasi-free scattering
models of nucleon and alpha-particle emission. The interaction of the incident nucleon with
the (preformed) alpha particle is related to the free nucleon-alpha scattering cross section.
Modifications are then applied to account for nuclear medium effects, notably the Fermi
momentum of the struck alpha particle, the Pauli-blocking effects, and the influence of
the residual nucleus nuclear and Coulomb barrier on the emitted alpha particle. Such an
approach is also the basis of most intranuclear cascade models of nuclear reactions. In
this work, however, we concentrate on the first-step “direct” part of the cascade, which
is increasing with the energies considered. Qur approach is also closely related to that of
Chadwick et al. [6], who studied Pauli-blocking effects in photonuclear reactions.

In Sec. II we describe our model, and in Sec. 111 we present and discuss the results in
connection with those from other models. '

II. THE MODEL

It is assumed that the incident neutron collides with a preformed alpha-particle in the
target nucleus and ejects it, leaving the neutron in a single-particle state along with some
hole excitations. The emitted alpha-particle can have a range of energies and the residual
nucleus is in general excited. It is possible to compare our calculated cross-sections with
the available now (n, o) activation data, which refer only to alpha-emission reactions in
which no other particles are emitted, but only gamma rays. In this relation we consider
incident energies such that the dominant decay mechanism of the excited residual nucleus
is by gamma-ray emission to its ground state.

In the present work the Pauli-blocking effects on (n, @) reactions are considered using a
model of alpha knockout in which the cross-section of the process is related to the free (n,
a) cross-section. In the case of the free (n,a) reaction, the nuclear medium is not present,
whereas in the nuclear case the occupied states in the rest of the nucleus restrict the number
of states accessible for the neutron and alpha-particle after the interaction. The effect of
this restriction on the phase space can be expressed using the Pauli-blocking function, as
in the analysis of quasideuteron photoabsorption [6]. We assume that if the available phase
space for the four nucleons of the alpha-particle after the knockout process is reduced by
Pauli-blocking, the (n, a) cross-section is also reduced by the same amount. As in [6], it
is supposed that the (n, a) cross-section is proportional to the available phase space, and
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Fermi-gas state densities are used. It is required that the two protons and two neutrons of
the preformed alpha-particle in the nucleus (with a preformation factor do) after leaving the
nucleus will all have momenta greater than the Fermi-momentum kf.

The direct component of the a-particle emission cross-section can then he written ap-
proximately in the form:

UEC = ¢oa{:::,)(finc)f(finc)a (1)

where f(€inc) is the Pauli-b]ocking function that depends on the energy of the incident neu-
tron €jnc, af;‘fg) is the free neutron-alpha cross-section and ®a 1s the preformation factor. This
equation is similar to Levinger’s expression for the nuclear quasideuteron photoabsorption
cross-section [6]. The superscript “alpha” in 0@ is used to differentiate the present model
by the approach developed for photoabsorption reactions [6]. The Eq.(1) uses the following
simplifying approximations for the Pauli-blocking function: (1) The free (n,a) cross section
is not folded in f(€;nc) and (2) The Fermi-gas momentum distribution has been used for the
alpha- particles. In this case the function f(€inc) has the form:

-]

Jleine) = | 7 palea)F(a + eme)T (€0 + €m)deo, (2)

where ¢, is the energy of the preformed alpha-particle, relative to the bottom of the nuclear
well, p,(e,) is the alpha-particle state density, F(e, + €nc) is the Pauli-blocking factor, and
T'(ea+€inc) is the transmission coefficient for the excited alpha-particle to escape the nucleus.

We assume that the alpha-particle state density has the form of the state density of particles
in the Fermi-gas model:

polen) = (7) . 3)

The state density (3) is normalized to unity:

a

|7 palea)des = 1. (4)

In Egs.(3,4) €% is the alpha-particle effective Fermi-energy. The use of the Fermi-gas
model relationships for the alpha-particles in nuclear medium can be justified by the con-
sideration of the Pauli- blocking factor:

_ P (4p, E)
£)= p(4p, E) )

defined as the ratio of the four-particle state densities jn which the Pauli blocking is included
(6" (4p, E)) and ignored (p(4p, E)) [6],

p"(4p,E) = /000/000 /000 /pr(lp, €x )p(1p, €x)p(1p, €4, )p(1p, €.,

S(E = €, = €x, — €, — €,,)0(ey, ~ €F)O(er, ~ €r)O(e,, — €r)O(c,, — ¢r)der den,de,, de,,,
(6)



4P, / / / / lpa fwl lp,f,rz)p(lp, f"l)p(lpveu;)

8(E — €r, — €, — €, — €1, )den deg de, de,,. (7

In Egs.(6,7) p(1p,€) is the one-particle state density. We use the Fermi-gas model for the
nucleons of the nuclear system, and er is the nucleon Fermi energy. In this case the one-
particle state densities for the protons and neutrons have the following forms, respectively:

pper) = (5=) (D1, 8)

26}:‘ €F

pipe) = (5) (2%, )

2¢r/) e

Substituting Eqs.(8) and (9) in (6) and (7) gives the following expressions for the alpha-
particle state densities:

3Z\? /3N\? 1
4 — ) = -
Pi4p E) = (26}?) (26;:) C}O(E der)

E-3cp E-2cp—tnm 3 1
X / des, / den,(€x €x, )2 [—(E — €y, — €Ex, — 2€F)
(3 ¢F 2 .

[NIT

1 . E —¢€p — €r, — 2¢F
X [(E — €m — 6,2)6]-‘ - 62}-"] + Z(E —€n - e‘"2)23”1 ' ( E __: €, .-.2 €r, )} ? (10)

3Z 2 3N 2 s E E-cnm 1
a. 5.7 dw/ ” my Cn 2 — Cmy T En 2-
pinE)=(5-) (5) gz | ] denlonen)HE-en =) ()

The Pauli-blocking factor (5) does not include momentum conservation. The justification
for ignoring linear-momentum restrictions in the alpha-particle emission process was given
by Chadwick and Oblozinsky [7], where it was shown that if one looks at a ratio of two state
densities, to a good approximation the “full” state densities which ignore the momentum
conservation reproduce this ratio (to an accuracy of about 10%).

It can be seen from Eqgs. (5, 10,11) that the Pauli-blocking factor can be expressed in
the form:

F(E) = O(E - 4¢p)F'(E). (12)

In Eq. (12) the quantity 4eF enters the argument of the unit step function. This quantity
plays the role in some sense of the “effective Fermi energy” for the gas of alpha-particles. The
Pauli-blocking factor is equal to zero below this limit and becomes finite in the region above
the limit of 4ex, where the cluster of four fermions is assumed to be after the interaction
with the neutron in the nucleus. The occupied states in the rest of the nucleus restrict
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the number of states accessible for the alpha-particle after the interaction. The effect of
this restriction on the phase space is taken into account by means of the Pauli-blocking
function f(€nc) in Eq.(2). We emphasize that the appearance of the quantity 4ep as an
“effective alpha-particle Fermi-energy” originates naturally from the Fermi-gas model used
for the nucleons which form the alpha-cluster. This justifies the use of the concept of “the
alpha-particle Fermi-gas model” in earlier works (e.g. [5] and [8]).

In Eq.(2), T(E) is the transmission coefficient related to the interaction of the alpha-
particle with the residual nucleus, which can be calculated from the optical model potentials
for the alpha plus residual nucleus interaction. Since in our Fermi-gas model we measure
the energies of the nucleons and the alpha-particles from the bottom of the potential well,
the transmission coefficient in (2) contains a theta-function which enables it to “start” at
an energy 4er + B,, B, being the alpha-particle binding energy (B.= 28.3 MeV):

T(E) = O[E - (4¢r + B,)|T'(E). (13)

In this stage of the development of the model we use transmission coefficients averaged
over a range of values of the angular momentum L. So we have in Egs. (2,13) approximately

bos(2L + 1)TL(E)
Yimr(L+1)

Making the substitution ¢ = €, + € in Eq. (2) and using Eqgs. (3,12,13) we obtain the
following expression for the Pauli-blocking function

T'(E) =

(14)

3 ¢E+tine 1 :
f€ine) = . (€6 — €inc) 2 F'(€)T'(€)de, (15)
i Us )
where
€% = 4ep + B,. (16)

The model suggested in this work is similar to the quasi-free scattering (QFS) pre-
equilibrium mode] developed by Mignerey, Blann and Scobel [8,9], and based on the Harp-
Miller-Berne approach [10,11] (which uses a Boltzmann diffusion equation to describe the
evolution of the reaction). The main differences lie in the treatment of Pauli-blocking effects,
and our use of transmission coeflicients, rather than inverse cross sections with detailed
balance, to account for the barrier penetration by the alpha-particle. The basic relations of
our model, Egs. (1,2,15) can be interpreted as the first (and at these energies, the dominant)
term of a scattering series suggested in the QFS model [8,9].

III. THE CALCULATIONS OF (N,a) CROSS-SECTIONS

Since the direct and statistical emission of alpha-particles (as well as nucleons) take
place together during the evaluation of the system created in a nuclear collision, one needs a
cosistent way to extract reliable information for any particular process from the experimental
reaction cross-section. Thus the application of the direct model suggested in this work also
requires a knowlege of the statistical components of this reaction. The Hauser-Feshbach
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model is most suitable for this. The cross-section of (n,a) reactions is therefore calculated
by means of the expression

o(n,a) = ope + ofjF — o(n,an’), (17)

where ot and o[} are respectively the direct and compound Hauser-Feshibach components
of the alpha-particle emission cross-section, the former being suggested in this work (cp¢
from Eq.(1)). The superscript “em” in Eq.(17) is underlying the relation of the respective
cross-sections with the emitting precesses in contrast with the activation cross-sections.
o(n,an') is the (n,an’)-reaction cross-section. It is meaningful only for activation cross-
sections.

The calculations of the alpha-emission direct component o were carried out using
Egs. (1-3,5,10-15). The elastic free (n,a) cross-section a{;ff))(einc) has been taken from [12].
The transmission coefficients T, (E) in (14) were calculated using the optical model potentials
from [13]. By investigating the L-dependence of the transmission coefficients, we determined
that it is sufficient to include coefficients up to Ly,ax = 11 for the energies considered in this
work. The parameters of the model are the preformation factor ¢,, and the nucleon Fermi
energy ¢r. We set the value of the preformation factor to ¢, = 0.30 in the calculations.
This value (found in recent analyses carried out in the framework of both exciton {14,15] and
the Geometry-Dependent Hybrid (GDH) model [16]) has been determined by comparison
of experimental and calculated alpha-particle emission spectra in 14 MeV neutron-induced
reactions on 4648T) 51V, 5052Cr 55Mn, 345¢Fe and *°Co.

The Hauser-Feshbach statistical calculations were made with sets of input parameters
that give cross-sections in good agreement with experimental data for all competing reaction
channels [16,17]. The (n, an’)-reaction cross-section was obtained with the same formalism
by taking into account the population of the residual nucleus in the alpha-particle channel
given by either direct emission from the composite system or the evaporation from the
compound nucleus.

The calculations of the (n,a) cross-section enable us to study the dependence of the
results on the nucleon Fermi energy er. This parameter is obtained by fitting the calculated
excitation function (17) to the experimental data.

The results of the calculations of excitation functions of (n,a) reactions on the **Fe,
51V, 55Mn, 5°Co, “®Ti and 5%Cr nuclei are given in Figs. 1-6. They are compared with the
available experimental data for *8Ti(n,a) *°Ca from [14], for 3'V(n,a)*®Sc, *Fe(n,a)* Cr,
9Co(n,a)%® Mn and %*Mn(n,a) $*V from [18], and for °*Cr(n,a)**Ti from [19]. The data
are obtained by using the activation technique and thus they refer specifically to the (n,a
gamma) reaction (one chance alpha-particle emission), so that in the present analysis the
(n,a n’) reaction cross-section has to be subtracted from the total alpha-particle emission
cross-section o8¢ + 0§y, Eq. (17).

As an example we give in Fig. 7 the Pauli-blocking function f(€nd)in the case of the
%4Fe(n,a)*!Cr reaction for various values of the Fermi energy er.

The optimum values of the nucleon Fermi energy €r with ¢, = 0.30 are given in Table
1. According to the local density approximation the values of ep from 9.0 to 4.0 MeV
correspond to nuclear surface densities from p = 0.106p, to p = 0.032p0 (when ep=40 MeV
at p = po) and agree with the range (4-8 MeV) found in the QFS-model [8] when applied to
(nucleon, alpha) reactions.



The sensitivity of the cross-section to variations of ¢, and er was studied and it was
found that the fit is essentially unaffected by correlated changes in these two parameters.
Thus the parameter values (0.20, 7.0), (0.30, 9.0), and (0.40, 10.5) for (¢a,cr) give the
same cross-section for the *'V (n, a)-reaction. For a particular value of ¢,, we estimate the
uncertainty in ¢r to be about 0.5-1 MeV.

We should like to emphasize that the nucleon Fermi energy er is not a new parameter
suggested in this model in comparison with the original preformation model. The same two
parameters, namely the preformation factor ¢, and the nucleon Fermi encrgy e (taken to
be equal to 20 MeV), have been used in the exciton model calculations of tlie (n,a) reaction
cross-sections [5]. In this sense our model involving the assumption of ¢o= 0.30 and ef for
alpha-particles as parameters is similar to the original preformation model and to the QFS
model [8,9]. The values of ¢r obtained for various nuclei are indicative of surface character
of the direct process.

We note that the results for the direct components of the a-emission cross-section ohe
obtained in this model are in agreement with those obtained in the GDH-model [17], where
the direct inelastic scattering to the continuum is described by the "direct term” of the model
( [20] and references therein) for the pre-equilibrium emission. The generalized version of the
GDH-model [16] includes the alpha-particle emission within the preformed cluster-exciton
approach ( [21] and references therein) and some additional assumptions, in particular: 1)
The particle-hole state densities [22] used in the conjunction with the parameter ¢, [21];
2) The exciton single-particle and alpha-particle state densities [22] are the Fermi-gas ones
below the Fermi level, and depend linearly on the energy above this level; 3) The Fermi-gas
model relationships for the alpha-particle in the nuclear medium are the same as that used
in our direct model (Eq.(16); 4) The alpha-particle state density at the corresponding Fermi
level go(€f) = A/10.36MeV 15 5) The use of an average imaginary optical model potential
for the calculations of the intranuclear transition rates of emitted particles.

In this paper the Pauli-blocking effects on the cross-section of (n, a)-reactions are con-
sidered using a phase-space analysis. The interaction of the alpha-particle with the residual
nucleus is also taken into account. It is shown that the model gives a correct description of
the direct components of the (n,a) cross-section (and of the total excitation function after

including the statistical components) with reasonable values of the nucleon Fermi energy
which indicate a nuclear surface reaction.
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FIG. 1. The excitation function of the **Fe(n,a)®'Cr reaction. Solid line (1): o(n,«), dashed
line (2): 0%, short-dashed line(3): 0§}, dot-dashed line (4): o(n,an’). References to the works
from which the experimental data are taken are given in the text.
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FIG. 2. The same as in Fig.1 for the °'V(n,a)*8Sc reaction.
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FIG. 3. The same as in Fig.1 for the **Mn(n,a)?V reaction.
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FIG. 4. The same as in Fig.1 for the **Co(n,a)°®Mn reaction.
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FIG. 5. The same as in Fig.1 for the *Ti(n,a)*°Ca reaction.
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F1G. 6. The same as in Fig.1 for the >2Cr(n,a)**Ti reaction.
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FIG. 7. The Pauli-blocking function fg;nd for the **Fe(n,a)®'Cr calculated witl the following
values of er: 4.5 MeV (curve 1), 6 MeV (curve 2) and 8 MeV (curve 3).




TABLE I. Values of the nucleon Fermi-energy using ¢, = 0.30. The low values of the Fermi
energy indicate a nuclear surface reaction

Nuclei Sly 55Mn 59Co 4874 52¢y 54Fe

er (MeV) 9.0 7.0 6.0 4.0 8.0 4.5




