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6CAFPE and Departamento de F́ısica Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva,

E–18071 Granada, Spain

E-mail: anisha@glasgow.ac.uk, sdb@ugr.es, shankha.banerjee@cern.ch,

anke.biekoetter@durham.ac.uk, joydeep@iitk.ac.in, sunando.patra@gmail.com,

michael.spannowsky@durham.ac.uk

Abstract: In this paper, we work with 16 different single scalar particle extensions of the Standard

Model. We present the sets of dimension-6 effective operators and the associated Wilson coefficients as

functions of model parameters after integrating out the heavy scalars up to 1-loop, including the heavy-

light mixing, for each such scenario. Using the correspondence between the effective operators and the

observables at electroweak scale, and employing Bayesian statistics, we compute the allowed ranges of

new physics parameters that are further translated and depicted in 2-dimensional Wilson coefficient

space in the light of the latest CMS and ATLAS data up to 137 fb−1 and 139 fb−1, respectively. We

also adjudge the status of those new physics extensions that offer similar sets of relevant effective

operators. In addition, we provide a model-independent fit of 23 Standard Model effective field

theory Wilson coefficients using electroweak precision observables, single and di-Higgs data as well

as kinematic distributions of di-boson production.
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1 Introduction

Despite the successful journey of the Standard Model of particle physics (SM), its inadequacy to explain

many experimental observations and also the lack of direct evidence of new physics beyond the SM

(BSM) in the high energy experiments compel us to look for indirect signatures of new physics (NP).

Low-energy observables, such as the electroweak precision observables (EWPOs), the measurement of

SM Higgs production and decay modes as well as di-boson production [1–78], play a crucial role in

constraining the SM and leave little room for BSM physics. To understand the present status of NP

under the lamp post of experimental data in terms of the non-SM parameters, we need to establish

an effective connection between the BSM physics residing at a relatively high scale and observables at

the electroweak scale. Effective Field Theories (EFTs) are considered to be elegant tools to extract

indirect effects of NP from the experimental data, if any, by bridging the gap between scales.

In a bottom-up approach, the complete and independent set of effective operators for any given

mass dimension is computed relying on the symmetry and particle content of the SM – leading to

the most popular notion of the Standard Model Effective Field Theory (SMEFT) [31, 79, 80]. At

dimension six, the commonly used bases of the SMEFT operators include the Warsaw basis 1[31, 79]

and the SILH basis [30, 81]. Generally, the associated Wilson coefficients (WCs) are independent

and not pertinent to any specific UV theory. Parametrising low-energy observables in terms of these

WCs and analysing them in global fits allows us to constrain potential NP in a (rather) model-

independent way. Global analyses in the SMEFT framework have been performed for the EWPO [82],

Higgs [46, 47, 81, 83–87], di-boson [63, 66, 88–90], the top sector [91–97], and for combinations of these

sectors [47, 54, 75, 98–103]. In this work, we consider constraints from EWPO, single and di-Higgs

data, as well as distributions from the di-boson production channels.

In a top-down approach, the SMEFT lays the platform to bring different BSM scenarios on the

same footing by integrating out heavy non-SM degrees of freedom (DOFs). Each effective operator

that emerges in the process is accompanied by a WC which is a function of the model parameters

and captures the footprints of NP interactions [104–120]. It is important to note that most of the

phenomenologically interesting BSM scenarios do not induce the complete set of dimension-6 SMEFT

operators. In addition, the Wilson coefficients of effective operators computed by integrating out

heavy DOFs from a specific NP Lagrangian are functions of model parameters and thus, unlike the

model-independent SMEFT case, they are related to each other. As a result of these relations and the

typically smaller number of free parameters, the SMEFT parameter space in a top-down analysis is

usually much more stringently constrained compared to bottom-up analyses. Top-down SMEFT fits

hence play a crucial role in pinning down the nature of BSM physics.

1The Warsaw basis accommodates a set of complete and non-redundant effective operators of mass dimension six.
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The primary motivation of this work is to estimate the allowed BSM parameter space for different

SM extensions and to perform a comparative analysis among those scenarios that are degenerate

effective theories upon non-SM DOFs being integrated out. In our analysis, we consider 16 different

single scalar extensions of the SM without extending the gauge symmetry. We embed each of the

NP Lagrangians in our Mathematica® program CoDEx [112] to perform the integration up to 1-loop,

including the heavy-light mixing, and provide the exhaustive sets of the dimension-6 effective operators

in Warsaw basis and their associated WCs as functions of model parameters 2. The effective operators

generated for these individual models can be verified using the complementary diagrammatic method

introduced in ref. [121]. We work within the Bayesian framework to draw the statistical inference and

parameter estimation using the Mathematica® package OptEx [122].

In this paper we constrain the SMEFT parameter space in both bottom-up as well as top-down

approaches to provide an up-to-date map of the new physics parameter space of scalar extensions of

the SM. First, we perform a model-independent SMEFT fit based on the latest CMS and ATLAS data,

including many distributions and simplified template cross sections. Second, we choose 16 different

heavy scalars that are being used frequently in literature for different phenomenological reasons,

e.g., neutrino mass generation, to explain IceCube, LHCb data, etc. [123–133]. For simplicity, we

assume that SM is extended by a single heavy scalar at a time. We compute the effective dimension-6

operators and the associated WCs by performing the integration out of individual heavy fields up to 1-

loop, including heavy-light mixing. These matching results incorporating scalar heavy-light mixing are

presented in the Warsaw basis. We also provide the results in SILH basis. The obtained results will be

useful even when there are multiple heavy scalars. In that case, there will be additional contributions

due to mutual interactions among the heavy fields. We further constrain the non-SM parameter space

for each individual model using electroweak precision data and Higgs data. We highlight the impact

of the individual data sets and their cumulative impact. This helps us to identify which data sets

play a crucial role for which model while constraining the non-SM parameter space. We also pin-point

the directions in non-SM parameter space that cannot be constrained by our chosen set of data and

comment on the observables necessary to constrain these models completely.

The paper is organised as follows: We provide details on the SMEFT parametrisation of the

used observables in section 2 and describe the corresponding experimental inputs in section 3. In

section 4, we perform a model-independent analysis including 23 WCs contributing to the EWPO,

single Higgs, di-Higgs, and di-boson sectors, and present the results for individual one-parameter fits

as well as for a global analysis. In section 5, we introduce the 16 single scalar extensions of the SM and

reduce them into effective theories ⊂ SMEFT. For each case, we tabulate the sets of emerged effective

operators and associated WCs in the Warsaw basis as functions of the model parameters. We then

employ similar fitting methodology for our chosen two NP models and display the results in terms

of model parameters as well as in terms of the WCs, in section 5. We discuss the Renormalisation

Group Equations (RGEs) of the SMEFT operators for a specific model and captures its impact on the

allowed BSM parameters and WCs in section 6. We summarise our results and discuss possible future

directions in section 7. In the appendix B, we tabulate the computed effective operators and the WCs

for the remaining 14 models adopted in this work. The working principle of this work is depicted in

2We provide the sets of effective operators in both Warsaw and SILH bases for all these BSM scenarios in a Mathe-
matica notebook file here �.
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a flowchart, see fig. 1.

BSM   Lagrangian

Ops.    SMEFT ⊂

EWPO,   Higgs, 
Di-boson,  Di-Higgs Constraints  on 

BSM  parameters  

Constraints  on  BSM 
matched  WCs 

Heavy field 
alongwith  SM

CoDEx 
Tree + 1-loop 

Matching

Global  Fit  
of  23  WCs

Bayesian  inference 
using  OptEx

GrIP 
Hilbert Series Output

Observables

23  Ops.    SMEFT ∈

Model  dependent  WCs  
(function  of  BSM  parameters)

Model   independent

Figure 1: Flowchart depicting the work-flow of this article. Details on the observables are discussed
in section 3. The global fit consists of 23 WCs, see fig. 3. The constraints on the BSM parameters
of specific models are discussed in section 5 and appendix B. We use the Hilbert series output from
GrIP [134] to construct the BSM Lagrangian given the heavy field information. The BSM Lagrangians
are then implemented in CoDEx [112] to compute the tree- and the 1-loop-level WCs (including the
heavy-light mixed WCs). We perform the statistical analysis based on Bayesian inference using the
package OptEx [122].

2 SMEFT parametrisation

The SMEFT describes new physics with higher-dimensional (in mass with dimensions ≥ 5) operators

consisting of only the SM fields and respecting the SM symmetries. The effective Lagrangian is given

by

L
eff

= Ld≤4
SM

+ LEFT
SM

= Ld≤4
SM

+
∑
d=5,...

∑
i

(
C(d)
i

Λd−4

)
Q

(d)
i , (2.1)

where Q
(d)
i are the effective operators of mass dimension d and C(d)

i are the accompanying WCs,

respectively. The index i runs over the number of independent effective operators. At dimension six,

there are 2499 independent operators in the most flavour general case. This number reduces to 59 when

assuming minimal flavour violation (MFV) [135] and real WCs. On the other hand, in a top-down

approach, the number of operators is determined by integrating out the heavy BSM fields. In this

work, we have confined ourselves to dimension-6 operators in the Warsaw basis [31] and parametrise

observables up to linear order in the WCs. The renormalisable part of the SM Lagrangian is given for
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the sake of completeness as

Ld≤4
SM = −1

4
GaµνG

a,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν + |DµH|2 − µ2
H
|H|2 − 1

2
λSM
H |H|4

+ l̄Li /D lL + q̄Li /D qL + ēRi /D eR + ūR i /D uR + d̄R i /D dR

−
{
Y SM
e H†ēR lL + Y SM

u H̃†ūR qL + Y SM
d H†d̄R qL + h.c.

}
, (2.2)

where Bµν ,W
I
µν , and Gaµν are the field strength tensors of the SM gauge groups U(1)Y , SU(2)L , and

SU(3)C , respectively, with a = 1, . . . , 8. The adopted conventions for the quantum numbers of the SM

fields are shown in tab. 2. D denotes the covariant derivative, Y SM
u,d,e are the SM Yukawa couplings,

and H̃ = i σ2H∗ is the conjugate Higgs field.

Our SMEFT predictions are computed at linear order in the WCs in the electroweak {αEW , GF , mZ}
input scheme with the following input values

α−1
EW = 127.95, GF = 1.6638× 10−5 GeV−2,

mZ =91.1876 GeV, mH = 125.09 GeV, mt = 173.2 GeV .
(2.3)

We generally assume MFV. However, for the dimension-6 operators contributing to the Yukawa cou-

plings, we distinguish between flavours and introduce different WCs for muons CµH and tau leptons

CτH , as well as the charm CcH and top quarks CtH . There is of course no direct measurement of

the charm Yukawa coupling apart from the h → J/ψγ searches [136] and in our analysis CcH can be

considered as a proxy for a modification of the total Higgs decay width which can be constrained from

a global fit of all Higgs signal strengths. It is important to note that with more data we will be able

to explore the structure of the SMEFT operators which may not always follow MFV. Refs. [137, 138]

study various such cases where the requirement for MFV is relaxed.

In total, we include 23 WCs in our model-independent analysis. A graphical summary of the WCs

and the observables that they contribute to is given in fig. 2. The corresponding operators are listed

in tab. 27 in the appendix E.

<latexit sha1_base64="xLNvhOnzmlJohGa/SLMCU0ETHIs="></latexit>CW

single Higgs

Di-boson

EWPO
<latexit sha1_base64="Eo5UkW53kyutrayLFLLfm8eJ9Tk="></latexit>CH⇤ CH

CtH

CHG

C⌧H CµH

CcH CbH

CtG CG CHB CHW

<latexit sha1_base64="B8aM7a5gE53jX2aV9y9EvYIXgSY="></latexit>CHWB CHD Cll

CHe C(1)
Hl C(3)

Hl

C(1)
Hq C(3)

Hq CHu CHd

Di-Higgs

Figure 2: Graphical summary of the considered Wilson coefficients in our model-independent analysis
and the observables they contribute to.
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Higgs signal strengths and simplified template cross sections: For the Higgs sector, most

of the theory predictions are generated at leading order (LO) using the SMEFTsim model [139] in

MadGraph 2.7.3 [140] with the default NNPDF23 NLO parton distribution functions [141]. Where avail-

able, SMEFT predictions are taken directly from fitmaker [75], which uses the same tools and settings

as outlined above.

For the gluon fusion STXS categories, we instead use the predictions from the ATLAS combination

in ref. [10] which include matching, merging and parton showering. LO predictions for the operator

QG, which are not present in the ATLAS reference, are added using the SMEFT@NLO model [142]. For

all other channels, we cannot use the ATLAS predictions due to different input parameter scheme

choices and instead rely on the predictions at parton level generated with MadGraph. Overall, we

describe our Higgs data sets in terms of the following WCs.

CH�, CHW , CHB, CHG, CtH , CcH , CbH , CτH , CµH , CG, CtG,
CH , CHWB, CHD, Cll, C(1)

Hl , C(3)
Hl , CHe, C(1)

Hq, C(3)
Hq, CHd, CHu.

(2.4)

Currently, we only include CH in the predictions of total Higgs signal strength measurements and

not for STXS measurements. The corresponding contributions of QH to the predictions of different

Higgs production and decay channels are used from refs. [143, 144]. Notice that four-quark operators,

which could contribute, for instance, to the tt̄h and th categories, are not included in our study at

the moment. The inclusion of four-quark operators in global fits with top data has, however, not

lead to a weakening of constraints on operators relevant for the top-Higgs sector such as CtH , CG and

CHG [75, 103]. We therefore assume that our approach does not overestimate the constraints on these

operators.

Di-Higgs production cross section: The SMEFT predictions for the di-Higgs production cross

section are generated using the ggHH model [145] within the POWHEG-BOX-V2 [146–148] framework

which implements BSM effects in a non-linear EFT framework including full NLO QCD corrections

with massive top quarks. The Warsaw basis WCs Ci are related to the five anomalous couplings cj in

the ggHH model via

ct = 1 +
v2

Λ2
CH� −

v2

Λ2yt
CtH , ctt =

v2

Λ2

(
1

2
CH� −

3

4yt
CtH
)

chhh = 1 + 3
v2

Λ2
CH� −

v2

λΛ2
CH , cggh = 2 cgghh = (16π)2 2v2

Λ2g2
s

CHG ,
(2.5)

where we use ref. [149] to translate from the SILH to the Warsaw basis. The effect of the operator QtG
on the di-Higgs cross section is not taken into account. The di-Higgs cross section is thus parametrised

in terms of the operators

CH , CH�, CtH , CHG . (2.6)

Di-boson distributions: We include distributions of WZ and WW production. As shown in

ref. [89], the k factors for the SM and the SMEFT interference in di-boson distributions can be very

different. The SMEFT predictions for these channels are generated using the WZanomal and WWanomal
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models [89] within the POWHEG-BOX-V2 which includes NLO QCD corrections [90, 150, 151]. We shower

and hadronise our results using Pythia 8.2 [152].

For the WZ production with leptonic decays, we include the ATLAS mWZ
T production distribu-

tion [153]. For the last bin of this distribution, which is an overflow bin, we have cut off the SMEFT

prediction at mWZ
T = 1 TeV to ensure the validity of the EFT. We implement the cuts provided

in ref. [153] in Rivet [154] and validate the analysis by comparing our POWHEG + Pythia 8.2 SM

predictions to the ones in the experimental reference. The SM predictions agree within 5 % in each

bin.

For WW production in the e±νµ∓ν final state, we include the leading lepton’s pT distribution,

p`1T , from the ATLAS study [22]. In order to consider the most sensitive bins, we take the predictions of

bins 8 to 14. Similar to the WZ analysis, we utilise the cuts from the ATLAS study [22] in Rivet [154]

and validate our POWHEG + Pythia 8.2 SM predictions to the ones in the experimental paper. The

SM predictions agree within 6 %.

The SMEFT predictions for the ATLAS ∆φjj distribution in the electroweak Zjj production [21]

are taken directly from fitmaker. This distribution tightly constrains anomalous triple gauge cou-

plings induced by the operator QW , which is generated in several of the considered SM extensions.

For LEP WW data, we use the SM and SMEFT parameterisations as well as the theoretical

uncertainties from ref. [2] for the total and differential angular cross-sections at different energies.

The di-boson predictions are expressed in terms of the WCs

CW , CHWB, CHD, C(1)
Hl , Cll, C(3)

Hl , CHe, C(1)
Hq, C(3)

Hq, CHd, CHu . (2.7)

Electroweak precision observables: We calculate the SMEFT parametrisations of the EWPO

based on refs. [59, 155, 156], see also appendix A2 of ref. [101] for the explicit expressions and tabs. 10.4

and 10.5 of ref. [157] for the most accurate SM predictions. The EWPO predictions are calculated in

terms of the WCs

CHWB, CHD, Cll, C(1)
Hl , C(3)

Hl , CHe, C(1)
Hq, C(3)

Hq, CHd, CHu, CH , (2.8)

where the contribution of CH is only included in the SMEFT parameterisation of mW from ref. [158].

3 Observables

Our fits include data from EWPO, LEP-WW measurements as well as LHC data for single Higgs,

di-Higgs, di-boson, and electroweak Zjj production processes.

• We include a total of 15 electroweak precision observables. They consist of pseudo-measurements

on the Z resonance [1], as well as a combination of the W mass measurements at LEP [159],

Tevatron [160] and ATLAS [161], the LEP and Tevatron combination of the decay width of the

W boson [162] and the Tevatron sin2 θeff measurement [163]

ΓZ , σ
0
had, R

0
l , Al, Al(SLD), AlFB, R

0
c , Ac, A

c
FB, R

0
b , Ab, A

0,b
FB,

mW , ΓW , sin2 θleff(Tev) .
(3.1)
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• We include LHC single-Higgs data from ATLAS and CMS. For LHC Run I, we incorporate the

combination of ATLAS and CMS results in ref. [3]. For ATLAS Run II, we add the STXS results

from refs. [10, 11] as well as the measurements of the signal strengths in the h → Zγ, h → µµ,

h → ττ and h → bb̄ (VBF and tt̄h only) decay channels. For CMS Run II, we make use of

the signal strength measurements [12–15] as well as the STXS results [16–19]. For the STXS

h → ZZ → 4` analysis [19] we neglect the qqH-3j category due to its very large uncertainty.

For the h→WW channel signal strength measurement [13], we only include the 0-jet category

and assume that the signal contribution comes from gluon fusion only (we discard the 5%

contribution from the other production modes). For the CMS tt̄h analysis [15], we select only

the most sensitive three channels for which there is one single dominant decay mode. These are

the following three final states: 2 same-sign (SS) leptons with no hadronic τ , τh, ensuing from

h→WW ∗, 2 SS leptons and 1 τh from h→ ττ , and 1 lepton and 2 τh also from h→ ττ . Once

CMS combines the signal regions and provides the signal strength for different decay channels

separately, we will be able to incorporate these in our analysis.

• For di-Higgs production, the total cross section signal-strength measurements in the 4b, 2b2τ

and 2b2γ decay channels are taken into account [23–28]. These measurements include 36.1 fb−1

of data for ATLAS and up to 137 fb−1 for CMS. We have translated the upper limits given in the

experimental references into signal strengths measurements as listed in tab. 26 in appendix D.

• We include momentum-dependent di-boson distributions as well as the ∆φjj distribution for

electroweak Zjj production [21]. For WZ production with leptonic decays, we include the

ATLAS mWZ
T production distribution with 36.1 fb−1 [153]. For WW → eµνν production, we

include the p`1T distribution of the leading lepton in ATLAS [22]. We only include bins 8-14 of the

distributions since we observed some discrepancies between our SM prediction and the ATLAS

SM prediction in the low-p`1T regime. We include the measurements and correlation matrices as

provided on Hepdata [164].

For LEP WW data, we consider the cross-section measurements for the process e+e− →
W+W+ → lνlν/lνqq/qqqq at different centre of mass energies and angular distributions from

tabs. 12-15 of ref. [2] The actual experimental measurements are from refs. [159, 165–167].

The full list of observables included in our fits is given in tab. 1. To highlight the constraining

power of recent analyses and compare with previous work, we split our set of observables into two sets

called “2020 dataset” and “this analysis” in the following. The 2020 dataset is used to compare and

crosscheck with Ref. [75]. The set called “this analysis” contains updated versions of some experimental

analyses as well as additional data. To avoid overlap of experimental analyses, some data used in the

2020 dataset has been removed in the “this analysis” set, see tab. 1.

4 Model independent SMEFT: Bayesian analysis

The statistical analysis in this work is performed within a Bayesian framework. The priors, used in

this work for free parameters, follow uniform distribution with some definite ranges. For all numerical

results, samples from the un-normalised posterior distributions are used, each of which are gener-

ated from a Markov Chain Monte Carlo (MCMC) process. The MCMC algorithm followed here is

– 7 –



Table 1: Observables included in the fit. The rightmost column specifies which observables were part of the
2020 dataset used for comparison with previous work. The observables in teal are exclusively used in the 2020
dataset. They are not part of our full dataset as they overlap with other observables.

Observables no. of measurements References 2020

Electroweak Precision Observables (EWPO)

15 tab. 1 of ref. [168]ΓZ , σ0
had, R

0
l , Al, Al(SLD), AlFB, sin2θleff(Tev),

R0
c , Ac, A

c
FB, R0

b , Ab, A
b
FB, mW , ΓW correlations in ref. [1]

LEP-2 WW data 74 tabs. 12-15 of ref. [2]

Higgs Data

7 and 8 TeV

ATLAS & CMS combination 20 tab. 8 of ref. [3]

Run-I data

ATLAS & CMS combination µ(h→ µµ) 1 tab. 13 of ref. [3]

ATLAS µ(h→ Zγ) 1 fig. 1 of ref. [4]

13 TeV ATLAS

µ(h→ Zγ) at 139 fb−1 1 [5]

µ(h→ µµ) at 139 fb−1 1 [6]

Run-II data µ(h→ ττ) at 139 fb−1 4 fig. 14 of ref. [7]

µ(h→ bb) in VBF and ttH at 139 fb−1 1+1 [8, 9]

STXS Higgs combination 25 figs. 20/21 of ref. [169]

STXS h→ γγ/ZZ/bb̄ at 139 fb−1 42 figs. 1 and 2 of ref. [10]

STXS h→ WW in ggF, VBF at 139 fb−1 11 figs. 12 and 14 of ref. [11]

CMS combination at up to 137 fb−1 23 tab. 4 of ref. [12]

µ(h→ bb̄) in V h at 35.9/41.5 fb−1 2 entries from tab. 4 of ref. [12]

µ(h→WW ) in ggF at 137 fb−1 1 [13]

13 TeV CMS µ(h→ µµ) at 137 fb−1 4 fig. 11 of ref. [14]

Run-II data µ(h→ ττ/WW ) in tt̄h at 137 fb−1 3 fig. 14 of ref. [15]

STXS h→WW at 137 fb−1 in V h 4 tab. 9 of ref. [16]

STXS h→ ττ at 137 fb−1 11 figs. 11/12 of ref. [17]

STXS h→ γγ at 137 fb−1 27 tab. 13 and fig. 21 of ref. [18]

STXS h→ ZZ at 137 fb−1 18 tab. 6 and fig. 15 of ref. [19]

ATLAS WZ 13 TeV mWZ
T at 36.1 fb−1 6 bins fig. 4(c) of ref. [20]

ATLAS Zjj 13 TeV ∆φjj at 139 fb−1 12 bins fig. 7(d) of ref. [21]

ATLAS WW 13 TeV p`1T at 36.1 fb−1 7 bins bins 8-14 of fig. 7(a) of ref. [22]

Di-Higgs signal strengths ATLAS & CMS 13 TeV data
6 [23–28]

µbb̄bb̄
HH

, µbb̄τ τ̄
HH

, µbb̄γγ
HH
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Metropolis-Hastings [170] and all runs come from a single long Markov-chain. We make sure that all

obtained samples are independent and identically distributed (iid) and the chains converge to desired

quantiles. This is ensured through diagnostic checks and sequential runs following the prescriptions

of Raftery and Lewis [171]. Point estimates are almost always quoted in terms of Medians and fixed

quantiles around them. Though not used, we keep track of all corresponding frequentist maximum

likelihood estimates (MLEs), which both help us to track the fit-quality as well as a good choice for

the start of the Markov-chains. As for priors, we use uniform distributions with specific (conservative)

ranges for the free fit parameters. As we use the SM theoretical predictions for all observables from

several sources, there are no nuisance-type parameters (e.g. SM input parameters) in this analysis

with ‘informative’ priors. Appendix C.1 contains detailed information about the priors for the free

parameters here, i.e. the dimension-6 SMEFT WCs.

We start the discussion of our model-independent fits by showing the results of one-parameter fits

of the WCs in the upper panel of fig. 3, see also tab. 24 for numerical results. In the figure, we contrast

the results including our full dataset with a reduced set based on the one used in the most recent

fitmaker analysis [75]. See tab. 1 for the exact dataset definitions. Overall, the WCs constrained

through the EWPO typically receive much stronger individual bounds than those constrained through

Higgs and di-boson observables alone. The most weakly constrained WC is CH which is most strongly

constrained through di-Higgs production in our fit. Comparing the two fits, we find that operators

constrained through EWPO have not benefited from the addition of new datasets at the level of one-

parameter fits. Several of the limits on the bosonic as well as Yukawa-like operators, on the other

hand, have improved significantly. Deviations from the SM for some WCs, for instance for CtH , are

caused by large correlations in the CMS h → ZZ → 4` STXS analysis [19], specifically between the

ggF 1jet (pHT ∈ [0, 60] GeV), ggF 1jet (pHT ∈ [60, 120] GeV), and qqH 2jet (mjj ∈ [0, 350] GeV,

V h veto) regions. However, in the global analysis with more DOF none of these deviations persist.

In the lower panel of fig. 3, we display the results of our global fit of 23 WCs after marginalisation.

Numerical results can be found in tab. 24. To highlight the restriction power of recent STXS measure-

ments, we again contrast our full data set with LHC data up to 2020. We have explicitly checked that

the limits from this reduced dataset agree are in good agreement with previous literature [75]. The

improvements of the limits with the addition of more data is even more visible in the global fit than it

was in the one-parameter fits. We find relatively mild improvement for WCs describing modified Higgs

Yukawa couplings to leptons or bottom quarks. Many of the other limits, however, have significantly

decreased.

Comparing the limits from one-parameter fits with the global analysis, we find that the limits

of six WCs weaken by a factor of ten or more compared to the individual fit limits: CHWB, CHD,

CHW , CHB, CHe, C(1)
Hl . This is the result of the strong correlation of these coefficients as displayed in

tab. 25. Many pairs of these WCs have absolute correlation coefficients of & 0.8 as a result of their

joint contribution to the shifts of SM parameters.

To gain a better understanding for the relevance of different Higgs production channels for the

constraints on different WCs, we display in fig. 4 the global fit limits on the WCs when removing

certain STXS channels from the analysis. In four additional fits, we have removed the STXS channels

for associated production of a Higgs with a vector boson (V h), weak boson fusion (WBF), gluon fusion

(ggF), and a combination of gluon fusion as well as top associated production modes (ggF+tt̄h+tH).

As expected, removing gluon fusion STXS channels from the analysis only weakens the limits on

– 9 –



(a)

(b)

Figure 3: Individual (top) and global (bottom) 95% CI limits on the WCs. We compare a fit involving our
full dataset (orange), with a reduced set containing LHC Higgs measurements up to year 2020 (blue), see tab. 1
for the dataset definitions. Note that some bounds have been scaled by factors of ten to fit all results on the
same y-axis.

CtG, CtH , CG and CHG, highlighting the constraining power of ggF STXS measurements up to high

transverse momenta of the Higgs. The highest-momentum STXS regions included in our analysis are

pHT ∈ [200, 300, 450] GeV as well as pHT > 450 GeV [18]. When in addition to removing the gluon

fusion STXS channels we also neglect top associated Higgs production, the extreme weakening of the

limits on CHG and CtH leads to looser constraints on CH . This is because of correlations of CH with

other WCs (CtH and CHG) which are, however, irrelevant at the current level of constraints from ggF

and top associated Higgs production.

STXS measurements of V h production mainly affect the limits of C(3)
Hq, CHu and C(3)

Hl . While C(3)
Hq

and CHu directly profit from V h measurements at high pVT , C(3)
Hl improves indirectly as it is highly

correlated with C(3)
Hq. WBF STXS measurements influence several bosonic operators such as CH� and

CHWB. Other operators which do not directly contribute to WBF, for instance C(1)
Hl are affected by

– 10 –



(a)

(b)

(c)

Figure 4: Figs. 4a and 4b show the 95% CIs on 23 WCs in a global fit using different datasets. We constrast
the corresponding intervals obtained using the full dataset (orange) with datasets excluding certain sets of STXS
measurements. We individually exclude STXS measurements of WBF production (green), V h measurements
(purple), ggF measurements (red dashed), and a combination of ggF with tt̄h and th (red solid). Note that
some bounds have been scaled by factors of ten to fit all results on the same y-axis.

WBF STXS measurements through their correlation with other operators. CcH , which only appears in

the parametrisation of the Higgs width, is highly affected by WBF STXS data because of its correlation

with CH�.
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5 BSMs
CoDEx−−−→ ⊂ SMEFT: Effective Operators, WCs and Bayesian Analysis

Table 2: SM and BSM fields and their spin and gauge quantum numbers. The BSM Lagrangians are con-
structed using these fields.

SM field Spin
SM quantum numbers

SU(3)C SU(2)L U(1)Y
1

qL
1
2

3 2 1
6

lL
1
2

1 2 - 1
2

uR
1
2

3 1 2
3

dR
1
2

3 1 - 1
3

eR
1
2

1 1 -1

H 0 1 2 1
2

Bµν 1 1 1 0

Wµν 1 1 3 0

Gµν 1 8 1 0

1 Hypercharge convention: Qem = T3 + Y,
where Qem, T3 and Y are electro-magnetic
charge, third component of isospin quantum
number and hypercharge respectively.

BSM field Spin
SM quantum numbers

Mass
SU(3)C SU(2)L U(1)Y

S 0 1 1 0 mS

∆ 0 1 3 0 m∆

S1 0 1 1 1 mS1

S2 0 1 1 2 mS2

∆1 0 1 3 1 m∆1

H2 0 1 2 − 1
2

mH2

Σ 0 1 4 1
2

mΣ

ϕ1 0 3 1 − 1
3

mϕ1

ϕ2 0 3 1 − 4
3

mϕ2

Θ1 0 3 2 1
6

mΘ1

Θ2 0 3 2 7
6

mΘ2

Ω 0 3 3 − 1
3

mΩ

χ1 0 6 3 1
3

mχ
1

χ2 0 6 1 4
3

mχ
2

χ3 0 6 1 − 2
3

mχ
3

χ4 0 6 1 1
3

mχ4

In this work, we consider 16 different BSM scenarios which are extensions of the SM by single

scalar representations. This choice is guided by our phenomenological interest and to encapsulate

the features of various new physics interactions. 3 Colour singlet scalars with higher hypercharges

are used to explain the origin of light neutrino masses through higher dimensional operators. The

coloured leptoquark scalars are used to explain icecube data, LHCb observations, etc. [123, 128–133].

We chose BSM extensions that encapsulate the features of these heavy scalars which are frequently

used in the literature. Even when the SM is extended by multiple heavy scalars, one can immediately

get to know which effective operators will emerge after integrating out those heavy fields. Of course

there will be additional contributions from the mutual interactions among the heavy fields. We start

with the individual complete BSM Lagrangian and integrate out the heavy non-SM scalar multiplets

using the automated program Mathematica based package CoDEx [112]. The BSM scenarios are then

expressed in terms of the SM-renormalisable Lagrangian accompanied by the effective operators as

given in eq. (2.1).

We integrate out the heavy BSM fields up to 1-loop and tabulate the complete sets of emerging

effective operators and accompanying WCs including the heavy-light mixing contribution from scalars

in the loops. It is important to note that only those BSMs generate heavy-light mixed WCs in which

3The impact of the new physics parameters on renormalisation of the SM parameters are ignored in our analysis.
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(a) λH2,1 - λH2,2 (b) λH2,2 - λH2,3 (c) λH2,1 - λH2,3

(d) η
(1)
Θ1

- η
(2)
Θ1

(e) Legend

Figure 5: Two-dimensional marginalised posteriors among the BSM parameters for H2 (top row) and Θ1.
The line contours represent the 68% and 95% credible intervals (CIs) and the filled contours with changing
opacity show the high-probability regions with decreasing probabilities (darker to lighter). We show the results
from a fit of “EWPO” data only (blue), “Higgs” data only (red) as well as for “All” (black).

the heavy field couples to SM fields linearly [106, 109, 110, 115, 172]4. This can be visualised by

considering one-particle-irreducible 1-loop diagrams where loop propagators are both heavy and light

(SM) fields, but external legs are only light (SM) fields. We further employ the equations of motion,

Fierz identities, and integration by parts suitably to ensure the emergence of the exhaustive lists of

effective operators up to 1-loop 5. The effective operators are depicted in the Warsaw basis [31].

The complete matching results can also be downloaded from the GitHub repository [173] where the

readers will find the operators and the associated WCs in SILH basis as well for all these BSM scenarios.

We require the Wilson coefficients of Warsaw basis effective operators in this analysis, because the

4A detailed discussion on the heavy-light effective action formulae is given in App. A.2.
5In Ref. [115], the effective operators are tagged as per their dominant emergence through tree (T), only heavy (HH),

and heavy-light (HL) mixing.
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(a) CdH - CeH (b) CH - CHB (c) CH� - CHD

(d) CHW - CHWB (e) CdH - CuH (f) Legend

Figure 6: Two-dimensional posteriors among the relevant WCs induced by H2, listed in black in tab. 3.
These regions are obtained from the parameter distributions among λH2,1, λH2,2 and λH2,3 shown in figs. 5a-5c.
The line contours represent the 68% and 95% CIs and the filled contours with changing opacity denote the
high-probability regions with decreasing probabilities (darker to lighter). We separate the results from fitting
“EWPO” data only (red), “Higgs” data only (green) and “All” data (blue).

observables are parameterised in terms of the SMEFT Warsaw basis operators to perform the global

and the model-specific fits. The complete SMEFT dimension-six matching results for some of the SM

extensions are already available in literature in Warsaw basis, for example for the real singlet scalar

model [174–176], and scalar leptoquarks [177]. However, for the remaining models, to the best of our

knowledge, the complete SMEFT dimension-six matching results in the Warsaw basis up to 1-loop

including heavy-light mixing are not available yet. A tree-level matching dictionary [178], and partial

results for some models including scalar heavy-light mixing (in SILH basis) [104, 107, 109] are available

as well.

In the following subsections, we tabulate the effective operators generated and the associated WCs

in terms of the model parameters in the Warsaw basis for two representative cases: The two Higgs

doublet model, H2, and a scalar leptoquark, Θ1. These models encapsulate the individual features of
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(a) CdH - CeH (b) CH - CHB (c) CH� - CHD

(d) CHW - CHWB (e) CdH - CuH (f) Legend

Figure 7: Two-dimensional WC posteriors, similar to fig. 6, obtained from the parameter distributions of

η
(1)
Θ1
, η

(2)
Θ1

for Θ1.

a colour singlet and a non-singlet heavy field, respectively. The two models share the exact same set

of relevant 6 effective operators apart from the additional emergence of QHG in the latter model, see

tab. 4. We tabulate the results for rest of the adopted scenarios in appendix B.

Here, we provide the operators at the scale where they emerge, i.e. the cut-off scale (Λ) which we

take equal to the mass of heavy BSM fields (mhf ), in all cases that we discuss. We further assume

that the mass of the heavy field mhf � EWSB scale. Thus, the heavy fields can be integrated out

safely, validating the notion of EFT and all the dimension-6 operators are suppressed by 1/m2
hf . Here,

to start with we ignore the running of the effective operators and perform the analysis. Later, in

section 6 we for extra Electro-Weak Doublet Scalar(EWDS) scenario, we discuss how the inclusion of

running of effective operators leave an impact of parameter space.

6In our analysis, the operators which are present in our chosen set of observables and are functions of BSM parameters,
are relevant. In the result section, we focus on those primarily.
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In the model-independent analysis in section 4, we introduce an explicit flavour dependence for the

operators of the ψ2φ3 class with the corresponding WCs QµH , QτH , QcH , QbH , and QtH . As we are

using CoDEx results for the model-dependent part of the analysis and CoDEx does not differentiate

between flavours (yet), CµH and CcH are set to be zero for the rest of the analysis and we work with

operators consisting of third generation fermions only. For the rest of the paper, the associated WCs

will be denoted as CuH , CdH , and CeH . In the later subsections, we highlight the operators (in red)

that do not affect our chosen set of observables and thus are absent from our analysis. The blue

coloured operators are functions of SM parameters only and thus, independent of our fit-parameters.

Each of the observables can be thought of as a set of effective operators which has been useful to

classify different single scalar field extensions of the SM [115]. Relying on that concept, we design the

methodology of our analysis to pin down the individual and mutual status of these BSM scenarios in

this section.

In section 4, we obtain the constraints on the set of 23 SMEFT WCs in a model-independent

manner, using the observables listed in section 3. In this section, we move a step ahead and connect

the relevant observables expressed in terms of the SMEFT dimension-6 operators and their respective

WCs to the BSM model parameters. The SMEFT matching results obtained for a particular BSM,

mentioned above, allow us to write the WCs in terms of the respective model parameters and mhf .

Consequently, the bounds on the model parameters of specific BSMs are obtained directly from the

relevant experimental data.

The methodology of the statistical analysis is similar to the one discussed in the model-independent

part. Fits are performed over the relevant BSM parameters while considering the best-fit values for

the SM ones, see eq. (2.3). Uniform priors within range {−50, 50} are chosen for these non-SM

parameters and mhf is chosen as to be 1 TeV uniformly in this analysis. The following subsections

showcase two example scenarios where the SM is extended by two scalars, H2 and Θ1, based upon the

relations among the associated WCs of the emerged effective operators through the model parameters

for individual cases.

5.1 Extra EW Doublet Scalar: H2 ≡ (1C , 2L, −1
2

∣∣
Y

)

This model contains an extra isospin-doublet scalar (H2) which is a colour-singlet with hypercharge
Y = −1

2 . The BSM Lagrangian is given as [104, 124, 179–182],

LH2
= Ld≤4

SM
+ |DµH2|2 −m2

H2
|H2|2 −

λH2

4
|H2|4 − (ηH |H̃|2 + ηH2

|H2|2)(H̃†H2 +H†2H̃)

− λH2,1|H̃|2|H2|2 − λH2,2|H̃†H2|2 − λH2,3

[
(H̃†H2)2 + (H†2H̃)2

]
−
{
Y

(e)
H2
lL H̃2 eR + Y

(u)
H2

qLH2 uR + Y
(d)
H2

qL H̃2 dR + h.c.
}
. (5.1)

Here, mH2 is the mass of the heavy field and serves as the cut-off scale. We assume that the heavy

Higgs doublet is decoupled to the SM one, and they do not mix [182]. This model contains nine BSM

parameters ηH , ηH2 , λH2 , λH2,1, λH2,2, λH2,3, Y
(u)
H2

, Y
(d)
H2

, Y
(e)
H2

, and the WCs are functions of all

these parameters along with the SM ones, see tab. 3. We assume that the BSM Yukawas couple only

to the third generation of fermions. In the decoupling limit, these Yukawas do not mix with the SM

ones [182]. We further note that the WCs of the relevant operators QuH, QdH, QeH, QH, QHW, QHB,

QHWB, QH�, and QHD contain all the BSM parameters. In our numerical analysis, we choose to work
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with a Z2-invariant (H → H and H2 → −H2) BSM Lagrangian. Thus the quartic couplings ηH , ηH2

and the Yukawa couplings Y
(u)
H2

, Y
(d)
H2

, Y
(e)
H2

couplings do not appear in our analysis, where the rest

of the three parameters get constrained by our chosen experimental data set. Note that though λH2

corresponds to Z2 invariant term, but it still cannot be constrained as it appears in the WCs with the

Z2 violating couplings, always. Thus, to constrain these unconstrained couplings of the EWDS model,

one needs to look for observables beyond the chosen ones in this work that get corrections from the

following operators: Qle, Qqd
(1), Qqu

(1), Qqu
(1), Qquqd

(1), Qlequ
(1), Qledq, see tab. 3. These additional

observables will be helpful to constrain λH2 even for the Z2 symmetric Lagrangian. We need to keep

in mind that the choice of the new set of observables is guided by the structures of the unconstrained

WCs of this particular model only.

Constraints on the model parameters

Using the relations listed in tab. 3, we obtain the constraints on the BSM parameters directly from

the experimental data. The relevant BSM fit parameters for this model are λH2,1, λH2,2 and λH2,3

with the mass of the heavy doublet, mhf (cut-off scale), set to 1 TeV. The list of the dimension-6

operators coloured in black and blue in tab. 3 are replaced by the corresponding WCs in the SMEFT

parameterisation of the observables. The WCs for the operators in blue are functions of only SM

parameters (inputs given in eq. (2.3)). Those for operators in black are functions of the relevant

BSM parameters and are thus relevant in constraining them. Uniform distributions within the range

{−50, 50} are chosen as priors for these BSM couplings.

Using the samples from the un-normalised posteriors, we show the correlations between vari-

ous BSM parameters in fig. 5 as high-probability contours of two dimensional marginal posteriors.

Constant-probability-contours enclose respectively 68% (black solid, red/blue dashed) and 95% (black

dot-dashed, red/blue dotted) credible regions. We also show coloured regions with variable-density-

contour-shading (black/red/blue) pointing to regions of high-probability. These regions are significant

to adjudge the different high-probability regions in the allowed parameter space. This is evident from

the posteriors obtained from the “All” measurements fit, which contain more than one high-probability

region. For instance, in fig. 5a, there are four different high-probability regions within the 68% credible

region enclosed by the solid black constant-probability-contour.

In order to demonstrate the constraining power of different datasets, in the top row of the fig. 5,

the posterior distributions of these three parameters obtained are shown from “All” (black), “Higgs”

(red) and “EWPO” (blue) sets of experimental measurements. While the constraints from Higgs data

are overall a bit stronger, EWPO data add orthogonal information, leading to significantly tightened

bounds when combining the data from both sectors. In fig. 5a, the bound on λH2,1 from EWPO only is

very relaxed as compared to the others. This happens primarily because in case of EWPO, λH2,1 gets

constrained through QH only whose contribution appears at two-loop in the SMEFT parameterisation

ofmW and is very small. For other datasets on the other hand, λH2,1 gets bounded from other operators

QH�, QHB, QHW besides QH . The corresponding WCs receive strong constraints from Higgs signal

strengths and in particular from di-Higgs data, as depicted by the corresponding parameter spaces.

Model-Dependent constraints on the WCs

As mentioned in the beginning of this section, we take our model-independent analysis in sec. 4 to

the next step, by determining the allowed WC spaces for specific models, using their parameter-
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posteriors and the WC matching results obtained after integrating out the heavy BSM particle. In

this case, the matched WCs are functions of BSM parameters and dependent on one another. The

WC-spaces obtained in this way are directed from the constraints of the relevant model parameters and

thus are termed as “model-dependent”. Using the large MCMC samples generated from the model-

parameter-posterior, we generate the multi-variate distributions of those WCs (now functions of model

parameters). We show these distributions in the WC-space with the help of marginal-posteriors of

two WCs at a time.

For H2, we generate the distributions of the WCs (black) using relations (obtained after matching)

from tab. 3 expressed in terms of parameters: λH2,1, λH2,2 and λH2,3, and propagating the model-

parameter-posteriors. As before, we demonstrate the relative effects of different datasets named “All”,

“EWPO”, and “Higgs” separately. Instead of showing all the possible 2D-marginal contour-plots for

the WCs, we choose to show a few sample plots in fig. 6.

Solid blue (dashed red/green) constant-probability-contours enclose the 68% and dot-dashed blue

(dotted red/green) ones enclose the 95% credible regions, respectively. Coloured regions (blue/red/green)

with variable density depict the high probability regions. In some cases, the parameter spaces ob-

tained for the three datasets differ from one another by order(s) of magnitude. For instance, the

bluish regions corresponding to “All” measurements are imperceptibly tiny in comparison to those

corresponding to both the “EWPO” (red) and “Higgs” (green) datasets. For ease of viewing, we have

magnified such regions and shown them as insets.

As mentioned earlier, these obtained WC-spaces are related by non-linear relations of the model

parameters. This is explicitly illustrated from the WC-expressions for CdH , CeH and CuH in tab. 3

which, after taking the contributions from the relevant BSM parameters, turn out to be positive

definite. As a result, the corresponding parameter spaces shown in figs. 6a and 6e are delimited only

in the positive quadrant.

5.2 Scalar Leptoquark: Θ1 ≡ (3C , 2L,
1
6

∣∣
Y

)

In this model, we extend the SM by a colour-triplet isospin-doublet scalar (Θ1) with hypercharge

Y = 1
6 . We consider the BSM Lagrangian [128, 129],

LΘ1 = Ld≤4
SM

+ (DµΘ1)† (DµΘ1)−m2
Θ1

Θ†1Θ1 − η(1)
Θ1
H†H Θ†1Θ1 − η(2)

Θ1

(
H†σiH

) (
Θ†1σ

iΘ1

)
− λ(1)

Θ1

(
Θ†1Θ1

)2
− λ(2)

Θ1

(
Θ†1σ

iΘ1

)2
+
{
yΘ1Θα

1d
α
Riσ

2lL + h.c.
}
. (5.2)

Here, mΘ1 is the mass of the heavy field, i.e. the cut-off scale appears in the WCs. This model

contains five BSM parameters, η
(1)
Θ1
, η

(2)
Θ1
, λ

(1)
Θ1
, λ

(2)
Θ1

, and yΘ1 , and the WCs are functions of these

parameters on top of the SM ones, see tab. 4. In the BSM Yukawa coupling, we assume that yΘ1

couples to third generation fermions only. As mentioned earlier, not all the emerged operators affect

our selected observables, only QuH, QdH, QeH, QH, QHW, QHB, QHWB, QHG, QH�, and QHD are

the relevant ones for our analysis. Thus out of these five BSM parameters, only η
(1)
Θ1

, and η
(2)
Θ1

get

constrained by the experimental data while the others play no role. To constrain them, we need

to add more observables that get contributions from the Qld operators, see tab. 4. Note that the

unconstrained operator, that are functions of the BSM parameters, sets belonging to these example

models are mutually orthogonal, the requirement of additional observables for these two scenarios also
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do not overlap. Thus, to constrain all the BSM parameters 7, one may have to look for some of the

observables for individual models case by case.

Constraints on the model parameters η
(1)
Θ1
, η

(2)
Θ1

With uniform priors within the range {−50, 50} and following the same methodology as mentioned

for H2, we showcase the parameter-space of the two BSM couplings (η
(1)
Θ1

and η
(2)
Θ1

) for model Θ1 as

two-dimensional marginalised posteriors in fig. 5d, for the same datasets as before: “EWPO” (blue),

“Higgs” (red), and “All” (black). The figure shows that the “EWPO” bound on η
(1)
Θ1

is the most

relaxed, owing to the loop-order contribution to QH , whereas those allowed by “Higgs” and “All”

datasets are of almost same order and have negative limits. This is because apart from QH , there

are other operators like QHB, QH�, QHG and QHW which give relatively stronger contributions to

other two datasets. In contrast, the constraints on η
(2)
Θ1

are the weakest from “Higgs” data and are of

similar range for “EWPO” and “All”. This is a consequence of the strong contribution from QHWB

and QHD to “EWPO”, which is also evident for “All’ measurements.

Model-Dependent constraints on the WCs

In the next part of the analysis, similar to the case of H2, distributions are generated for the 10 WCs

of the model Θ1 (expressions in black in tab. 4) for the three different datasets. Similar to fig. 6,

some chosen two-dimensional marginal distributions are shown in fig. 7 for Θ1. As already noted,

these WC-distributions are generated from the model-parameter-posteriors (i.e. η
(1)
Θ1

and η
(2)
Θ1

), using

the expressions listed in tab. 4. The WCs CeH , CdH , and CuH , representing Yukawa-type interactions,

are functions of the squared power of η
(2)
Θ1

. As a result, these WCs will only take positive values when

determined in the Θ1 model. This is clearly shown in 2D marginalised WC-distributions in figs. 7a

and 7e. The opposite behaviour is visible in the WC-space of CHD in the fig. 7c which yields negative

limits. From fig. 5d, it is evident that the constraints for η
(1)
Θ1

for “Higgs” and “All” datasets have

negative limits. This leads to the negative bounds on QHW which is a linear function of η
(1)
Θ1

, as

depicted in fig. 7d for the corresponding datasets.

Order-of-magnitude variations in the size of the WC-spaces between models, as shown in figs. 6 and

7, point to the significance of the SMEFT matching expressions as well as the BSM parameter-spaces

in determining model-dependent WC-constraints.

6 Effect of Renormalisation Group Equations on the model-dependent analysis

In the previous section 5, the SMEFT matching of the BSM theory with a heavy scalar field is

performed at the high scale Λ, which is taken as the mass of the heavy scalar mhf . There, we have

ignored the running of the SMEFT operators, emerged at the high scale Λ, up to the electroweak scale

where they are eventually mapped into the experimental observables. In this section, the operators

generated by integrating out the heavy scalar doublet H2 at the scale Λ are evolved to the MZ

7The corrections to the low-energy observables including the electric dipole moments require an enhancement in the
SMEFT operator list to include multiple generations of fermions (see Refs. [183, 184]), which is beyond the scope of
this paper. In this work, we concern ourselves only with flavour diagonal operators. We leave the flavour off-diagonal
scenario as a future project.
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(a) λH2,1 - λH2,2 (b) λH2,2 - λH2,3 (c) λH2,1 - λH2,3

(d) λH2,1 - λH2,2 (e) λH2,2 - λH2,3 (f) λH2,1 - λH2,3

Figure 8: Two-dimensional marginalised posteriors among the BSM parameters for H2 for mH2 = 1 TeV (top
row) and mH2 = 3 TeV (bottom row). We show the results from a fit with “All” data. The credible regions
shown in blue correspond to the model parameter spaces obtained after including RG evolved operators and in
red ones, these are ignored.

scale using the RGEs encoded in refs. [185–187]. The WCs at MZ , Ci(MZ), are computed using the

matching scale WCs Ci(Λ) and the SMEFT anomalous dimension matrix (ADM) γij in the leading-log

approximation,

d Ci(µ)

d logµ
=
∑
j

1

16π2
γijCj ,

and, at leading order,

Ci(MZ) = Ci(Λ) +
∑
j

1

16π2
γijCj(Λ)log

[
MZ

Λ

]
. (6.1)
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For H2, a total of 51 operators are generated, 14 of which are exclusively induced by the RG

running, and the RG evolved matching result is available in the Github repository �. Using this RG

evolved matching relations of the WCs, the constraints on the BSM parameters λH2,1, λH2,2, and

λH2,3 are obtained using “All” experimental measurements listed in tab. 1 and the corresponding

two-dimensional marginalised posteriors are shown in fig. 8 in blue colour with mH2 set to 1 TeV. In

the same figure, to see the effect of RG running, we show the two-dimensional marginalised model

parameter posteriors obtained neglecting RG running in red colour (these are the ones shown in black

in the top row of fig. 5). It is visible that the obtained parameter spaces are relaxed after including the

RG effects in the analysis. Further, we also study the effects on the constraints for different choices of

mH2 . We observe that the constraints on the BSM parameters weaken with higher values of mH2 . We

show the allowed parameter spaces for mH2 set to 3 TeV in the bottom row of fig. 8. On comparing

the red (W/O RGE) and blue (With RGE) regions in the top row (with mH2 = 1 TeV) with the

corresponding ones in the bottom (with mH2 = 3 TeV), we note that the model parameter constraints

relax with increase in mH2 .

The model-dependent WCs’ credible regions obtained from the model parameter posteriors and

RG evolved matching results are shown in fig. 9 in blue colour. We show two-dimensional marginalised

sample plots. Similar to fig. 8, we also show the WCs’ regions obtained when ignoring the RG running

in red. These plots depict similar results that with the inclusion of RGE and with a higher value of

mH2 , the allowed parameter spaces become comparatively relaxed.

After including the RG running of the SMEFT operators, the WC relations of 23 SMEFT operators

are given as functions of the model parameters λH2,1, λH2,2, and λH2,3. Thus, using the model

parameter posterior distributions in the RG evolved matching relations, the multivariate distributions

are obtained for these 23 WCs . This list includes some operators (for eg. QuB, QuW , QdB, QdW , QueB,

QeW ) which are not constrained in the model-independent analysis by the experimental measurements.

We show the example plots of such model-dependent WCs’ regions in fig. 10. The operators QuB,

QuW , QeB and QHud are RGE generated, and the corresponding WCs include an extra suppression

of 1/16π2. The effect of this small factor is visible in the strictly constrained WC space.

7 Conclusions

In this paper, we have analysed and constrained potential directions of beyond Standard Model physics

under two themes: first, in a model-independent way using dimension-6 SMEFT and second for 16

single scalar particle extensions of the SM using a similar statistical methodology and datasets.

We have performed a global analysis of 23 Wilson coefficients in the Warsaw basis based on an

up-to-date set of observables of the Higgs and di-boson sectors plus electroweak precision observables.

Our fit includes di-Higgs measurements for the first time which improves the bounds on a modified

Higgs potential through CH . The addition of recent datasets, and in particular STXS data up to high

energies, strengthens the limits on the Wilson coefficients by up to a factor 9 compared to previous

analyses. The biggest improvements are obtained for operators describing Higgs-top and Higgs-gluon

interactions as well as for CH�. We have analysed in detail the role of different STXS measurements

in constraining the different Wilson coefficients.

Moreover, we have tabulated the complete sets of dimension-6 effective operators and the associ-

ated WCs in the Warsaw basis after integrating out the single heavy non-SM scalars for 16 different
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(a) CH - CHB (b) CH� - CHD (c) CHW - CHWB

(d) CH - CHB (e) CH� - CHD (f) CHW - CHWB

Figure 9: Two-dimensional posteriors among the WCs induced by H2 for mH2
= 1 TeV (top row) and

mH2 = 3 TeV (bottom row). Similar to fig. 8, the credible regions shown in red correspond to scenario without
RGE and the blue ones with RGE.

new physics scenarios up to 1-loop level incorporating the scalar heavy-light mixing contributions

from the loops. The WCs are expressed in terms of the model parameters. We have employed a

similar analysis strategy for each of the BSM scenarios and constrained the model parameters. We

have highlighted the individual impact of different observables (EWPO and Higgs data) through two-

dimensional posteriors in model parameter as well as WC planes. We have explicitly discussed the

results for the EWDS H2 and a scalar leptoquark extension Θ1. Plots for the remaining 14 models

considered are available in the Supplementary material [188]8.

We have investigated the effects of RG running on the allowed space of the model parameters and

the WCs for two choices of the cut-off scale, 1 TeV and 3 TeV. We have performed the RG running (in

leading-log approximation) on the matching results for an extra Electroweak scalar doublet model for

two different cut-off scales 1 TeV and 3 TeV. We have noted that once the RG effects are taken into

8These plots can also be downloaded from the GitHub repository [173].
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(a) CuB - CuW (b) CeB - CHud

Figure 10: Two-dimensional marginalised WCs posterior for mH2 (Λ) = 1 TeV with RG evolved matching
results.

consideration, the allowed ranges of BSM parameters are relaxed compared to no RG case. We have

also displayed the allowed ranges of WCs associated with the radiatively generated effective operators.

Currently, the considered dataset leaves some of the effective operators that arise from the sin-

gle scalar extensions studied unconstrained and therefore fails to encapsulate the impact of all new

physics interactions. Specifically, this concerns the WCs associated with 4-fermion operators. For the

future, we are planning to add observables constraining 4-fermion operators [183], e.g. from dilepton

production, parity violation and low-energy flavour observables, to constrain so far unbound directions

in parameter space. These would be particularly relevant for constraining leptoquark models [189].
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Table 3: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the heavy
field H2 : (1, 2,− 1

2 ). Operators highlighted in red do not affect our current set of observables and are thus absent
from our analysis. Operators highlighted in blue are functions of SM parameters only, while the red coloured
ones do not contribute to our observables.

Dim-6 Ops. Wilson coefficients

QdH
η2
HY

SM
d

16π2m2
H2

− 3ηHηH2
Y SM
d

16π2m2
H2

−
ηHY

(d)
H2

m2
H2

−
3ηHλH2

Y
(d)
H2

32π2m2
H2

+
3ηHλH2,1

Y
(d)
H2

16π2m2
H2

−
3ηH2

λH2,1
Y

(d)
H2

16π2m2
H2

ηHλH2,2
Y

(d)
H2

4π2m2
H2

−
3ηH2

λH2,2
Y

(d)
H2

16π2m2
H2

+
λ2
H2,2

Y SM
d

192π2m2
H2

5ηHλH2,3
Y

(d)
H2

8π2m2
H2

+
λ2
H2,3

Y SM
d

48π2m2
H2

QeH
η2
HY

SM
e

16π2m2
H2

− 3ηHηH2
Y SM
e

16π2m2
H2

−
ηHY

(e)
H2

m2
H2

−
3ηHλH2

Y
(e)
H2

32π2m2
H2

+
3ηHλH2,1

Y
(e)
H2

16π2m2
H2

−
3ηH2

λH2,1
Y

(e)
H2

16π2m2
H2

ηHλH2,2
Y

(e)
H2

4π2m2
H2

−
3ηH2

λH2,2
Y

(e)
H2

16π2m2
H2

+
λ2
H2,2

Y SM
e

192π2m2
H2

5ηHλH2,3
Y

(e)
H2

8π2m2
H2

+
λ2
H2,3

Y SM
e

48π2m2
H2

QuH
η2
HY

SM
u

16π2m2
H2

+
3ηHλH2

Y
(u)
H2

32π2m2
H2

+
ηHY

(u)
H2

m2
H2

− 3ηHηH2
Y SM
u

16π2m2
H2

−
3ηHλH2,1

Y
(u)
H2

16π2m2
H2

+
3ηH2

λH2,1
Y

(u)
H2

16π2m2
H2

−
ηHλH2,2

Y
(u)
H2

4π2m2
H2

+
3ηH2

λH2,2
Y

(u)
H2

16π2m2
H2

+
λ2
H2,2

Y SM
u

192π2m2
H2

λ2
H2,3

Y SM
u

48π2m2
H2

−
5ηHλH2,3

Y
(u)
H2

8π2m2
H2

QH
3η2
HλH2

32π2m2
H2

+
17η2

Hλ
SM
H

16π2m2
H2

+
η2
H

m2
H2

− 3η2
HλH2,1

4π2m2
H2

− 3ηHηH2
λSM
H

8π2m2
H2

+
3ηHηH2

λH2,1

8π2m2
H2

− 13η2
HλH2,2

16π2m2
H2

+
3ηHηH2

λH2,2

8π2m2
H2

−
λ3
H2,1

48π2m2
H2

λSM
H λ2

H2,2

96π2m2
H2

−
λ2
H2,1

λH2,2

32π2m2
H2

−
λH2,1

λ2
H2,2

32π2m2
H2

− 7η2
HλH2,3

4π2m2
H2

+
λSM
H λ2

H2,3

24π2m2
H2

−
λ3
H2,2

96π2m2
H2

−
λH2,1

λ2
H2,3

8π2m2
H2

−
λH2,2

λ2
H2,3

8π2m2
H2

QH� − g4
W

7680π2m2
H2

− 3η2
H

32π2m2
H2

−
λ2
H2,1

96π2m2
H2

−λH2,1
λH2,2

96π2m2
H2

+
λ2
H2,3

48π2m2
H2

QHD − g4
Y

1920π2m2
H2

−
λ2
H2,2

96π2m2
H2

+
λ2
H2,3

24π2m2
H2

QHB
g2
Y λH2,1

384π2m2
H2

+
g2
Y λH2,2

768π2m2
H2

QHW
g2
W λH2,1

384π2m2
H2

+
g2
W λH2,2

768π2m2
H2

QHWB
gW gY λH2,2

384π2m2
H2

QHl
(1) g4

Y

3840π2m2
H2

QHq
(1) − g4

Y

11520π2m2
H2

Dim-6 Ops. Wilson coefficients

QHd
g4
Y

5760π2m2
H2

QHe
g4
Y

1920π2m2
H2

QHu − g4
Y

2880π2m2
H2

QHl
(3) − g4

W

1920π2m2
H2

QHq
(3) − g4

W

1920π2m2
H2

QW
g3
W

5760π2m2
H2

Qll − g4
W

7680π2m2
H2

− g4
Y

7680π2m2
H2

Qud
(1) g4

Y

4320π2m2
H2

Qlq
(3) − g4

W

3840π2m2
H2

Qqq
(3) − g4

W

7680π2m2
H2

Qdd − g4
Y

17280π2m2
H2

Qed − g4
Y

2880π2m2
H2

Qee − g4
Y

1920π2m2
H2

Qeu
g4
Y

1440π2m2
H2

Quu − g4
Y

4320π2m2
H2

Qlu
g4
Y

2880π2m2
H2

Qqe
g4
Y

5760π2m2
H2

Qld − g4
Y

5760π2m2
H2

Qqq
(1) − g4

Y

69120π2m2
H2

Qle − g4
Y

1920π2m2
H2

−
3λH2

Y
(e)
H2

2

128π2m2
H2

−
Y

(e)
H2

2

4m2
H2

Qqd
(1) g4

Y

17280π2m2
H2

−
3λH2

Y
(d)
H2

2

128π2m2
H2

−
Y

(d)
H2

2

4m2
H2

Qqu
(1) − g4

Y

8640π2m2
H2

−
3λH2

Y
(u)
H2

2

128π2m2
H2

−
Y

(u)
H2

2

4m2
H2

Qquqd
(1) −

3λH2
Y

(d)
H2

Y
(u)
H2

64π2m2
H2

−
Y

(d)
H2

Y
(u)
H2

2m2
H2

Qlequ
(1)

3λH2
Y

(e)
H2

Y
(u)
H2

64π2m2
H2

+
Y

(e)
H2

Y
(u)
H2

2m2
H2

Qlq
(1) g4

Y

11520π2m2
H2

Qledq

3λH2
Y

(d)
H2

Y
(e)
H2

64π2m2
H2

+
Y

(d)
H2

Y
(e)
H2

2m2
H2
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Table 4: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the heavy
field Θ1: (3,2, 1

6 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QHB
g2
Y η

(1)
Θ1

1152π2m2
Θ1

QH� − g4
W

2560π2m2
Θ1

− η
(1)
Θ1

2

32π2m2
Θ1

+
η

(2)
Θ1

2

512π2m2
Θ1

QHD − g4
Y

5760π2m2
Θ1

− η
(2)
Θ1

2

128π2m2
Θ1

QHG
g2
Sη

(1)
Θ1

192π2m2
Θ1

QHW
g2
W η

(1)
Θ1

128π2m2
Θ1

QHWB
gW gY η

(2)
Θ1

768π2m2
Θ1

QuH
η

(2)
Θ1

2Y SM
u

256π2m2
Θ1

QdH
η

(2)
Θ1

2Y SM
d

256π2m2
Θ1

QeH
η

(2)
Θ1

2Y SM
e

256π2m2
Θ1

QH − η
(1)
Θ1

3

16π2m2
Θ1

− 3η
(1)
Θ1
η

(2)
Θ1

2

256π2m2
Θ1

+
η

(2)
Θ1

2λSM
H

128π2m2
Θ1

Qll − g4
W

2560π2m2
Θ1

− g4
Y

23040π2m2
Θ1

QHl
(1) g4

Y

11520π2m2
Θ1

QHq
(1) − g4

Y

34560π2m2
Θ1

QHl
(3) − g4

W

640π2m2
Θ1

QHq
(3) − g4

W

640π2m2
Θ1

QG
g3
S

2880π2m2
Θ1

QHu − g4
Y

8640π2m2
Θ1

QHd
g4
Y

17280π2m2
Θ1

QHe
g4
Y

5760π2mΘ1
2

QW
g3
W

1920π2m2
Θ1

Dim-6 Ops. Wilson coefficients

Qlq
(1) g4

Y

34560π2m2
Θ1

Qqd
(1) g4

Y

51840π2m2
Θ1

Qqq
(1) − g4

Y

207360π2m2
Θ1

Qqu
(1) − g4

Y

25920π2m2
Θ1

Qud
(1) g4

Y

12960π2m2
Θ1

Qlq
(3) − g4

W

1280π2m2
Θ1

Qqq
(3) − g4

W

2560π2m2
Θ1

Qdd − g4
Y

51840π2m2
Θ1

Qed − g4
Y

8640π2m2
Θ1

Qee − g4
Y

5760π2m2
Θ1

Qld − g4
Y

17280π2m2
Θ1

−
9y2

Θ1

(
4λ

(1)
Θ1

+λ
(2)
Θ1

)
128π2m2

Θ1

− y2
Θ1

4m2
Θ1

Qle − g4
Y

5760π2m2
Θ1

Qlu
g4
Y

8640π2m2
Θ1

Qeu
g4
Y

4320π2m2
Θ1

Q
(8)
qu − g4

S

480π2m2
Θ1

Qqe
g4
Y

17280π2m2
Θ1

Quu − g4
Y

12960π2m2
Θ1

Q
(8)
ud − g4

S

480π2m2
Θ1

Q
(8)
qd − g4

S

480π2m2
Θ1
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A Functional matching by CoDEx

CoDEx uses effective action formulae to compute 1-loop level WCs, which involves solving functional

“Trace− Log” of UV action derivatives. We follow the procedures in Ref. [104] (for loops with only

heavy field propagators), and Refs. [109] and [107] for derivation and cross-checks of heavy-light mixed

1-loop effective action formulae, which CoDEx solves for each BSM. Note that there are more than one

procedures to calculate the effective action formulae [104, 105, 108, 109]. However, readers are welcome

to study all of them as each method has its own advantages. It is worth mentioning that in this work

we calculate matching of BSMs with single heavy scalar extension of the SM particle content, and

therefore, the functional traces have a relatively simple form, which is not the case in most generic

scenarios assuming arbitrary number of heavy fields with non-degenerate masses and arbitrary spins

[113, 190, 191].

In the following text, we elaborate on the implementation of effective action formulae on BSMs

to integrate out the heavy field up to 1-loop. The effective action Seff[φ] is defined

ei Seff[φ](µ) =

∫
DΦ ei SUV[φ,Φ](µ), (A.1)

where, Φ and φ represent are a heavy real scalar and a light field respectively, and SUV[φ,Φ](µ)

represents the UV action defines at scale µ. In the following discussion, we set µ equal to be the

cut-off scale Λ, which is also the matching scale of the UV theory to the EFT. We expand the UV

action around the classical configuration of the heavy field Φc defined by,

δSUV[φ,Φ]

δΦ

∣∣∣∣
Φc

= 0. (A.2)

Now, SUV[φ,Φ] → SUV[φ,Φc + η] in Eq. A.1, where η represents the fluctuation field defined as

Φ = Φc + η. Using Eq. A.2, we have

Seff[φ] = SUV[φ,Φc] +
i

2
Tr Log

[
−δ

2SUV[φ,Φ]

δΦ2

∣∣∣∣
Φc

]
+O(η2). (A.3)

In Eq. A.3, we recognize the first and second terms on the RHS as the tree-level and the pure heavy-

loop processes in the effective action, respectively. Similarly, we can capture the contribution from the

mixed heavy-light loop processes by expanding the UV action around the classical configuration of the

light field(s), about which we discuss in detail at a later stage in this section. One can determine the

classical configuration of the heavy field by using the Euler-Lagrange equation on the UV Lagrangian

LUV. Then substituting the heavy field solution back into the UV Lagrangian leads to tree-level

matching. Subsequently, by imposing a mass-dimensions cut-off and Standard Model field Equation

of Motions, Fierz identities, and Integration-by-Parts relations, one gets the Wilson coefficients of

effective operators of a given mass dimension.

– 26 –



A.1 1-Loop matching: only heavy field as loop propagators

The functional “Trace−Log” of action derivatives can be expanded in terms of covariant derivatives,

quadratic matrix ‘U ’ and heavy field mass. The quadratic matrix ‘U ’ contains the interaction of heavy

fields and light fields. We define

S
1loop(H)
eff (φ) =

i

2
Tr log

[
−δ

2SUV[φ,Φ]

δΦ2

∣∣∣∣
Φc

]
= icsTr log

[
−P 2 +M2 + U(φ)

]
. (A.4)

Here, M is the mass of the heavy field Φ. cs takes numerical values +1
2 and +1 for real and

complex scalars respectively. Now, by expanding the functional trace by inserting a complete set of

momentum and spatial states, and applying Baker-Campbell-Hausdorff formula [104], we get

S
1loop(H)
eff (φ) = ics

∫
d4x

∫
d4k

(2π)4
tr log

[
−
(
kµ + G̃νµ

∂

∂kν

)2

+M2 + Ũ(φ)

]
, (A.5)

where,

G̃νµ = −
∞∑
n=0

n+ 1

(n+ 2)!
[Pα1 , ..., [Pαn , [Pν , Pµ]]]

∂n

∂kα1 ...∂kαn
, (A.6)

and,

Ũ =
∞∑
n=0

1

n!
[Pα1 , ..., [Pαn , U ]]

∂n

∂kα1 ...∂kαn
. (A.7)

This transformation puts all the covariant derivatives in commutators and hence, the resulting

effective operators are manifestly gauge invariant. Now, we expand the argument of ‘log’ and replace

by an integral (on M2),

S
1loop(H)
eff (φ) = −ics

∫
d4x

∫
d4k

(2π)4

∫
dM2 tr

[
∆F

[
1 + ∆F

({
kµ, G̃νµ

∂

∂kν

}
+ G̃σµG̃

σ
ν
∂

∂kµ

∂

∂kν
− Ũ

)]]−1

, (A.8)

where, ∆F = 1
k2−M2 . The above equation is the master formula for gauge invariant effective

operators up to arbitrary mass-dimension. In order to truncate at dimension-six, we expand the

argument of ‘tr’ and replace the momentum integrals in terms of heavy field mass. Then, the effective

action formula for pure-heavy-loop up to mass-dimension six is given by,

L(dim−6)
1−loop [φ] =

cs
(4π)2

tr

{
M2U +

1

M2

[
− 1

60

(
PµG

′
µν

)2 − 1

90
G′µνG

′
νσG

′
σµ −

1

12
(PµU)2 − 1

6
U3 − 1

12
UG′µνG

′
µν

]
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+
1

M4

[
1

24
U4 +

1

12
U
(
PµU

)2
+

1

120

(
P 2U

)2
+

1

24

(
U2G′µνG

′
µν

)
− 1

120

[
(PµU), (PνU)

]
G′µν

− 1

120

[
U [U,G′µν ]

]
G′µν

]
+

1

M6

[
− 1

60
U5 − 1

20
U2(PµU)2 − 1

30

(
UPµU

)2]
+

1

M8

[
1

120
U6

]}
. (A.9)

Here, Pµ = i Dµ and G′µν = [Dµ, Dν ]. It is important to note down that ‘tr’ in the above

equation is the trace performed over the internal symmetry indices. Note that the loop-level WCs are

renomalization scheme dependent and are defined in MS scheme.

CoDEx builds the covariant derivative operator for the heavy field from its SM quantum numbers,

and constructs ‘U ’ from interactions present in the UV Lagrangian. Then, the field strength tensors

in ‘G′µν ’ are defined from the covariant derivative. For cases where, the heavy field transforms under

both color and isospin groups, ‘U ’ would contain two pairs of indices, one each for SU(3)C and SU(2)L
space of the field multiplet. Using all these information, the package evaluates the trace in Eq. A.9, and

gets the effective Lagrangian in an off-shell basis, which is reduced to Warsaw (or other user-defined

onshell) basis using onshell relations.

A.2 1-Loop matching: heavy-light loops

The mixed heavy-light contribution is derived by expanding the UV action around the classical con-

figuration of light fields, similar to the pure heavy-loop approach. The 1-loop effective action ∆S1-loop
eff

is defined as,

∆S1-loop
eff [φ,Φc] =

i

2
Tr log

[
−δ

2SUV[φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc(φ)

]
. (A.10)

And we define,

QUV[φ,Φ] ≡ −δ
2SUV[φ,Φ]

δ(φ,Φ)2
. (A.11)

This contains quantum corrections from both heavy and light fields. Firstly, we block-diagonalize

the quadratic matrix QUV, which is a square matrix in the field space. We define ∆’s following

Eq. A.11,

QUV[φ,Φ] =

(
∆H ∆HL

∆LH ∆L

)
≡

−δ2SUV[φ,Φ]
δΦ2 −δ2SUV[φ,Φ]

δΦδφ

−δ2SUV[φ,Φ]
δφδΦ −δ2SUV[φ,Φ]

δφ2

. (A.12)

Then, we define,
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V =

(
1 0

−∆−1
L ∆LH 1

)
⇒ V †QUVV =

(
∆H −∆HL∆−1

L ∆LH 0
0 ∆L

)
. (A.13)

We use the distributive property of determinants,

∆S1-loop
eff [φ,Φc] =

(
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]
+
i

2
Tr log [∆L]

)∣∣∣∣
Φ=Φc

. (A.14)

Now, we define ∆’s from the UV Lagrangian SUV in terms of the kinetic and interaction terms,

SUV[φ,Φ] =

∫
d4x LUV[φ,Φ]

⇒ −∆H =
δ2SUV[φ,Φ]

δΦ2
=

∫
d4x

δ2LUV[φ,Φ]

δΦ2
=

∫
d4x

(
P2 −M2 + UH

)
, (A.15)

where, Pµ ≡ iDµ, and, M2 is the squared mass matrix of Φ. UH accommodates the light-field and

self-interaction terms of Φ in the UV Lagrangian. Similarly,

−∆L =
δ2SUV[φ,Φ]

δφ2
=

∫
d4x

δ2LUV[φ,Φ]

δφ2
=

∫
d4x

(
P2 −m2 + UL

)
. (A.16)

where, m is the mass of φ. UL carries the heavy-field and self-interaction of the light field. The

off-diagonal elements of QUV are defined,

−∆HL =
δ2SUV[φ,Φ]

δΦδφ
=

∫
d4x

δ2LUV[φ,Φ]

δΦδφ
=

∫
d4x UHL, (A.17)

and,

−∆LH =
δ2SUV[φ,Φ]

δφδΦ
=

∫
d4x

δ2LUV[φ,Φ]

δφδΦ
=

∫
d4x ULH. (A.18)

UHL and ULH carry the interactions between heavy Φ and light φ fields. Now, we have defined

R.H.S. of Eq. A.14 completely in terms of interactions present in the Lagrangian. Then the next step

is to extract the heavy-light mixed loop contribution from the R.H.S. We proceed by implementing

the matching condition of a UV theory and its EFT:

ΓL,UV[φ] = ΓEFT[φ], (A.19)

where, ΓL,UV[φ] is the 1-light-particle-irreducible(1LPI) effective action calculated in the UV the-
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ory, and ΓEFT[φ] is the 1-particle-irreducible(1PI) effective action calculated in the EFT. This matching

condition is imposed order by order in perturbation. At 1-loop order in UV,

Γ1-loop
L,UV [φ] = ∆S1-loop

eff [φ,Φc] =
i

2
Tr log

[
QUV[φ,Φ]|Φ=Φc

]
. (A.20)

Whereas at 1-loop order in EFT,

Γ1-loop
EFT [φ] =

∫
d4x L1-loop

EFT [φ] +
i

2
Tr log

[
−δ

2SEFT[φ]

δφ2

]
, (A.21)

where,

SEFT[φ] ≡ SUV[φ,Φc] = SUV[φ,Φ]|Φ=Φc(φ) . (A.22)

The 1-loop effective action in EFT contains contribution from (a) 1-loop generated operators

contributing at tree-level, and (b) tree-level operators inserted at 1-loop. The R.H.S. of Eq. A.21

contains these two contributions. Substituting Eqs. A.20 and A.21 in Eq. A.19, we get

i

2
Tr log

[
QUV[φ,Φ]|Φ=Φc

]
=

∫
d4x L1-loop

EFT [φ] +
i

2
Tr log

[
−δ

2SEFT[φ]

δφ2

]
=⇒

∫
d4x L1-loop

EFT [φ] =
i

2
Tr log

[
QUV[φ,Φ]|Φ=Φc

]
− i

2
Tr log

[
−δ

2SEFT[φ]

δφ2

]
. (A.23)

Now, we solve the second term in the R.H.S. of Eq. A.23,

−δ
2SEFT[φ]

δφ2
= − δ2

δφ2

(
SUV[φ,Φ]|Φ=Φc

)
= − δ

δφ

{(
δSUV[φ,Φ]

δφ
+
δΦ

δφ

δSUV[φ,Φ]

δΦ

)∣∣∣∣
Φ=Φc

}

= − δ

δφ

(
δSUV[φ,Φ]

δφ

∣∣∣∣
Φ=Φc

)
=

(
−δ

2SUV[φ,Φ]

δφ2
− δΦ

δφ

δ2SUV[φ,Φ]

δΦδφ

)∣∣∣∣
Φ=Φc

=
(

∆L −∆LH∆̂−1
H ∆HL

)∣∣∣
Φ=Φc

. (A.24)

We used the definition of Φc on 1st line to come to 2nd line, and on 2nd line, we used

δ

δφ

(
δSUV[φ,Φ]

δΦ

∣∣∣∣
Φ=Φc

)
= 0

=⇒
(
δ2SUV[φ,Φ]

δφδΦ
+
δΦ

δφ

δ2SUV[φ,Φ]

δΦ2

)∣∣∣∣
Φ=Φc

= 0

=⇒
(
δΦ

δφ
∆H

)∣∣∣∣
Φ=Φc

= (−∆LH)|Φ=Φc
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=⇒
(
δΦ

δφ

)∣∣∣∣
Φ=Φc

= (−∆LH)|Φ=Φc

(
∆H|Φ=Φc

)−1
. (A.25)

to arrive at the 3rd line of Eq. A.23. The hat is put on ∆H to indicate that it is a local operator

in the EFT. We rewrite Eq. A.23,

∫
d4x L1-loop

EFT [φ]

=

(
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]
+
i

2
Tr log [∆L]− i

2
Tr log

[
∆L −∆LH∆̂−1

H ∆HL

])∣∣∣∣
Φ=Φc

=

(
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]
+
i

2
Tr log [∆L]

− i
2

Tr log [∆L]− i

2
Tr log

[
1−∆−1

L ∆LH∆̂−1
H ∆HL

])∣∣∣∣
Φ=Φc

=

(
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]
− i

2
Tr log

[
1−∆−1

L ∆LH∆̂−1
H ∆HL

])∣∣∣∣
Φ=Φc

. (A.26)

The contribution from loops with light propagators only (Tr log [∆L]) , cancels while matching

the UV theory to its EFT, as expected. We further reduce using Sylvester’s determinant identity on

the second term,

(
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]
− i

2
Tr log

[
∆̂H −∆HL∆−1

L ∆LH

]
+
i

2
Tr log

[
∆̂H

])∣∣∣∣
Φ=Φc

=

∫
d4x L1-loop

EFT [φ]. (A.27)

Now, we have the contribution from both the heavy-light mixed loops and loops containing only

heavy field propagators. One may cross-check the R.H.S. by substituting ∆L = ∆HL = ∆LH = 0 and

check that we get
(
i
2Tr log [∆H]

)∣∣
Φ=Φc

, which contains loops with heavy field propagators only. The

next step is to expand the R.H.S. of Eq. A.27 in terms of the covariant derivative operator, mass

matrices and the quadratic matrix U’s, with a goal to construct an 1-loop effective action formula.

We use the key observation made in Ref. [108], that the effective action can be split into “hard” and

“soft” regions, and these regions produce the IR- and UV-divergent integrals, respectively. The hard

region is captured when the loop integral is calculated in the limit M2 � m2. So we solve,

∫
d4x L1-loop

EFT [φ] =
i

2
Tr log

[
∆H −∆HL∆−1

L ∆LH

]∣∣∣∣
hard

=
i

2

∫
ddq

(2π)d
tr log

[
∆H −∆HL∆−1

L ∆LH

]∣∣∣∣
hard

=
i

2

∫
ddq

(2π)d
tr log

[
−(P 2 − 2P.q + q2) +M2 + UH −∆HL∆−1

L ∆LH

]∣∣∣∣
hard
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=− i

2

∞∑
n=1

1

n

∫
ddq

(2π)d
tr log

[
(q2 −m2)−1

{
−P 2 + 2P.q + UH|P→P−q − ∆HL∆−1

L ∆LH

∣∣
P→P−q

}]n∣∣∣
hard

. (A.28)

The last equality is true up to an additive constant because we factored out (q2 − M2) and

implemented the logarithmic expansion on the last step. Here, we expand the sum and keep terms

encompassing all the dimension-6 (and lower) effective operators. To reduce these further, we follow

the method of covariant diagrams as in Ref. [109] to arrive at the master formulae. The master

trace formulae and their corresponding integration factors are tabulated in tabs. 5-8. These formulae

are derived for single heavy field or multiple mass-degenerate heavy fields extension to the SM. We

have compared these with that presented in Ref. [110] for mass-degenerate cases and we have found

complete agreement.

Table 5: Effective action formulae with only U ’s. See tab. 9 for integration factor. The formula
terms tabulated here, similar to the pure-heavy-loop effective action, are calculated using dimensional
regularization and in MS scheme. The matching scale is set equal to heavy field mass here.

Factors Formulae

−icsI11 tr(UHLULH)

−icsI21 tr(UHUHLULH)

−icsI31 tr(UHUHUHLULH)

−icsI41 tr(UHUHUHUHLULH)

−icsI51 tr(UHUHUHUHUHLULH)

−icsI12 tr(UHLULULH)

−icsI22 tr(UHUHLULULH)

−icsI32 tr(UHUHUHLULULH)

−icsI42 tr(UHUHUHUHLULULH)

−icsI13 tr(UHLULULULH)

−icsI23 tr(UHUHLULULULH)

−icsI33 tr(UHUHUHLULULULH)

−icsI14 tr(UHLULULULULH)

Factors Formulae

−icsI24 tr(UHUHLULULULULH)

−icsI15 tr(UHLULULULULULH)

−ics 1
2I22 tr(UHLULHUHLULH)

−icsI32 tr(UHUHLULHUHLULH)

−ics 1
2I42 tr(UHUHLULHUHUHLULH)

−icsI42 tr(UHUHUHLULHUHLULH)

−icsI23 tr(UHLULHUHLULULH)

−icsI33 tr(UHUHLULHUHLULULH)

−icsI33 tr(UHUHLULULHUHLULH)

−ics 1
2I24 tr(UHLULULHUHLULULH)

−icsI24 tr(UHLULHUHLULULULH)

−ics 1
3I33 tr(UHLULHUHLULHUHLULH)
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Table 6: Effective action formulae with two P ’s (Part-I).

Factors Formulae

f
2

PU
= −ics 2 I[q2]22 tr ([Pµ, UHL][Pµ, ULH ])

f
3(H)

PU,a
= −ics 2

(
I[q2]32 + I[q2]41

)
tr ([Pµ, UH ][Pµ, UHL]ULH)

f
3(H)

PU,b
= −ics 2

(
I[q2]32 + I[q2]41

)
tr ([Pµ, UH ]UHL[Pµ, ULH ])

f
3(H)

PU,c
= −ics 4 I[q2]32 tr (UH [Pµ, UHL][Pµ, ULH ])

f
3(L)

PU,a
= −ics 2

(
I[q2]14 + I[q2]23

)
tr ([Pµ, UHL][Pµ, UL]ULH)

f
3(L)

PU,b
= −ics 4 I[q2]23 tr ([Pµ, UHL]UL[Pµ, ULH ])

f
3(L)

PU,c
= −ics 2

(
I[q2]14 + I[q2]23

)
tr (UHL[Pµ, UL][Pµ, ULH ])

Table 7: Effective action formulae with four P ’s.

Factors Formulae

f
2

PPU,a
= −ics 4

(
I[q4]33 + 2I[q4]42 + 2 I[q4]51

)
tr
(
G′µνG

′µνUHLULH
)

f
2

PPU,b
= −ics 4

(
I[q4]33 + 2I[q4]24 + 2 I[q4]15

)
tr
(
G′µνG

′µνULHUHL
)

f
2

PPU,c
= −ics 8 I[q4]33 tr

(
G′νµ[Pµ, UHL][Pν , ULH ]

)
f

2

PPU,d
= −ics 8 I[q4]33 tr

(
G′νµ[Pµ, ULH ][Pν , UHL]

)
f

2

PPU,e
= −ics 8 I[q4]33 tr ([Pµ, [Pµ, UHL]] [Pν , [Pν , ULH ]])

f
2

PPU,f
= −ics 4

(
I[q4]33 + I[q4]42

)
tr
(
[Pµ, UHL]ULH [Pν , G′µν ]

)
f

2

PPU,g
= −ics 4

(
I[q4]33 + I[q4]42

)
tr
(
UHL [Pµ, ULH ] [Pν , G′νµ]

)
f

2

PPU,h
= −ics 4

(
I[q4]33 + I[q4]24

)
tr
(
ULH [Pµ, UHL] [Pν , G′νµ]

)
f

2

PPU,i
= −ics 4

(
I[q4]33 + I[q4]24

)
tr
(
[Pµ, ULH ]UHL[Pν , G′µν ]

)
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Table 8: Effective action formulae with two P ’s (Part-II).

Factors Formulae

f
4(HH)

PU,a
= −ics 2

(
I[q2]42 + 2 I[q2]51

)
tr ([Pµ, UH ][Pµ, UH ]UHLULH)

f
4(HH)

PU,b
= −ics 4

(
I[q2]42 + I[q2]51

)
tr ([Pµ, UH ]UH [Pµ, UHL]ULH)

f
4(HH)

PU,c
= −ics 2

(
I[q2]42 + 2 I[q2]51

)
tr ([Pµ, UH ]UHUHL[Pµ, ULH ])

f
4(HH)

PU,d
= −ics 4

(
I[q2]42 + I[q2]51

)
tr (UH [Pµ, UH ]UHL[Pµ, ULH ])

f
4(HH)

PU,e
= −ics 6 I[q2]42 tr (UHUH [Pµ, UHL][Pµ, ULH ])

f
4(HH)

PU,f
= −ics 2

(
I[q2]42 + 2 I[q2]51

)
tr (UH [Pµ, UH ][Pµ, UHL]ULH)

f
4(HL)

PU,a
= −ics 2

(
I[q2]33 + I[q2]42

)
tr ([Pµ, UH ][Pµ, UHL]ULULH)

f
4(HL)

PU,b
= −ics 2

(
I[q2]33 + 2 I[q2]42

)
tr ([Pµ, ULH ][Pµ, UH ]UHLUL)

f
4(HL)

PU,c
= −ics 2

(
I[q2]24 + 2 I[q2]33

)
tr (UHUHL[Pµ, UL][Pµ, ULH ])

f
4(HL)

PU,d
= −ics 2

(
I[q2]24 + 2 I[q2]33

)
tr (UH [Pµ, UHL][Pµ, UL]ULH)

f
4(HL)

PU,e
= −ics 2

(
I[q2]24 + 2 I[q2]33 + I[q2]42

)
tr ([Pµ, UH ]UHL[Pµ, UL]ULH)

f
4(HL)

PU,f
= −ics 8

(
I[q2]33

)
tr (UH [Pµ, UHL]UL[Pµ, ULH ])

f
4(LL)

PU,a
= −ics 2

(
2I[q2]15 + I[q2]24

)
tr ([Pµ, UHL][Pµ, UL]ULULH)

f
4(LL)

PU,b
= −ics 4

(
I[q2]15 + I[q2]24

)
tr ([Pµ, UHL]UL[Pµ, UL]ULH)

f
4(LL)

PU,c
= −ics 6I[q2]24 tr ([Pµ, UHL]ULUL[Pµ, ULH ])

f
4(LL)

PU,d
= −ics 2

(
2I[q2]15 + I[q2]24

)
tr (UHL[Pµ, UL][Pµ, UL]ULH)

f
4(LL)

PU,e
= −ics 4

(
I[q2]15 + I[q2]24

)
tr (UHL[Pµ, UL]UL[Pµ, ULH ])

f
4(LL)

PU,f
= −ics 2

(
2I[q2]15 + I[q2]24

)
tr (UHLUL[Pµ, UL][Pµ, ULH ])

f
4(00)

PU,a
= −ics

(
I[q2]24 + 2 I[q2]33 + I[q2]42

)
tr ([Pµ, UHL]ULH [Pµ, UHL]ULH)

f
4(00)

PU,b
= −ics 2

(
I[q2]24 + 2 I[q2]33

)
tr ([Pµ, UHL][Pµ, ULH ]UHLULH)

f
4(00)

PU,c
= −ics 2

(
2 I[q2]33 + I[q2]42

)
tr ([Pµ, UHL]ULHUHL[Pµ, ULH ])

f
4(00)

PU,d
= −ics

(
I[q2]24 + 2 I[q2]33 + I[q2]42

)
tr (UHL[Pµ, ULH ]UHL[Pµ, ULH ])
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Table 9: Table of Integration factor (I). Matching scale is equal to the heavy field mass µ = M .

I
[
q2n
]αβ∣∣∣

n=0
Factor × i

16π2 I
[
q2n
]αβ∣∣∣

n=1,2
Factor × i

16π2

I11 1 I
[
q2
]13 3

8M2

I12 1
M2 I

[
q2
]22 − 1

4M2

I21 − 1
M2 I

[
q2
]31 − 1

8M2

I13 1
M4 I

[
q2
]14 3

8M4

I22 − 2
M4 I

[
q2
]23 − 5

8M4

I31 1
2M4 I

[
q2
]32 1

8M4

I14 1
M6 I

[
q2
]41 1

24M4

I23 − 3
M6 I

[
q2
]15 3

8M6

I32 5
2M6 I

[
q2
]24 − 1

M6

I41 − 1
3M6 I

[
q2
]33 3

4M6

I15 1
M8 I

[
q2
]42 − 1

12M6

I24 − 4
M8 I

[
q2
]51 − 1

48M6

I33 11
2M8 I

[
q2
]51 − 1

48M6

I42 − 17
6M8 I

[
q4
]15 11

144M4

I51 1
4M8 I

[
q4
]24 − 17

144M4

I
[
q4
]33 1

48M4

I
[
q4
]42 1

144M4

I
[
q4
]42 1

288M4
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B Matching results for scalar extended SM scenarios

B.1 Colour Singlet Heavy Scalars

Here, we have given the exhaustive sets of effective operators and the associated WCs that are emerged

after integrating out the colour singlet heavy scalars up to 1-loop including the heavy-light mixing.

B.1.1 Real Singlet: S ≡ (1C , 1L, 0|Y )

Here, we have extended the SM by a real gauge singlet scalar (S), and the modified Lagrangian
involving this heavy field is written as [109, 174, 175, 192]:

LS = Ld≤4
SM

+
1

2
(∂µS)2 − 1

2
m2
S S2 − cS |H|2S −

1

2
κS |H|2S2 − 1

3!
µS S3 − 1

4!
λS S4 . (B.1)

Here, mS is mass of the heavy field (S). This model contains four BSM parameters cS , κS , µS , λS ,

and the WCs are functions of these parameters along with the SM ones, see tab. 10.

Table 10: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field S : (1, 1, 0). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QdH − 3Y SM
d c2SκS

64π2m4
S

+
Y SM
d c3SµS
64π2m6

S
− 9Y SM

d c4S
64π2m6

S

+
29λSM

H Y SM
d c2S

192π2m4
S

QeH − 3Y SM
e c2SκS

64π2m4
S

+
Y SM
e c3SµS
64π2m6

S
− 9Y SM

e c4S
64π2m6

S

+
29λSM

H Y SM
e c2S

192π2m4
S

QuH − 3Y SM
u c2SκS

64π2m4
S

+
Y SM
u c3SµS
64π2m6

S
− 9Y SM

u c4S
64π2m6

S

+
29λSM

H Y SM
u c2S

192π2m4
S

QH
43c6S

48π2m8
S
− 7g2

W λSM
H c2S

288π2m4
S

+
41λSM

H
2c2S

48π2m4
S

+
37c4SκS
32π2m6

S
+

11c2Sκ
2
S

32π2m4
S
− c2SκS

2m4
S

− c
2
SκSλS

32π2m4
S
− c4SλS

32π2m6
S
− 15c5SµS

32π2m8
S

− 5c3SκSµS
16π2m6

S
− cSκ

2
SµS

64π2m4
S

+
c3SµS
6m6
S

+
c2SκSµ

2
S

32π2m6
S

+
c3SλSµS
48π2m6

S
+

c4Sµ
2
S

16π2m8
S

− 57λSM
H c4S

32π2m6
S

+
13λSM

H c3SµS
32π2m6

S
− c3Sµ

3
S

96π2m8
S

− 27λSM
H c2SκS

32π2m4
S
− κ3

S
192π2m2

S

QH�
13c4S

192π2m6
S
− c2S

2m4
S
− 7g2

W c2S
384π2m4

S

+
25c2SκS

192π2m4
S
− c2SλS

32π2m4
S
− 13c3SµS

192π2m6
S

− κ2
S

384π2m2
S

+
11c2Sµ

2
S

384π2m6
S
− 5cSκSµS

192π2m4
S

− 7g2
Y c

2
S

1152π2m4
S

Dim-6 Ops. Wilson coefficients

QHB
g2
Y c

2
S

256π2m4
S

QHD − 7g2
Y c

2
S

288π2m4
S

QHd
7g2
Y c

2
S

1728π2m4
S

QHe
7g2
Y c

2
S

576π2m4
S

QHu − 7g2
Y c

2
S

864π2m4
S

QHW
g2
W c2S

256π2m4
S

QHWB
gW gY c

2
S

128π2m4
S

QHl
(1) 7g2

Y c
2
S

1152π2m4
S

QHq
(1) − 7g2

Y c
2
S

3456π2m4
S

QHl
(3) − 7g2

W c2S
1152π2m4

S

QHq
(3) − 7g2

W c2S
1152π2m4

S

Qlequ
(1) Y SM

e Y SM
u c2S

96π2m4
S

Qqd
(1) −Y

SM
d Y

SM†
d

c2S
192π2m4

S

Qqu
(1) −Y

SM
u Y SM†

u c2S
192π2m4

S

Qquqd
(1) −Y

SM
d Y SM

u c2S
96π2m4

S

Qle −Y
SM
e Y SM†

e c2S
192π2m4

S

Qledq
Y

SM†
d

Y SM
e c2S

96π2m4
S
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B.1.2 Real Triplet: ∆ ≡ (1C , 3L, 0|Y )

In this model, we have extended the SM by a real colour-singlet isospin-triplet scalar (∆). The
Lagrangian involving the heavy field is written as [104, 110],

L∆ = Ld≤4
SM

+
1

2
(Dµ∆)2 − 1

2
m2

∆ ∆a ∆a + 2κ∆H†τaH ∆a − η∆ |H|2 ∆a ∆a − 1

4
λ∆ (∆a∆a)2. (B.2)

Here, m∆ is mass of the heavy field. This model contains three BSM parameters κ∆, η∆, λ∆, and the

WCs are functions of these parameters along with the SM ones, see tab. 11.

Table 11: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field ∆ : (1, 3, 0). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QdH − 21η∆κ
2
∆Y

SM
d

32π2m4
∆

− 21κ4
∆Y

SM
d

64π2m6
∆

+
κ2

∆Y
SM
d

m4
∆

+
5κ2

∆λ∆Y
SM
d

8π2m4
∆

+
27κ2

∆λ
SM
H Y SM

d

64π2m4
∆

QeH − 21η∆κ
2
∆Y

SM
e

32π2m4
∆

− 21κ4
∆Y

SM
e

64π2m6
∆

+
κ2

∆Y
SM
e

m4
∆

+
5κ2

∆λ∆Y
SM
e

8π2m4
∆

+
27κ2

∆λ
SM
H Y SM

e

64π2m4
∆

QuH − 21η∆κ
2
∆Y

SM
u

32π2m4
∆

− 21κ4
∆Y

SM
u

64π2m6
∆

+
κ2

∆Y
SM
u

m4
∆

+
5κ2

∆λ∆Y
SM
u

8π2m4
∆

+
27κ2

∆λ
SM
H Y SM

u

64π2m4
∆

QH − η3
∆

8π2m2
∆

− η∆κ
2
∆

m4
∆

+
2κ2

∆λ
SM
H

m4
∆

+
13η2

∆κ
2
∆

8π2m4
∆

+
47η∆κ

4
∆

16π2m6
∆

+
19κ6

∆

16π2m8
∆

− g
2
W κ2

∆λ
SM
H

288π2m4
∆

− 5η∆κ
2
∆λ∆

8π2m4
∆

− 5κ4
∆λ∆

16π2m6
∆

− 53η∆κ
2
∆λ

SM
H

16π2m4
∆

+
5κ2

∆λ∆λ
SM
H

4π2m4
∆

− 85κ4
∆λ

SM
H

32π2m6
∆

+
3κ2

∆λ
SM
H

2

2π2m4
∆

QH� − g4
W

3840π2m2
∆

− η2
∆

32π2m2
∆

+
κ2

∆

2m4
∆

− g2
W κ2

∆

384π2m4
∆

− 7g2
Y κ

2
∆

384π2m4
∆

− 7η∆κ
2
∆

32π2m4
∆

+
5κ2

∆λ∆

16π2m4
∆

+
3κ2

∆λ
SM
H

16π2m4
∆

− 13κ4
∆

64π2m6
∆

QHD − 7g2
Y κ

2
∆

96π2m4
∆

+
η∆κ

2
∆

π2m4
∆

− 2κ2
∆

m4
∆

− 5κ2
∆λ∆

4π2m4
∆

− 3κ2
∆λ

SM
H

16π2m4
∆

− κ4
∆

16π2m6
∆

QHW
η∆g

2
W

96π2m2
∆

+
25g2

W κ2
∆

768π2m4
∆

QHl
(3) − g2

W κ2
∆

1152π2m4
∆

− g4
W

960π2m2
∆

QHq
(3) − g2

W κ2
∆

1152π2m4
∆

− g4
W

960π2m2
∆

Dim-6 Ops. Wilson coefficients

QHl
(1) 7g2

Y κ
2
∆

384π2m4
∆

QHq
(1) − 7g2

Y κ
2
∆

1152π2m4
∆

QHd
7g2
Y κ

2
∆

576π2m4
∆

QHe
7g2
Y κ

2
∆

192π2m4
∆

QHu − 7g2
Y κ

2
∆

288π2m4
∆

QHB
3g2
Y κ

2
∆

256π2m4
∆

QHWB − gW gY κ
2
∆

128π2m4
∆

Qll − g4
W

3840π2m2
∆

QW
g3
W

2880π2m2
∆

Qlequ
(1) κ2

∆Y
SM
e Y SM

u

32π2m4
∆

Qqd
(1) −κ

2
∆Y

SM
d Y

SM†
d

64π2m4
∆

Qqq
(1) g4

W

3840π2m2
∆

Qqu
(1) −κ

2
∆Y

SM
u Y SM†

u

64π2m4
∆

Qquqd
(1) −κ

2
∆Y

SM
d Y SM

u

32π2m4
∆

Qlq
(3) − g4

W

1920π2m2
∆

Qqq
(3) − g4

W

3840π2m2
∆

Qle −κ
2
∆Y

SM
e Y SM†

e

64π2m4
∆

Qledq
κ2

∆Y
SM†
d

Y SM
e

32π2m4
∆

B.1.3 Complex Singlet: S1 ≡ (1C , 1L, 1|Y )

Here, we have extended the SM by a colour-singlet isospin-singlet scalar (S1) with hypercharge Y = 1.

The Lagrangian involving the heavy field is written as [193, 194],

LS1 = Ld≤4
SM

+ (DµS1)† (DµS1)−m2
S1
S†1S1 − ηS1 |H|2|S1|2 − λS1 |S1|4
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−
{
yS1 l

T
L C iσ

2lL S1 + h.c.
}
. (B.3)

Here, mS1 is mass of the heavy field. This model contains three BSM parameters ηS1 , λS1 , yS1 , and

the WCs are functions of these parameters along with the SM ones, see tab. 12.

Table 12: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field S1 : (1, 1, 1). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH
η3
S1

96π2m2
S1

QHB − ηS1
g2
Y

192π2m2
S1

QH� −
η2
S1

192π2m2
S1

Qll − g4
Y

3840π2m2
S1

+
y2
S1

4m2
S1

−
y2
S1
λS1

16π2m2
S1

QHl
(1) g4

Y

1920π2m2
S1

QHq
(1) − g4

Y

5760π2m2
S1

QHD − g4
Y

960π2m2
S1

QHd
g4
Y

2880π2m2
S1

QHe
g4
Y

960π2m2
S1

QHu − g4
Y

1440π2m2
S1

Qlq
(1) g4

Y

5760π2m2
S1

Qqd
(1) g4

Y

8640π2m2
S1

Dim-6 Ops. Wilson coefficients

Qed − g4
Y

1440π2m2
S1

Qee − g4
Y

960π2m2
S1

Qeu
g4
Y

720π2m2
S1

Qld − g4
Y

2880π2m2
S1

Qle − g4
Y

960π2m2
S1

Qlu
g4
Y

1440π2m2
S1

Qqe
g4
Y

2880π2m2
S1

Quu − g4
Y

2160π2m2
S1

Qdd − g4
Y

8640π2m2
S1

Qqu
(1) − g4

Y

4320π2m2
S1

Qqq
(1) − g4

Y

34560π2m2
S1

Qud
(1) g4

Y

2160π2m2
S1

B.1.4 Complex Singlet: S2 ≡ (1C , 1L, 2|Y )

In this model, we have extended the SM by a colour-singlet isospin-triplet scalar (S2) with hypercharge
Y = 2. The Lagrangian involving the heavy field is written as [178, 195],

LS2 = Ld≤4
SM

+ (DµS2)
†

(DµS2)−m2
S2
S†2S2 − ηS2 |H|2|S2|2 − λS2 |S2|4

−
{
yS2

eTR C eR S2 + h.c.
}
. (B.4)

Here, mS2 is mass of the heavy field. This model contains three BSM parameters ηS2 , λS2 , yS2 , and

the WCs are functions of these parameters along with the SM ones, see tab. 13.

B.1.5 Complex Triplet: ∆1 ≡ (1C , 3L, 1|Y )

Here, we have extended the SM by a colour-singlet isospin-triplet scalar (∆1) with hypercharge Y = 1.

This model is also known as ‘Type-II seesaw’. The Lagrangian involving the heavy field is written as

[125],

L∆1 = Ld≤4
SM

+ Tr[(Dµ∆1)†(Dµ∆1)]−m2
∆1
Tr[∆†1∆1]− LY − V (H,∆1), (B.5)
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Table 13: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field S2 : (1, 1, 2). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH
η3
S2

96π2m2
S2

QHB − ηS2
g2
Y

48π2m2
S2

QH� −
η2
S2

192π2m2
S2

QHl
(1) g4

Y

480π2m2
S2

QHq
(1) − g4

Y

1440π2m2
S2

QHD − g4
Y

240π2m2
S2

QHd
g4
Y

720π2m2
S2

QHe
g4
Y

240π2m2
S2

QHu − g4
Y

360π2m2
S2

Qll − g4
Y

960π2m2
S2

Qld − g4
Y

720π2m2
S2

Qle − g4
Y

240π2m2
S2

Dim-6 Ops. Wilson coefficients

Qlu
g4
Y

360π2m2
S2

Qlq
(1) g4

Y

1440π2m2
S2

Qqd
(1) g4

Y

2160π2m2
S2

Qqq
(1) − g4

Y

8640π2m2
S2

Qqu
(1) − g4

Y

1080π2m2
S2

Qud
(1) g4

Y

540π2m2
S2

Qdd − g4
Y

2160π2m2
S2

Qed − g4
Y

360π2m2
S2

Qeu
g4
Y

180π2m2
S2

Quu − g4
Y

540π2m2
S2

Qqe
g4
Y

720π2m2
S2

Qee − g4
Y

240π2m2
S2

−
λS2

y2
S2

16π2m2
S2

+
y2
S2

4m2
S2

where,

V (H,∆1) =λ∆1,1(H†H)Tr[∆†1∆1] + λ∆1,2(Tr[∆†1∆1])2 + λ∆1,3Tr[(∆
†
1∆1)2]

+ λ∆1,4Tr[H
†∆1∆1

†H}] + [µ∆1(HT iσ2∆†1H) + h.c.], (B.6)

and, LY =y∆1 l
T
LCiσ

2∆1lL + h.c. (B.7)

Here, m∆1 is mass of the heavy field. This model contains six BSM parameters λ∆1,1, λ∆1,2, λ∆1,3,

λ∆1,4, µ∆1 , y∆1 , and the WCs are functions of these parameters along with the SM ones, see tab. 14.

B.1.6 Complex Quartet: Σ ≡ (1C , 4L,
1
2

∣∣
Y

)

Here, we have extended the SM by a colour-singlet isospin-quartet scalar (Σ) with hypercharge Y = 1
2 .

The Lagrangian involving the heavy field is written as [126, 127, 192],

LΣ = Ld≤4
SM

+ (DµΣ)† (DµΣ)−m2
Σ

Σ†Σ− µΣ

[(
Σ†H

)2
+ h.c.

]
− κΣ

[
Σ†BΣ + h.c.

]
− ζ(1)

Σ

(
H†H

)(
Σ†Σ

)
− ζ(2)

Σ

(
H†τ IH

)(
Σ† T I

4
Σ
)
− λ(1)

Σ

(
Σ†Σ

)2
− λ(2)

Σ

(
Σ† T I

4
Σ
)2
. (B.8)

Here, mΣ is mass of the heavy field. T I4 ’s are the SU(2) generators in 4-dimensional representation,

and BΣ =
(
H2

1 H̃1,
1√
3
H2

1 H̃2 + 2√
3
H1H2H̃1,

1√
3
H2

2 H̃1 + 2√
3
H1H2H̃2, H

2
2 H̃2

)T
. This model contains six
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Table 14: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field ∆1 : (1, 3, 1). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QuH
3µ2

∆1
λSM
H Y SM

u

2π2m4
∆1

−
37µ4

∆1
Y SM
u

6π2m6
∆1

+
2µ2

∆1
Y SM
u

m4
∆1

−
5µ2

∆1
λ∆1,1

Y SM
u

8π2m4
∆1

−
37µ2

∆1
λ∆1,4

Y SM
u

48π2m4
∆1

+
λ∆1,4

2Y SM
u

48π2m2
∆1

QdH
3µ2

∆1
λSM
H Y SM

d

2π2m4
∆1

−
37µ4

∆1
Y SM
d

6π2m6
∆1

+
2µ2

∆1
Y SM
d

m4
∆1

−
5µ2

∆1
λ∆1,1

Y SM
d

8π2m4
∆1

−
37µ2

∆1
λ∆1,4

Y SM
d

48π2m4
∆1

+
λ∆1,4

2Y SM
d

48π2m2
∆1

QeH
3µ2

∆1
λSM
H Y SM

e

2π2m4
∆1

−
37µ4

∆1
Y SM
e

6π2m6
∆1

+
2µ2

∆1
Y SM
e

m4
∆1

−
5µ2

∆1
λ∆1,1

Y SM
e

8π2m4
∆1

−
37µ2

∆1
λ∆1,4

Y SM
e

48π2m4
∆1

+
λ∆1,4

2Y SM
e

48π2m2
∆1

QH
4µ2

∆1
λSM
H

m4
∆1

−
4µ2

∆1
λ∆1,1

m4
∆1

−
4µ2

∆1
λ∆1,4

m∆1
4

−
g2
W µ2

∆1
λSM
H

72π2m4
∆1

−
130µ4

∆1
λSM
H

3π2m6
∆1

+
74µ6

∆1

π2m8
∆1

+
45µ2

∆1
λSM
H

2

8π2m4
∆1

−
37µ2

∆1
λSM
H λ∆1,1

4π2m4
∆1

+
48µ4

∆1
λ∆1,1

π2m6
∆1

+
13µ2

∆1
λ∆1,1

2

2π2m4
∆1

−
20µ4

∆1
λ∆1,2

π2m6
∆1

−
16µ2

∆1
λ∆1,1

λ∆1,2

π2m4
∆1

−
12µ2

∆1
λ∆1,1

λ∆1,3

π2m4
∆1

−
20µ4

∆1
λ∆1,3

π2m6
∆1

− λ∆1,1
3

4π2m2
∆1

+
25µ2

∆1
λ∆1,1

λ∆1,4

2π2m4
∆1

+
97µ4

∆1
λ∆1,4

2π2m6
∆1

−
229µ2

∆1
λSM
H λ∆1,4

24π2m4
∆1

+
39µ2

∆1
λ∆1,4

2

8π2m4
∆1

+
λSM
H λ∆1,4

2

24π2m2
∆1

− 3λ∆1,1
2λ∆1,4

8π2m2
∆1

− 5λ∆1,1
λ∆1,4

2

16π2m2
∆1

− 3λ∆1,4
3

32π2m2
∆1

QH� −
g2
W µ2

∆1

96π2m4
∆1

− g4
W

1920π2m2
∆1

+
2µ2

∆1

m4
∆1

+
11g2

Y µ
2
∆1

96π2m4
∆1

+
21µ2

∆1
λSM
H

32π2m∆1
4 −

41µ4
∆1

12π2m6
∆1

+
µ2

∆1
λ∆1,1

8π2m4
∆1

−
µ2

∆1
λ∆1,4

48π2m4
∆1

− λ∆1,1
2

16π2m2
∆1

+
λ∆1,4

2

192π2m2
∆1

− λ∆1,1
λ∆1,4

16π2m2
∆1

QHD
11g2

Y µ
2
∆1

24π2m4
∆1

− g4
Y

320π2m2
∆1

+
4µ2

∆1

m4
∆1

+
3µ2

∆1
λSM
H

8π2m4
∆1

+
µ2

∆1
λ∆1,4

6π2m4
∆1

−
8µ4

∆1

3π2m6
∆1

− λ∆1,4
2

24π2m2
∆1

QHB
11g2

Y µ
2
∆1

64π2m4
∆1

+
g2
Y λ∆1,1

32π2m2
∆1

+
g2
Y λ∆1,4

64π2m2
∆1

QHW
25g2

W µ2
∆1

192π2m4
∆1

+
g2
W λ∆1,1

48π2m2
∆1

+
g2
W λ∆1,4

96π2m2
∆1

QHWB −
13gW gY µ

2
∆1

96π2m4
∆1

− gW gY λ∆1,4

48π2m2
∆1

Qll − g4
W

1920π2m2
∆1

− g4
Y

1280π2m2
∆1

+
y2
∆1

2m2
∆1

+
λ∆1,2

y2
∆1

π2m2
∆1

+
3λ∆1,3

y2
∆1

4π2m2
∆1

Ops. Wilson coefficients

QHq
(1)

11g2
Y µ

2
∆1

288π2m4
∆1

− g4
Y

1920π2m2
∆1

QHd
g4
Y

960π2m2
∆1

−
11g2

Y µ
2
∆1

144π2m4
∆1

QHe
g4
Y

320π2m2
∆1

−
11g2

Y µ
2
∆1

48π2m4
∆1

QHu
11g2

Y µ
2
∆1

72π2m4
∆1

− g4
Y

480π2m2
∆1

QHl
(3) −

g2
W µ2

∆1

288π2m4
∆1

− g4
W

480π2m2
∆1

QHq
(3) −

g2
W µ2

∆1

288π2m4
∆1

− g4
W

480π2m2
∆1

QHl
(1) g4

Y

640π2m2
∆1

−
11g2

Y µ
2
∆1

96π2m4
∆1

QW
g3
W

1440π2m2
∆1

Qle − g4
Y

320π2m2
∆1

−
µ2

∆1
Y SM
e Y SM†

e

16π2m4
∆1

Qqu
(1) − g4

Y

1440π2m2
∆1

−
µ2

∆1
Y SM
u Y SM†

u

16π2m4
∆1

Qqd
(1) g4

Y

2880π2m2
∆1

−
µ2

∆1
Y SM
d Y

SM†
d

16π2m4
∆1

Qlq
(1) g4

Y

1920π2m2
∆1

Qqq
(1) − g4

Y

11520π2m2
∆1

Qquqd
(1) −

µ2
∆1

Y SM
d Y SM

u

8π2m4
∆1

Qld − g4
Y

960π2m2
∆1

Qledq
µ2

∆1
Y

SM†
d

Y SM
e

8π2m4
∆1

Qed − g4
Y

480π2m2
∆1

Qlu
g4
Y

480π2m2
∆1

Qqe
g4
Y

960π2m2
∆1

Quu − g4
Y

720π2m2
∆1

Qee − g4
Y

320π2m2
∆1

Qeu
g4
Y

240π2m2
∆1

Qlequ
(1)

µ2
∆1

Y SM
e Y SM

u

8π2m4
∆1

Qud
(1) g4

Y

720π2m2
∆1

Qlq
(3) − g4

W

960π2m2
∆1

Qqq
(3) − g4

W

1920π2m2
∆1

Qdd − g4
Y

2880π2m2
∆1
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BSM parameters κΣ , µΣ , ζ
(1)
Σ , ζ

(2)
Σ , λ(1)

Σ
, λ(2)

Σ
, and the WCs are functions of these parameters along with

the SM ones, see tab. 15.

Table 15: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field Σ : (1, 4, 1

2 ). See caption of tab. 3 for colour coding.

Dimension-6 Ops. Wilson coefficients

QHW − 5g2
W ζ

(1)
Σ

192π2m2
Σ

QHB − g2
Y ζ

(1)
Σ

192π2m2
Σ

QHWB − 5gW gY ζ
(2)
Σ

384π2m2
Σ

QH
ζ
(1)
Σ

3

24π2m2
Σ

+
5ζ

(1)
Σ ζ

(2)
Σ

2

128π2m2
Σ

+
5ζ

(2)
Σ

2λSM
H

192π2m2
Σ

+
5µ2

Σζ
(1)
Σ

36π2m2
Σ

+
5µ2

Σζ
(2)
Σ

144π2m2
Σ

+
5µ2

Σλ
SM
H

108π2m2
Σ

+
κ2

Σ

3m2
Σ

− 5κ2
ΣλΣ1

24π2m2
Σ

− 5κ2
ΣλΣ2

32π2m2
Σ

QHD − g4
Y

960π2m2
Σ

+
5µ2

Σ

108π2m2
Σ

− 5ζ
(2)
Σ

2

192π2m2
Σ

QuH
5µ2

ΣY
SM
u

216π2m2
Σ

+
5ζ

(2)
Σ

2Y SM
u

384π2m2
Σ

QdH
5µ2

ΣY
SM
d

216π2m2
Σ

+
5ζ

(2)
Σ

2Y SM
d

384π2m2
Σ

QeH
5µ2

ΣY
SM
e

216π2m2
Σ

+
5ζ

(2)
Σ

2Y SM
e

384π2m2
Σ

QH� − g4
W

768π2m2
Σ

− ζ
(1)
Σ

2

48π2mΣ
2 +

5ζ
(2)
Σ

2

768π2mΣ
2

+
5µ2

Σ

216π2m2
Σ

+
κ2

Σ

8π2m2
Σ

QHl
(1) g4

Y

1920π2m2
Σ

QHq
(1) − g4

Y

5760π2m2
Σ

QHl
(3) − g4

W

192π2m2
Σ

QHq
(3) − g4

W

192π2m2
Σ

QHd
g4
Y

2880π2m2
Σ

QHe
g4
Y

960π2m2
Σ

QHu − g4
Y

1440π2m2
Σ

Dimension-6 Ops. Wilson coefficients

QW
g3
W

576π2m2
Σ

Qll − g4
W

768π2m2
Σ

− g4
Y

3840π2m2
Σ

Qeu
g4
Y

720π2m2
Σ

Qlq
(1) g4

Y

5760π2m2
Σ

Qqq
(1) − g4

Y

34560π2m2
Σ

Qle − g4
Y

960π2m2
Σ

Qlu
g4
Y

1440π2m2
Σ

Qqe
g4
Y

2880π2m2
Σ

Quu − g4
Y

2160π2m2
Σ

Qld − g4
Y

2880π2m2
Σ

Qqd
(1) g4

Y

8640π2m2
Σ

Qqu
(1) − g4

Y

4320π2m2
Σ

Qud
(1) g4

Y

2160π2m2
Σ

Qlq
(3) − g4

W

384π2m2
Σ

Qqq
(3) − g4

W

768π2m2
Σ

Qdd − g4
Y

8640π2m2
Σ

Qed − g4
Y

1440π2m2
Σ

Qee − g4
Y

960π2m2
Σ

B.2 Colour non-Singlet Heavy Scalar Leptoquarks

Here, we have given the exhaustive sets of effective operators and the associated WCs that are emerged

after integrating out the heavy colour non-singlet heavy scalars up to 1-loop.

B.2.1 Complex colour triplet, isospin singlet: ϕ1 ≡ (3C , 1L, −1
3

∣∣
Y

)

In this model, we have extended the SM by a colour-triplet isospin-singlet scalar (ϕ1) with hypercharge

Y = −1
3 . The Lagrangian involving the heavy field is written as [130, 131],

Lϕ1 = Ld≤4
SM

+ (Dµϕ1)† (Dµϕ1)−m2
ϕ1
ϕ†1ϕ1 − ηϕ1

H†H ϕ†
1
ϕ1 − λϕ1

(
ϕ†

1
ϕ1

)2
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+
{
y(i)
ϕ1
ϕα1
†qαL

TCiσ2lL + y(ii)
ϕ1
ϕα1
†uαR

TCeR + h.c.
}
. (B.9)

Here, mϕ1 is mass of the heavy field. This model contains four BSM parameters ηϕ1 , λϕ1 , y
(i)
ϕ1 , y

(ii)
ϕ1 ,

and the WCs are functions of these parameters along with the SM ones, see tab. 16.

Table 16: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field ϕ1 : (3, 1,− 1

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH −
η3
ϕ1

32π2m2
ϕ1

QHB
ηϕ1g

2
Y

576π2m2
ϕ1

QHG
g2
Sηϕ1

384π2m2
ϕ1

QH� −
η2
ϕ1

64π2m2
ϕ1

QHl
(1) g4

Y
5760π2m2

ϕ1

QHq
(1) − g4

Y
17280π2m2

ϕ1

QG
g3
S

5760π2m2
ϕ1

QHD − g4
Y

2880π2m2
ϕ1

QHu − g4
Y

4320π2m2
ϕ1

QHd
g4
Y

8640π2m2
ϕ1

QHe
g4
Y

2880π2m2
ϕ1

Qll − g4
Y

11520π2m2
ϕ1

Qld − g4
Y

8640π2m2
ϕ1

Qle − g4
Y

2880π2m2
ϕ1

Qlu
g4
Y

4320π2m2
ϕ1

Dim-6 Ops. Wilson coefficients

Qqe
g4
Y

8640π2m2
ϕ1

Qed − g4
Y

4320π2m2
ϕ1

Qee − g4
Y

2880π2m2
ϕ1

Qlq
(1) g4

Y
17280π2m2

ϕ1

Qqq
(1) − g4

Y
103680π2m2

ϕ1

Qud
(1) g4

Y
6480π2m2

ϕ1

Q
(8)
ud − g4

S
960π2m2

ϕ1

Q
(8)
qu − g4

S
960π2m2

ϕ1

Q
(8)
qd − g4

S
960π2m2

ϕ1

Qqu
(1) − g4

Y
12960π2m2

ϕ1

Qqd
(1) g4

Y
25920π2m2

ϕ1

Qlq
(3) − 3λϕ1

y
(i)
ϕ1

2

16π2m2
ϕ1

− 3y
(i)
ϕ1

2

8m2
ϕ1

Qdd − g4
Y

25920π2m2
ϕ1

Qeu
g4
Y

2160π2m2
ϕ1

+
3λϕ1y

(ii)
ϕ1

2

8π2m2
ϕ1

+
3y

(ii)
ϕ1

2

4m2
ϕ1

Quu − g4
Y

6480π2m2
ϕ1

B.2.2 Complex colour triplet, isospin singlet: ϕ2 ≡ (3C , 1L, −4
3

∣∣
Y

)

The heavy field (ϕ2) in this model is a scalar leptoquark, similar to the model discussed above, but

with a different hypercharge Y = −4
3 . Consider the BSM Lagrangian [129, 132],

Lϕ2 = Ld≤4
SM

+ (Dµϕ2)† (Dµϕ2)−m2
ϕ2
ϕ†2ϕ2 − ηϕ2

H†H ϕ†
2
ϕ2 − λϕ2

(
ϕ†

2
ϕ2

)2

+
{
yϕ2ϕ

α
2
†dαR

TCeR + h.c.
}
. (B.10)

Here, mϕ2 is mass of the heavy field. This model contains three BSM parameters ηϕ2 , λϕ2 , yϕ2 , and

the WCs are functions of these parameters along with the SM ones, see tab. 17.
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Table 17: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field ϕ2 : (3, 1,− 4

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH −
η3
ϕ2

32π2m2
ϕ2

QHB
ηϕ2

g2
Y

36π2m2
ϕ2

QH� −
η2
ϕ2

64π2m2
ϕ2

QHG
g2
Sηϕ2

384π2m2
ϕ2

QHq
(1) − g4

Y
1080π2m2

ϕ2

QHD − g4
Y

180π2m2
ϕ2

QHd
g4
Y

540π2m2
ϕ2

QHe
g4
Y

180π2m2
ϕ2

QHl
(1) g4

Y
360π2m2

ϕ2

QG
g3
S

5760π2m2
ϕ2

QHu − g4
Y

270π2m2
ϕ2

Qll − g4
Y

720π2m2
ϕ2

Qee − g4
Y

180π2m2
ϕ2

Qeu
g4
Y

135π2m2
ϕ2

Qlq
(1) g4

Y
1080π2m2

ϕ2

Dim-6 Ops. Wilson coefficients

Qqq
(1) − g4

Y
6480π2m2

ϕ2

Qqd
(1) g4

Y
1620π2m2

ϕ2

Qqu
(1) − g4

Y
810π2m2

ϕ2

Qdd − g4
Y

1620π2m2
ϕ2

Qed − g4
Y

270π2m2
ϕ2

+
3λϕ2y

2
ϕ2

8π2m2
ϕ2

+
3y2
ϕ2

4m2
ϕ2

Quu − g4
Y

405π2m2
ϕ2

Q
(8)
qd − g4

S
960π2m2

ϕ2

Q
(8)
qu − g4

S
960π2m2

ϕ2

Qld − g4
Y

540π2m2
ϕ2

Qle − g4
Y

180π2m2
ϕ2

Qlu
g4
Y

270π2m2
ϕ2

Qqe
g4
Y

540π2m2
ϕ2

Qud
(1) g4

Y
405π2m2

ϕ2

Q
(8)
ud − g4

S
960π2m2

ϕ2

B.2.3 Complex colour triplet, isospin doublet: Θ2 ≡ (3C , 2L,
7
6

∣∣
Y

)

The heavy field (Θ2) in this model is a scalar leptoquark, similar to the model discussed above, but with

a different hypercharge Y = 7
6 . The Lagrangian involving the heavy field is written as [128, 129, 132],

LΘ2 = Ld≤4
SM

+ (DµΘ2)† (DµΘ2)−m2
Θ2

Θ†2Θ2 − η(1)
Θ2
H†H Θ†2Θ2 − η(2)

Θ2

(
H†σiH

) (
Θ†2σ

iΘ2

)
− λ(1)

Θ2

(
Θ†2Θ2

)2
− λ(2)

Θ2

(
Θ†2σ

iΘ2

)2
+
{
y

(1)
Θ2

Θα
2 q

α
LeR + y

(2)
Θ2

Θα
2u

α
RlL + h.c.

}
. (B.11)

Here, mΘ2 is mass of the heavy field. This model contains six BSM parameters η
(1)
Θ2
, η

(2)
Θ2
, λ

(1)
Θ2
, λ

(2)
Θ2
,

y
(1)
Θ2
, y

(2)
Θ2

, and the WCs are functions of these parameters along with the SM ones, see tab. 18.

B.2.4 Complex colour triplet, isospin triplet: Ω ≡ (3C , 3L, −1
3

∣∣
Y

)

In this model, we have extended the SM by a colour-triplet isospin-triplet scalar (Ω) with hypercharge

Y = −1
3 . The Lagrangian involving the heavy field is written as [128, 129],

LΩ = Ld≤4
SM

+ (DµΩ)† (DµΩ)−m2
Ω Ω†Ω−−η(1)

Ω
H†H Ω†Ω− η(2)

Ω

(
H†σiH

) (
Ω†T iadjΩ

)
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Table 18: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field Θ2: (3, 2, 7

6 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QdH

η
(2)
Θ2

2Y SM
d

256π2m2
Θ2

QeH

η
(2)
Θ2

2Y SM
e

256π2m2
Θ2

QH −
η

(1)
Θ2

3

16π2m2
Θ2

−
3η

(1)
Θ2
η

(2)
Θ2

2

256π2m2
Θ2

+
η

(2)
Θ2

2λSM
H

128π2m2
Θ2

QHB

49g2
Y η

(1)
Θ2

1152π2m2
Θ2

QH� − g4
W

2560π2m2
Θ2

−
η

(1)
Θ2

2

32π2m2
Θ2

+
η

(2)
Θ2

2

512π2m2
Θ2

QHD − 49g4
Y

5760π2m2
Θ2

−
η

(2)
Θ2

2

128π2m2
Θ2

QHG

g2
Sη

(1)
Θ2

192π2m2
Θ2

QHW

g2
W η

(1)
Θ2

128π2m2
Θ2

QHWB

7gW gY η
(2)
Θ2

768π2m2
Θ2

QG
g3
S

2880π2m2
Θ2

QHu − 49g4
Y

8640π2m2
Θ2

QHd
49g4

Y

17280π2m2
Θ2

QHe
49g4

Y

5760π2m2
Θ2

QHl
(1) 49g4

Y

11520π2m2
Θ2

QHq
(1) − 49g4

Y

34560π2m2
Θ2

QHl
(3) − g4

W

640π2m2
Θ2

QHq
(3) − g4

W

640π2m2
Θ2

Qll − g4
W

2560π2m2
Θ2

− 49g4
Y

23040π2m2
Θ2

Qld − 49g4
Y

17280π2m2
Θ2

Dim-6 Ops. Wilson coefficients

Qqe
49g4

Y

17280π2m2
Θ2

−
9
(
4λ

(1)
Θ2

+λ
(2)
Θ2

)
y
(1)
Θ2

2

128π2m2
Θ2

−
y
(1)
Θ2

2

4m2
Θ2

Qle − 49g4
Y

5760π2m2
Θ2

Qlu
49g4

Y

8640π2m2
Θ2

−
9
(
4λ

(1)
Θ2

+λ
(2)
Θ2

)
y
(2)
Θ2

2

128π2m2
Θ2

−
y
(2)
Θ2

2

4m2
Θ2

QuH

η
(2)
Θ2

2Y SM
u

256π2m2
Θ2

Quu − 49g4
Y

12960π2m2
Θ2

QW
g3
W

1920π2m2
Θ2

Q
(8)
qd − g4

S

480π2m2
Θ2

Q
(8)
qu − g4

S

480π2m2
Θ2

Qlq
(1) 49g4

Y

34560π2m2
Θ2

Qqd
(1) 49g4

Y

51840π2m2
Θ2

Qqq
(1) − 49g4

Y

207360π2m2
Θ2

Qqu
(1) − 49g4

Y

25920π2m2
Θ2

Qud
(1) 49g4

Y

12960π2m2
Θ2

Qlq
(3) − g4

W

1280π2m2
Θ2

Qqq
(3) − g4

W

2560π2m2
Θ2

Qdd − 49g4
Y

51840π2m2
Θ2

Qed − 49g4
Y

8640π2m2
Θ2

Qee − 49g4
Y

5760π2m2
Θ2

Qeu
49g4

Y

4320π2m2
Θ2

Q
(8)
ud − g4

S

480π2m2
Θ2

− λ(1)
Ω

(
Ω†Ω

)2
− λ(2)

Ω

(
Ω†T iadjΩ

)2
− λ(3)

Ω

(
Ω†λAΩ

)2
+
{
yΩΩαqαL

TClL + h.c.
}
. (B.12)

Here, λA’s are the SU(3)C generators, and mΩ is mass of the heavy field. This model contains six

BSM parameters η
(1)
Ω , η

(2)
Ω , λ

(1)
Ω , λ

(2)
Ω , λ

(3)
Ω , yΩ, and the WCs are functions of these parameters along

with the SM ones, see tab. 19.
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Table 19: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field Ω : (3, 3,− 1

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QdH
η

(2)
Ω

2Y SM
d

64π2m2
Ω

QeH
η

(2)
Ω

2Y SM
e

64π2m2
Ω

QH − 3η
(1)
Ω

3

32π2m2
Ω

− 3η
(1)
Ω η

(2)
Ω

2

64π2m2
Ω

+
η

(2)
Ω

2λSM
H

32π2m2
Ω

QHB
g2
Y η

(1)
Ω

192π2m2
Ω

QH� − g4
W

640π2m2
Ω

− 3η
(1)
Ω

2

64π2m2
Ω

+
η

(2)
Ω

2

128π2m2
Ω

QHD − g4
Y

960π2m2
Ω

− η
(2)
Ω

2

32π2m2
Ω

QHG
g2
Sη

(1)
Ω

128π2m2
Ω

QHW
g2
W η

(1)
Ω

32π2m2
Ω

QHWB
gW gY η

(2)
Ω

96π2m2
Ω

QuH
η

(2)
Ω

2Y SM
u

64π2m2
Ω

QHl
(1) g4

Y

1920π2m2
Ω

QHq
(1) − g4

Y

5760π2m2
Ω

QHl
(3) − g4

W

160π2m2
Ω

QHq
(3) − g4

W

160π2m2
Ω

Qll − g4
W

640π2m2
Ω

− g4
Y

3840π2m2
Ω

QHu − g4
Y

1440π2m2
Ω

QHd
g4
Y

2880π2m2
Ω

QHe
g4
Y

960π2m2
Ω

QW
g3
W

480π2m2
Ω

QG
g3
S

1920π2m2
Ω

Dim-6 Ops. Wilson coefficients

Qlq
(3) − g4

W

320π2m2
Ω

+

(
15λ

(1)
Ω +3λ

(2)
Ω +2λ

(3)
Ω

)
y2
Ω

32π2m2
Ω

+
3y2

Ω

8m2
Ω

Qqq
(3) − g4

W

640π2m2
Ω

Qdd − g4
Y

8640π2m2
Ω

Qed − g4
Y

1440π2m2
Ω

Qee − g4
Y

960π2m2
Ω

Qeu
g4
Y

720π2m2
Ω

Q
(8)
ud − g4

S

320π2m2
Ω

Qlq
(1)

(
15λ

(1)
Ω +3λ

(2)
Ω +2λ

(3)
Ω

)
y2
Ω

8π2m2
Ω

+
3y2

Ω

2m2
Ω

+
g4
Y

5760π2m2
Ω

Qqd
(1) g4

Y

8640π2m2
Ω

Qqq
(1) − g4

Y

34560π2m2
Ω

Qqu
(1) − g4

Y

4320π2m2
Ω

Qud
(1) g4

Y

2160π2m2
Ω

Qld − g4
Y

2880π2m2
Ω

Qle − g4
Y

960π2m2
Ω

Qlu
g4
Y

1440π2m2
Ω

Qqe
g4
Y

2880π2m2
Ω

Quu − g4
Y

2160π2m2
Ω

Q
(8)
qu − g4

S

320π2m2
Ω

Q
(8)
qd − g4

S

320π2m2
Ω

B.2.5 Complex colour sextet, isospin triplet: χ1 ≡ (6C , 3L,
1
3

∣∣
Y

)

In this model, we have extended the SM by a colour-sextet isospin-triplet scalar (χ1) with hypercharge
Y = 1

3 . The Lagrangian involving the heavy field is written as [133, 178],

Lχ1 = Ld≤4
SM

+ Tr
[
(Dµχ1)† (Dµχ1)

]
−m2

χ1
Tr
[
χ†1χ1

]
− η(1)

χ1
H†H Tr

[
χ†1χ1

]
− η(2)

χ1

(
H†σiH

)
Tr
[(
χ†1σ

iχ1

)]
− λ(1)

χ1

(
Tr
[
χ†1χ1

])2

− λ(2)
χ1
Tr

[(
χ†1χ1

)2
]

−
{
yχ

1

(
q
{A|
L

)T
C
(
χAB,I

1

)†
iσ2q

|B}
L + h.c.

}
. (B.13)

Here, mχ1
is mass of the heavy field. This model contains five BSM parameters η

(1)
χ1
, η

(2)
χ1
, λ

(1)
χ1
, λ

(2)
χ1
, yχ1

,

and the WCs are functions of these parameters along with the SM ones, see tab. 20.
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Table 20: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field χ1 : (6, 3, 1

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH − η
(1)
χ1

3

16π2m2
χ1

− 3η
(1)
χ1
η

(2)
χ1

2

64π2m2
χ1

+
η

(2)
χ1

2
λSM
H

16π2m2
χ1

QH� − g4
W

320π2m2
χ1

− η
(1)
χ1

2

32π2m2
χ1

+
η

(2)
χ1

2

64π2m2
χ1

QHD − g4
Y

480π2m2
χ1

− η
(2)
χ1

2

16π2m2
χ1

QeH
η

(2)
χ1

2
Y SM
e

32π2m2
χ1

QuH
η

(2)
χ1

2
Y SM
u

32π2m2
χ1

QdH
η

(2)
χ1

2
Y SM
d

32π2m2
χ1

QHG
g2
Sη

(1)
χ1

192π2m2
χ1

QHW
η

(1)
χ1
g2
W

32π2m2
χ1

QHWB
η

(2)
χ1
gW gY

48π2m2
χ1

QHB
η

(1)
χ1
g2
Y

288π2m2
χ1

QHd
g4
Y

1440π2m2
χ1

QHe
g4
Y

480π2m2
χ1

QHl
(1) g4

Y
960π2m2

χ1

QHq
(1) − g4

Y
2880π2m2

χ1

QHl
(3) − g4

W
80π2m2

χ1

QHq
(3) − g4

W
80π2m2

χ1

Qll − g4
W

320π2m2
χ1

− g4
Y

1920π2m2
χ1

QHu − g4
Y

720π2m2
χ1

QG
g3
S

960π2m2
χ1

QW
g3
W

240π2m2
χ1

Dim-6 Ops. Wilson coefficients

Qlq
(1) g4

Y
2880π2m2

χ1

Qqd
(1) g4

Y
4320π2m2

χ1

Qqq
(1) − g4

Y
17280π2m2

χ1

+
3y2
χ1

m2
χ1

+

(
12λ

(1)
χ

1
+3λ

(2)
χ

1

)
y2
χ1

2π2m2
χ1

Qqu
(1) − g4

Y
2160π2m2

χ1

Qdd − g4
Y

4320π2m2
χ1

Quu − g4
Y

1080π2m2
χ1

Qud
(1) g4

Y
1080π2m2

χ1

Qlq
(3) − g4

W
160π2m2

χ1

Qqq
(3) − g4

W
320π2m2

χ1

+
3y2
χ

1
4m2

χ
1

+

(
12λ

(1)
χ1

+3λ
(2)
χ1

)
y2
χ

1
8π2m2

χ
1

Qqe
g4
Y

1440π2m2
χ1

Qed − g4
Y

720π2m2
χ1

Qee − g4
Y

480π2m2
χ1

Qeu
g4
Y

360π2m2
χ1

Qld − g4
Y

1440π2m2
χ1

Qle − g4
Y

480π2m2
χ1

Qlu
g4
Y

720π2m2
χ1

Q
(8)
qu − g4

S
160π2m2

χ1

Q
(8)
qd − g4

S
160π2m2

χ1

Q
(8)
ud − g4

S
160π2m2

χ1

B.2.6 Complex colour sextet, isospin singlet: χ2 ≡ (6C , 1L,
4
3

∣∣
Y

)

Here, we have extended the SM by a colour-sextet isospin-singlet scalar (χ2) with hypercharge Y = 4
3 .

The Lagrangian involving the heavy field is written as [133, 178],

Lχ2 = Ld≤4
SM

+ (Dµχ2)† (Dµχ2)−m2
χ2
χ†2χ2 − ηχ2

H†H χ†2χ2 − λχ2

(
χ†2χ2

)2

−
{
yχ2

(
u
{A|
R

)T
C
(
χAB

2

)†
u
|B}
R + h.c.

}
. (B.14)

Here, mχ2
is mass of the heavy field. This model contains three BSM parameters ηχ2

, λχ2
, yχ2

, and

the WCs are functions of these parameters along with the SM ones, see tab. 21.
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Table 21: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field χ2 : (6, 1, 4

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH −
η3
χ2

16π2m2
χ2

QHB
ηχ2

g2
Y

18π2m2
χ2

QH� −
η2
χ2

32π2m2
χ2

QHG
g2
Sηχ2

192π2m2
χ2

QHD − g4
Y

90π2m2
χ2

QHd
g4
Y

270π2m2
χ2

QHe
g4
Y

90π2m2
χ2

QHu − g4
Y

135π2m2
χ2

Qll − g4
Y

360π2m2
χ2

QHl
(1) g4

Y
180π2m2

χ2

QHq
(1) − g4

Y
540π2m2

χ2

QG
g3
S

2880π2m2
χ2

Q
(8)
ud − g4

S
480π2m2

χ2

Q
(8)
qu − g4

S
480π2m2

χ2

Q
(8)
qd − g4

S
480π2m2

χ2

Dim-6 Ops. Wilson coefficients

Qlq
(1) g4

Y
540π2m2

χ2

Qqd
(1) g4

Y
810π2m2

χ2

Qqq
(1) − g4

Y
3240π2m2

χ2

Qqu
(1) − g4

Y
405π2m2

χ2

Qud
(1) 2g4

Y
405π2m2

χ2

Qdd − g4
Y

810π2m2
χ2

Qed − g4
Y

135π2m2
χ2

Qee − g4
Y

90π2m2
χ2

Qeu
2g4
Y

135π2m2
χ2

Qld − g4
Y

270π2m2
χ2

Qle − g4
Y

90π2m2
χ2

Qlu
g4
Y

135π2m2
χ2

Qqe
g4
Y

270π2m2
χ2

Quu − 2g4
Y

405π2m2
χ2

+
3y2
χ

2
2m2

χ
2

+
3λχ2

y2
χ

2
8π2m2

χ
2

B.2.7 Complex colour sextet, isospin singlet: χ3 ≡ (6C , 1L, −2
3

∣∣
Y

)

Here, we have extended the SM by a colour-sextet isospin-singlet scalar (χ3) with hypercharge Y = −2
3 .

The Lagrangian involving the heavy field is written as [133, 178],

Lχ3 = Ld≤4
SM

+ (Dµχ3)† (Dµχ3)−m2
χ3
χ†3χ3 − ηχ3

H†H χ†3χ3 − λχ3

(
χ†3χ3

)2

−
{
yχ3

(
d
{A|
R

)T
C
(
χAB

3

)†
d
|B}
R + h.c.

}
. (B.15)

Here, mχ3
is mass of the heavy field. This model contains three BSM parameters ηχ3

, λχ3
, yχ3

, and

the WCs are functions of these parameters along with the SM ones, see tab. 22.

B.2.8 Complex colour sextet, isospin singlet: χ4 ≡ (6C , 1L,
1
3

∣∣
Y

)

Here, we have extended the SM by a colour-sextet isospin-singlet scalar (χ4) with hypercharge Y = 1
3 .

The Lagrangian involving the heavy field is written as [133, 178],

Lχ4 = Ld≤4
SM

+ (Dµχ4)† (Dµχ4)−m2
χ4
χ†4χ4 − ηχ4

H†H χ†4χ4 − λχ4

(
χ†4χ4

)2
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Table 22: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field χ3 : (6, 1,− 2

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH −
η3
χ3

16π2m2
χ3

QHB
ηχ3

g2
Y

72π2m2
χ3

QHG
g2
Sηχ3

192π2m2
χ3

QH� −
η2
χ3

32π2m2
χ3

QHD − g4
Y

360π2m2
χ3

QHl
(1) g4

Y
720π2m2

χ3

QHq
(1) − g4

Y
2160π2m2

χ3

QG
gS

3

2880π2m2
χ3

QHd
g4
Y

1080π2m2
χ3

QHe
g4
Y

360π2m2
χ3

QHu − g4
Y

540π2m2
χ3

Qll − g4
Y

1440π2m2
χ3

Q
(8)
qu − g4

S
480π2m2

χ3

Q
(8)
qd − g4

S
480π2m2

χ3

Q
(8)
ud − g4

S
480π2m2

χ3

Dim-6 Ops. Wilson coefficients

Qlq
(1) g4

Y
2160π2m2

χ3

Qqd
(1) g4

Y
3240π2m2

χ3

Qqq
(1) − g4

Y
12960π2m2

χ3

Qqu
(1) − g4

Y
1620π2m2

χ3

Qud
(1) g4

Y
810π2m2

χ3

Qdd − g4
Y

3240π2m2
χ3

+
3y2
χ3

2m2
χ3

+
3λχ

3
y2
χ3

8π2m2
χ3

Qed − g4
Y

540π2m2
χ3

Qee − g4
Y

360π2m2
χ3

Qeu
g4
Y

270π2m2
χ3

Qld − g4
Y

1080π2m2
χ3

Qle − g4
Y

360π2m2
χ3

Qlu
g4
Y

540π2m2
χ3

Qqe
g4
Y

1080π2m2
χ3

Quu − g4
Y

810π2m2
χ3

−
{
y(i)
χ4

(
u
{A|
R

)T (
χAB

4

)†
d
|B}
R + y(ii)

χ4

(
q
{A|
L

)T
C
(
χAB

4

)†
iσ2q

|B}
L + h.c.

}
. (B.16)

Here, mχ4
is mass of the heavy field. This model contains four BSM parameters ηχ4

, λχ4
, y

(i)
χ4
, y

(ii)
χ4

,

and the WCs are functions of these parameters along with the SM ones, see tab. 23.
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Table 23: Warsaw basis effective operators and the associated WCs that emerge after integrating-out the
heavy field χ4 : (6, 1, 1

3 ). See caption of tab. 3 for colour coding.

Dim-6 Ops. Wilson coefficients

QH −
η3
χ4

16π2m2
χ4

QHB
ηχ4

g2
Y

288π2m2
χ4

QH� −
η2
χ4

32π2m2
χ4

QHG
g2
Sηχ4

192π2m2
χ4

QHD − g4
Y

1440π2m2
χ4

QG
g3
S

2880π2m2
χ4

QHd
g4
Y

4320π2m2
χ4

QHe
g4
Y

1440π2m2
χ4

QHu − g4
Y

2160π2m2
χ4

QHl
(1) g4

Y
2880π2m2

χ4

QHq
(1) − g4

Y
8640π2m2

χ4

Qll − g4
Y

5760π2m2
χ4

Qld − g4
Y

4320π2m2
χ4

Qle − g4
Y

1440π2m2
χ4

Qlu
g4
Y

2160π2m2
χ4

Qqe
g4
Y

4320π2m2
χ4

Dim-6 Ops. Wilson coefficients

Q
(1)
quqd

3y
(i)
χ4
y
(ii)
χ4

2m2
χ4

+
3λχ

4
y
(i)
χ4
y
(ii)
χ4

8π2m2
χ4

Quu − g4
Y

3240π2m2
χ4

Qee − g4
Y

1440π2m2
χ4

Qlq
(1) g4

Y
8640π2m2

χ4

Qqd
(1) g4

Y
12960π2m2

χ4

Qqq
(1) − g4

Y
51840π2m2

χ4

+
3y

(ii)
χ4

2

2m2
χ4

+
3λχ

4
y
(ii)
χ4

2

8π2m2
χ4

Qqu
(1) − g4

Y
6480π2m2

χ4

Qud
(1) g4

Y
3240π2m2

χ4

+
3y

(i)
χ

4

2

2m2
χ4

+
3λχ4

y
(i)
χ

4

2

8π2m2
χ4

Qdd − g4
Y

12960π2m2
χ4

Qed − g4
Y

2160π2m2
χ4

Qeu
g4
Y

1080π2m2
χ4

Q
(8)
ud − g4

S
480π2m2

χ4

+
y
(i)
χ

4

2

2m2
χ

4

+
λχ4

y
(i)
χ

4

2

8π2m2
χ

4

Q
(8)
qu − g4

S
480π2m2

χ4

Q
(8)
qd − g4

S
480π2m2

χ4

Q
(8)
quqd

y
(i)
χ

4
y
(ii)
χ

4
2m2

χ
4

+
λχ

4
y
(i)
χ

4
y
(ii)
χ

4
8π2m2

χ
4
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C More information on Model Independent Bayesian analysis

C.1 Priors used

In this work, for most of the WCs, the uniform priors have ranges: {−10, 10}. We list only those WCs

here which have different ranges:

1. For single WC fits

• For the fit titled “This Analysis”, the prior-range for CH is {−40, 40}.
• With “2020 Data”, the WCs CH , CH�, CtH and CG have prior-ranges {−100, 100}, {−70, 70},
{−50, 50} and {−50, 50} respectively.

2. For global fits

• “This Analysis” fit intakes priors for CH , CH�, CtH and CG each with range {−40, 40}.
• In “2020 Data” fit, the WCs with distinct priors are CH , CH�, CtH and CG with ranges

{−100, 100}, {−70, 70}, {−50, 50} and {−50, 50} respectively.

• In case of “W/O ggF STXS” fit, priors of range {−40, 40} are taken for CH , CH�, CtH and

CG each.

• For “W/O V h STXS” fit, priors of range {−40, 40} are taken for CH , CH�, CtH and CG
each.

• For “W/O WBF STXS” measurements, CH , CcH , CH�, CtH and CG are with ranges

{−100, 100}, {−50, 50}, {−200, 200}, {−40, 40} and {−40, 40} respectively.

• For “W/O ggF , tt̄h & th STXS” measurements, the accepted priors of CH , CH�, CtH ,

CG, CHG and CtG are with ranges {−200, 200}, {−40, 40}, {−1500, 1500}, {−2000, 2000},
{−100, 100} and {−150, 150} respectively.
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C.2 Fit Results and Correlation matrix

Table 24: 95% credible intervals (CI) for one-parameters WC fits and for a global analysis of 23 WCs. The
cut-off scale Λ is set to 1 TeV.

WCs 95% CI Individual limits 95% CI Global limits

CHWB [−0.0035, 0.0028] [−0.19, 0.15]

CHD [−0.022, 0.0042] [−0.40, 0.39]

Cll [−0.006, 0.016] [−0.10, 0.00]

C(1)
Hl [−0.005, 0.012] [−0.08, 0.12]

C(3)
Hl [−0.010, 0.003] [−0.054, 0.063]

CHe [−0.013, 0.008] [−0.20, 0.19]

C(1)
Hq [−0.023, 0.047] [−0.057, 0.096]

C(3)
Hq [−0.008, 0.016] [−0.033, 0.063]

CHd [−0.15, 0.04] [−0.29, 0.11]

CHu [−0.056, 0.081] [−0.13, 0.25]

CH [−9.6, 6.9] [−11., 7.0]

CH� [−0.96,−0.13] [−1.6, 5.6]

CHG [−0.0038,−0.0002] [−0.013, 0.010]

CHW [−0.010, 0.005] [−0.28, 0.12]

CHB [−0.0031, 0.0016] [−0.050, 0.061]

CW [−0.17, 0.34] [−0.18, 0.33]

CG [−0.8, 1.2] [−1.1, 1.3]

CµH [−0.0042, 0.0027] [−0.0045, 0.0025]

CτH [−0.0040, 0.028] [−0.009, 0.029]

CbH [−0.036, 0.004] [−0.029, 0.069]

CcH [−0.15,−0.01] [−1.1, 0.20]

CtH [0.02, 1.2] [−2.6, 2.6]

CtG [−0.11,−0.01] [−0.28, 0.21]
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Table 25: Correlations among the 23 WCs with the fit results shown in column III of tab. 24.

WCs
Correlations

CHWB CHD Cll C
(1)
Hl C

(3)
Hl CHe C

(1)
Hq C

(3)
Hq CHd CHu CH CH� CHG CHW CHB CW CG CµH CτH CbH CcH CtH CtG

CHWB 1

CHD -0.98 1

Cll -0.03 0.06 1

C(1)Hl 0.96 -0.98 -0.22 1

C(3)Hl 0.09 -0.24 0.31 0.17 1

CHe 0.98 -1.00 -0.07 0.98 0.24 1

C(1)Hq -0.41 0.34 -0.13 -0.31 0.20 -0.35 1

C(3)Hq -0.24 0.13 0.02 -0.13 0.54 -0.13 -0.06 1

CHd -0.01 0.02 -0.05 -0.02 -0.08 -0.02 0.37 0.09 1

CHu -0.31 0.25 -0.15 -0.22 0.16 -0.25 0.59 -0.29 0.26 1

CH -0.10 0.09 -0.02 -0.09 0.01 -0.10 0.08 -0.01 0.03 0.12 1

CH� -0.60 0.58 -0.03 -0.56 0 -0.58 0.43 -0.02 0.12 0.55 0.23 1

CHG 0.07 -0.05 0.02 0.04 -0.13 0.05 -0.06 -0.13 -0.03 -0.10 -0.28 -0.12 1

CHW 0.88 -0.85 -0.02 0.83 0.02 0.85 -0.38 -0.24 -0.03 -0.33 -0.11 -0.62 0.07 1

CHB 0.87 -0.86 -0.03 0.85 0.14 0.86 -0.35 -0.13 0 -0.26 -0.09 -0.54 0.07 0.53 1

CW 0.15 -0.15 0.02 0.14 0.07 0.15 -0.02 -0.03 0.01 0 -0.01 -0.07 0 0.12 0.13 1

CG -0.05 0.06 0 -0.06 -0.04 -0.06 0.03 -0.03 0 0.03 0.01 0.02 -0.11 -0.03 -0.07 -0.01 1

CµH 0 0 -0.01 0 0 0 0.01 -0.02 0.01 0.02 -0.01 0.02 0 0 0 0 0.04 1

CτH 0 0 -0.01 0 -0.01 0 0.03 -0.05 0.01 0.05 -0.04 0.01 -0.16 0.01 0.01 0 0.05 0.07 1

CbH 0.04 -0.11 -0.05 0.11 0.37 0.11 0.01 0.35 0.03 0.09 0.01 0.05 -0.40 0.07 0 0.02 -0.01 0.05 0.28 1

CcH 0.51 -0.48 0.04 0.45 -0.08 0.48 -0.37 -0.06 -0.12 -0.51 -0.22 -0.95 0.15 0.52 0.48 0.06 0 0 0.08 -0.15 1

CtH -0.21 0.22 0 -0.21 -0.07 -0.22 0.15 -0.08 0.03 0.15 -0.19 0.21 0.37 -0.24 -0.14 -0.03 -0.39 -0.02 0.09 -0.01 -0.08 1

CtG -0.04 0.02 -0.01 -0.02 0.11 -0.02 0.04 0.10 0.02 0.08 0.16 0.09 -0.78 -0.06 -0.03 0 -0.17 -0.05 0.05 0.27 -0.12 0.14 1
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D Di-Higgs data

Table 26: Considered signal strength measurements for di-Higgs production [23–28].

channel ATLAS CMS

bb̄bb̄ −12.7± 12.8 −3.9± 3.8

bb̄γγ −6.3+9.9
−7.5 2.5± 2.6

bb̄ττ −4.1± 8.4 −5± 15

E Relevant dimension-6 SMEFT operators

Table 27: These dimension-6 effective operators (Warsaw basis) contribute to the observables. Here,
σ’s are Pauli matrices, and λ’s are the Gell-Mann matrices.

QH
(
H†H)3 QHG

(
H†H

)
Gµν

aGa,µν QHe

(
H†i
←→D µH

)
(ēRγ

µeR)

QH�
(
H†H)�(H†H

)
Q

(1)
Hl

(
H†i
←→D µH

)
(l̄Lγ

µlL) QHu

(
H†i
←→D µH

)
(ūRγ

µuR)

QHD
(
H†DµH)∗

(
H†DµH) Q

(3)
Hl

(
H†iσI←→D µH

)
(l̄Lσ

IγµlL) QHd

(
H†i
←→D µH

)
(d̄Rγ

µdR)

QHB
(
H†H

)
BµνB

µν Q
(1)
Hq

(
H†i
←→D µH

)
(q̄
L
γµqL) QτH

(
H†H

)
(l̄L τR H )+h.c.

QHW
(
H†H

)
Wµν

IW I,µν Q
(3)
Hq

(
H†iσI←→D µH

)
(q̄
L
σIγµq

L
) QtH

(
H†H

)
(q̄
L

tR H̃ )+h.c.

QHWB

(
H†σIH

)
Wµν

IBµν Qll
(
l̄LγµlL

) (
l̄Lγ

µlL) QbH
(
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QW εIJKWρ
I,µWµ

J,νWν
K,ρ QtG
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σµν λ

a

2 tR
)
H̃Gµν

a QµH
(
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QG fabcGρ
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[38] J. Elias-Miró, C. Grojean, R. S. Gupta, and D. Marzocca, Scaling and tuning of EW and Higgs

observables, JHEP 05 (2014) 019, [arXiv:1312.2928].

[39] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, and M. Spira, Effective Lagrangian for a light

Higgs-like scalar, JHEP 07 (2013) 035, [arXiv:1303.3876].

[40] A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02

(2015) 039, [arXiv:1411.0669].

[41] C. Englert and M. Spannowsky, Effective Theories and Measurements at Colliders, Phys. Lett. B 740

(2015) 8–15, [arXiv:1408.5147].

[42] R. S. Gupta, A. Pomarol, and F. Riva, BSM Primary Effects, Phys. Rev. D91 (2015), no. 3 035001,

[arXiv:1405.0181].

[43] G. Amar, S. Banerjee, S. von Buddenbrock, A. S. Cornell, T. Mandal, B. Mellado, and

B. Mukhopadhyaya, Exploration of the tensor structure of the Higgs boson coupling to weak bosons in

e+ e− collisions, JHEP 02 (2015) 128, [arXiv:1405.3957].

[44] M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss, and T. Plehn, Mass Effects in

the Higgs-Gluon Coupling: Boosted vs Off-Shell Production, JHEP 02 (2015) 038, [arXiv:1410.5806].

[45] N. Craig, M. Farina, M. McCullough, and M. Perelstein, Precision Higgsstrahlung as a Probe of New

Physics, JHEP 03 (2015) 146, [arXiv:1411.0676].

[46] J. Ellis, V. Sanz, and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07

(2014) 036, [arXiv:1404.3667].

[47] J. Ellis, V. Sanz, and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157,

[arXiv:1410.7703].

[48] S. Banerjee, T. Mandal, B. Mellado, and B. Mukhopadhyaya, Cornering dimension-6 HV V interactions

at high luminosity LHC: the role of event ratios, JHEP 09 (2015) 057, [arXiv:1505.00226].

[49] C. Englert, R. Kogler, H. Schulz, and M. Spannowsky, Higgs coupling measurements at the LHC, Eur.

Phys. J. C 76 (2016), no. 7 393, [arXiv:1511.05170].

[50] D. Ghosh, R. S. Gupta, and G. Perez, Is the Higgs Mechanism of Fermion Mass Generation a Fact? A

Yukawa-less First-Two-Generation Model, Phys. Lett. B755 (2016) 504–508, [arXiv:1508.01501].

[51] C. Degrande, B. Fuks, K. Mawatari, K. Mimasu, and V. Sanz, Electroweak Higgs boson production in

– 56 –

http://arxiv.org/abs/1111.3354
http://arxiv.org/abs/1206.3560
http://arxiv.org/abs/1207.3588
http://arxiv.org/abs/1212.5240
http://arxiv.org/abs/1308.4860
http://arxiv.org/abs/1305.6397
http://arxiv.org/abs/1312.2928
http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1411.0669
http://arxiv.org/abs/1408.5147
http://arxiv.org/abs/1405.0181
http://arxiv.org/abs/1405.3957
http://arxiv.org/abs/1410.5806
http://arxiv.org/abs/1411.0676
http://arxiv.org/abs/1404.3667
http://arxiv.org/abs/1410.7703
http://arxiv.org/abs/1505.00226
http://arxiv.org/abs/1511.05170
http://arxiv.org/abs/1508.01501


the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017), no. 4

262, [arXiv:1609.04833].

[52] J. Cohen, S. Bar-Shalom, and G. Eilam, Contact Interactions in Higgs-Vector Boson Associated

Production at the ILC, Phys. Rev. D94 (2016), no. 3 035030, [arXiv:1602.01698].

[53] S.-F. Ge, H.-J. He, and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables

at e+ e− Higgs factory, JHEP 10 (2016) 007, [arXiv:1603.03385].

[54] R. Contino, A. Falkowski, F. Goertz, C. Grojean, and F. Riva, On the Validity of the Effective Field

Theory Approach to SM Precision Tests, JHEP 07 (2016) 144, [arXiv:1604.06444].

[55] A. Biekötter, J. Brehmer, and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D94

(2016), no. 5 055032, [arXiv:1602.05202].

[56] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, Electroweak

precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and

future, JHEP 12 (2016) 135, [arXiv:1608.01509].

[57] H. Denizli and A. Senol, Constraints on Higgs effective couplings in Hνν̄ production of CLIC at 380

GeV, Adv. High Energy Phys. 2018 (2018) 1627051, [arXiv:1707.03890].

[58] T. Barklow, K. Fujii, S. Jung, R. Karl, J. List, T. Ogawa, M. E. Peskin, and J. Tian, Improved

Formalism for Precision Higgs Coupling Fits, Phys. Rev. D97 (2018), no. 5 053003,

[arXiv:1708.08912].

[59] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793 (2019) 1–98,

[arXiv:1706.08945].

[60] T. Barklow, K. Fujii, S. Jung, M. E. Peskin, and J. Tian, Model-Independent Determination of the

Triple Higgs Coupling at e+e- Colliders, Phys. Rev. D97 (2018), no. 5 053004, [arXiv:1708.09079].

[61] H. Khanpour and M. Mohammadi Najafabadi, Constraining Higgs boson effective couplings at

electron-positron colliders, Phys. Rev. D95 (2017), no. 5 055026, [arXiv:1702.00951].

[62] C. Englert, R. Kogler, H. Schulz, and M. Spannowsky, Higgs characterisation in the presence of

theoretical uncertainties and invisible decays, Eur. Phys. J. C 77 (2017), no. 11 789,

[arXiv:1708.06355].

[63] G. Panico, F. Riva, and A. Wulzer, Diboson interference resurrection, Phys. Lett. B 776 (2018)

473–480, [arXiv:1708.07823].

[64] R. Franceschini, G. Panico, A. Pomarol, F. Riva, and A. Wulzer, Electroweak Precision Tests in

High-Energy Diboson Processes, JHEP 02 (2018) 111, [arXiv:1712.01310].

[65] S. Banerjee, C. Englert, R. S. Gupta, and M. Spannowsky, Probing Electroweak Precision Physics via

boosted Higgs-strahlung at the LHC, Phys. Rev. D 98 (2018), no. 9 095012, [arXiv:1807.01796].

[66] C. Grojean, M. Montull, and M. Riembau, Diboson at the LHC vs LEP, JHEP 03 (2019) 020,

[arXiv:1810.05149].

[67] A. Biekoetter, T. Corbett, and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, SciPost Phys. 6

(2019), no. 6 064, [arXiv:1812.07587].

[68] D. Goncalves and J. Nakamura, Boosting the H → invisibles searches with Z boson polarization, Phys.

Rev. D99 (2019), no. 5 055021, [arXiv:1809.07327].

[69] R. Gomez-Ambrosio, Studies of Dimension-Six EFT effects in Vector Boson Scattering, Eur. Phys. J. C

79 (2019), no. 5 389, [arXiv:1809.04189].

– 57 –

http://arxiv.org/abs/1609.04833
http://arxiv.org/abs/1602.01698
http://arxiv.org/abs/1603.03385
http://arxiv.org/abs/1604.06444
http://arxiv.org/abs/1602.05202
http://arxiv.org/abs/1608.01509
http://arxiv.org/abs/1707.03890
http://arxiv.org/abs/1708.08912
http://arxiv.org/abs/1706.08945
http://arxiv.org/abs/1708.09079
http://arxiv.org/abs/1702.00951
http://arxiv.org/abs/1708.06355
http://arxiv.org/abs/1708.07823
http://arxiv.org/abs/1712.01310
http://arxiv.org/abs/1807.01796
http://arxiv.org/abs/1810.05149
http://arxiv.org/abs/1812.07587
http://arxiv.org/abs/1809.07327
http://arxiv.org/abs/1809.04189


[70] F. F. Freitas, C. K. Khosa, and V. Sanz, Exploring SMEFT in VH with Machine Learning,

arXiv:1902.05803.

[71] S. Banerjee, R. S. Gupta, J. Y. Reiness, and M. Spannowsky, Resolving the tensor structure of the Higgs

coupling to Z-bosons via Higgs-strahlung, Phys. Rev. D100 (2019), no. 11 115004, [arXiv:1905.02728].

[72] S. Banerjee, R. S. Gupta, J. Y. Reiness, S. Seth, and M. Spannowsky, Towards the ultimate differential

SMEFT analysis, JHEP 09 (2020) 170, [arXiv:1912.07628].

[73] A. Biekötter, R. Gomez-Ambrosio, P. Gregg, F. Krauss, and M. Schönherr, Constraining SMEFT

operators with associated hγ production in Weak Boson Fusion, arXiv:2003.06379.

[74] J. Y. Araz, S. Banerjee, R. S. Gupta, and M. Spannowsky, Precision SMEFT bounds from the VBF

Higgs at high transverse momentum, arXiv:2011.03555.

[75] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Top, Higgs, Diboson and Electroweak Fit to the

Standard Model Effective Field Theory, JHEP 04 (2021) 279, [arXiv:2012.02779].

[76] S. Banerjee, R. S. Gupta, O. Ochoa-Valeriano, M. Spannowsky, and E. Venturini, A fully differential

SMEFT analysis of the golden channel using the method of moments, JHEP 06 (2021) 031,

[arXiv:2012.11631].
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[113] M. Krämer, B. Summ, and A. Voigt, Completing the scalar and fermionic Universal One-Loop Effective

Action, JHEP 01 (2020) 079, [arXiv:1908.04798].

[114] S. Das Bakshi, J. Chakrabortty, C. Englert, M. Spannowsky, and P. Stylianou, ATLAS Violating CP

Effectively, arXiv:2009.13394.

[115] S. Das Bakshi, J. Chakrabortty, and M. Spannowsky, Classifying Standard Model Extensions Effectively

with Precision Observables, Phys. Rev. D 103 (2021), no. 5 056019, [arXiv:2012.03839].

[116] U. Haisch, M. Ruhdorfer, E. Salvioni, E. Venturini, and A. Weiler, Singlet night in feynman-ville:

one-loop matching of a real scalar, Journal of High Energy Physics 2020 (Apr, 2020).

[117] S. Dawson, P. P. Giardino, and S. Homiller, Uncovering the High Scale Higgs Singlet Model, Phys. Rev.

D 103 (2021), no. 7 075016, [arXiv:2102.02823].

[118] S. Dittmaier, S. Schuhmacher, and M. Stahlhofen, Integrating out heavy fields in the path integral using

the background-field method: general formalism, Eur. Phys. J. C 81 (2021) 826, [arXiv:2102.12020].

[119] I. Brivio, S. Bruggisser, E. Geoffray, W. Kilian, M. Krämer, M. Luchmann, T. Plehn, and B. Summ,
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