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We report Gaussian boson sampling (GBS) experiments which produce up to 113 photon detection events
out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed,
exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and
efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new
method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules
out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment
passes a nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the
GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic
quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼ 1043, and a sampling rate ∼ 1024

faster than using brute-force simulation on supercomputers.

The tantalizing promise of quantum computational speedup
in solving certain problems has been strongly supported by re-
cent experimental evidence from a high-fidelity 53-qubit su-
perconducting processor [1] and Gaussian boson sampling [2–
4] (GBS) with up to 76 detected photons. Analogous to the
increasingly sophisticated Bell tests [5] that continued to re-
fute local hidden variable theories [6], quantum computational
advantage tests [7–9] are expected to provide increasingly
compelling experimental evidence [1, 2] against the Extended
Church-Turing thesis [10]. In this direction, continued com-
petition between upgraded quantum hardware and improved
classical simulations [11–18] are required.

Boson sampling, proposed by Aaronson and Arkhipov [3],
is an intermediate model of linear optical quantum com-
putation [19, 20]. Realizing boson sampling with a level
of post-classical computational complexity requires high-
performance quantum light sources, a large-scale, low-loss
photonic circuit, and high-efficiency single-photon detectors,
all of which are essential building blocks for universal quan-
tum computation using photons. Gaussian boson sampling
(GBS) exploits squeezed vacuum states as input non-classical
light sources, with a significant advantage of dramatically
increasing the output multi-photon click probability [4, 21].
Experimentally, generating an increasingly large array of
squeezed states with near-unity photon indistinguishability
and collection efficiency, and sufficiently high brightness, si-
multaneously, is still a non-trivial challenge [2, 22–24]. To in-
crease the number of input squeezers or their brightness, one

typically uses stronger pump laser power, or, if the total power
is fixed, narrows the focus waist. However, the stronger pump
power and tighter focus could result in self-focusing and self-
phase modulation that lower both the photon purity and the
collection efficiency. Due to this problem, in the previous
GBS experiment [2], band-pass filters were used to increase
the photon indistinguishability to 0.938 at the cost of decreas-
ing the collection efficiency to 0.628.

Stimulated emission of squeezed photons.—To overcome
this limitation, inspired by the concept of light amplification
by stimulated emission of radiation (LASER), we design a
new, scalable quantum light source based on stimulated emis-
sion of squeezed states. A schematic drawing is displayed
in Fig. 1a. The idea is that spontaneously generated photon
pairs, in resonance with the pump laser, stimulate the para-
metric emission of the second photon pair in a gain medium
[25]. In our experiment, transform-limited laser pulses at a
wavelength of 775 nm are focused on PPKTP crystals to gen-
erate two-mode squeezed states (TMSS). After the PPKTP,
the pump laser and the collinear TMSS photons are reflected
back by a concave mirror, which are used as seeds to stimulate
the second parametric process. The birefringence walk-off be-
tween the horizontally and vertically polarization photons of
the TMSS is compensated using a quarter-wave plate (see Fig.
S1). The dispersion between the pump laser and the TMSS is
compensated by eliminating the frequency correlation in the
design of the PPKTP crystals (Fig. S2).

By tuning a quartz wedge plate to change the relative phase

ar
X

iv
:2

10
6.

15
53

4v
2 

 [
qu

an
t-

ph
] 

 5
 J

ul
 2

02
1



2

0.90

0.92

0.94

0.96

0.98

1.00

0.85

0.87

0.89

0.91

0.93

0.95

Purities of 25 TMSSs Efficiencies of 25 TMSSs
d

a cb

e

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25
...

50 SMSSs

U
144×144

14
4 

si
ng

le
-p

ho
to

n 
de

te
ct

or
s

ppKTPLens DM
Concave 
mirror

Silicon KTP

QWP
250 kHz
pulse

Phase
plate

Lens

775 nm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

... -0.04 -0.02 0.00 0.02
0

200

400

600

F
re

qu
en

cy

Phase (rad)

FIG. 1. The key experimental parameters. (a) Squeezed light amplification by stimulated parametric down-conversion. Both the pump
and parametric photons are refocused by the concave mirror back to the PPKTP for stimulated emission. The down-converted photons are
polarization-exchanged by the QWP and its relative phase with pump light are tuned by the wedge phase plate. The squeezed light passed
a KTP crystal for birefringence compensation and an antireflection coated silicon plate for filtering out residual pumping light, before being
collected into the single-mode fiber. (b) The purities of the 25 squeezed light sources with an average of 0.961. (c) The collection efficiencies
of the 25 squeezed light sources with an average of 0.918. (d) An overview of the GBS set-up. 25 pairs of two-mode squeezed photons are sent
into a 144-mode interferometer, and the output distribution is readout by 144 single-photon detectors. (e) Phase stability of the whole set-up.
The histogram shows that the phase fluctuations are within λ/100 in an hour.

between the reflected pump laser and the TMSS, we observe
an interference fringe of the brightness of the TMSS (Fig.
S3). The interference visibility is 0.951, showing the degree
of mode matching of the seed and the stimulated TMSS. At
constructive interference, the stimulated process increases the
brightness of the source by a factor of ∼ 3 compared to the
previous single-pass scheme. Equivalently, we can lower the
pump power and use large focus waist to generate TMSS with
both higher indistinguishability and collection efficiency. In
this work, at a waist of 125 µm (65 µm), the measured col-
lection efficiency is 0.918 (0.864), and the photon purity is
0.961 (0.946) simultaneously, without any narrowband filter-
ing (see Fig. 1b,c). We note that our double-pass scheme
can be straightforwardly extended to higher orders and gener-
ate higher brightness, which can serve as a scalable and near-
optimal quantum light source.

144-mode phase-locked interferometer.—We generated 25
TMSS sources using the stimulated scheme (see Fig. S4 for
their phase and squeezing parameters), and send them into a
144-mode interferometer to implement random unitary trans-
formations (see Fig. 1d and Fig. S5 for an illustration of
the whole set-up). The compact 3-dimensional interferome-
ter [26] includes 2 polarization modes and 72 spatial modes.
The interferometer features a very high transmission rate of
96.5%. Taking into account of the single-mode fiber coupling,
the additional polarizing beam splitter, wave plates, and fil-
ters, the overall efficiency is 78%. The relative path length
difference between different ports is calibrated within a stan-
dard deviation of 1.6 µm (Fig. S6), indicating that the wave

packet overlap inside the interferometer is better than 0.999.
After the interferometer, the output photons are detected by
144 superconducting nanowire single-photon detectors with
an average efficiency of 83% (Fig. S6).

In contrast to Fock-state boson sampling [3] where there is
no phase relation between single photons, GBS relies on co-
herent superposition of the photon numbers. To this aim, we
develop active phase locking over the whole optical path and
passive stabilization inside the interferometer. For the active
locking, as displayed in Fig. S7, a continuous-wave 1450-
nm laser is split into 26 paths; one is used as a reference,
and the other 25 are combined and co-propagates with the 25
TMSSs. We implement an optical phase-locking loop [27] for
each TMSS. The phase fluctuation of the whole system is con-
trolled within λ/100 for a duration of one hour, as shown in
Fig. 1e. Such a phase instability will cause a∼ 0.5% decrease
of the photon interference visibility.

Fig. S8 plots the reconstructed matrix of the 144 × 144
interferometer. To confirm if the obtained matrix is unitary,
we calculate the product with its Hermitian conjugate, which
gives an identity matrix (Fig. S9). We further compare the
Fig. S8 with the ideal Haar-random matrix elements, which
shows a good agreement (see Fig. S10).

Validating GBS.—We perform GBS at different laser pump
power (from 0.15 W to 1.6 W) and focal waists (65 µm and
125 µm), which gives rise to different photon number distribu-
tions. Four examples are shown in Fig. 2a, where the maximal
output click number ranges from 32 to 113.

To validate the obtained samples, we hope to further pro-
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FIG. 2. Validation of GBS. (a) Photon clicks distribution at different pump power and focal waists. (b) Output photon-click distribution of
the experiment (red), theoretical prediction (orange), thermal state (blue), and distinguishable photons (purple). The experimental GBS data
perfectly overlaps with the theoretical curve, while strongly deviates from the other three mockups. (c) Bayesian test against the hypothesis of
distinguishable photons with subsystem mode number ranging from 100 to 144. (d) The calculated Bayesian ∆H as a function of the subsystem
mode number. For all the hypotheses, it is clear that the validation confidence is stronger for a larger mode number. (e-h) The experimental
results of Bayesian ∆H at different laser pump power and focal waists for the validations against the thermal state (e), distinguishable photons
(f), uniform samplers (g), and coherent state (h). The color coding is the same as panel (a). Error bars represent one standard deviation of
uncertainty.

vide evidence for the correct operation of the GBS, and rule
out mockups using possible spoofing methods [28–30]. The
most plausible hypotheses in this experiment include using
coherent light sources (lasers) as input, distinguishable pho-
tons (owing to mode mismatch and imperfect light sources),
thermal states (due to excessive photon loss), and uniform ran-
dom outcome.

First, we compare the total output click number distribu-
tion with the possible mockups. Fig. 2b shows that the ex-
perimental GBS data perfectly overlaps with the theoretical
prediction, while strongly deviates—in both their line shapes
and peak positions—from the classical mockups based on dis-
tinguishable photons and thermal states.

Having studied the ensemble distributions, we proceed to
validate the individual multi-photon click samples. The val-
idation protocols, such as Bayesian test [29], likelihood test
[30], and heavy output generation [2], require the calculation
of the probability of each sample, that is, the corresponding
submatrix Torontonian. Such calculations are exponentially
hard for classical computation, and the threshold is around
40 photons. However, our experiment involves much larger
number of photon clicks, reaching a maximal of 113. To tame
the validation in the intractable regime, we propose a com-
putationally friendly method. The idea is that, we start from a
subsystem with fewer output bosonic modes, which is compu-
tationally easier. Intuitively, the strength of the validation will
become stronger if there are less modes traced out. There-
fore, if one can rule out mockups even in the subsystem and
observe an increasing trend when the mode number increase,
then the confidence of the whole system—although cannot be
computed directly—will be stronger.

In the standard Bayesian test [29], for each measured event

k, we useQk andRk to denote the probability associated with
the GBS and a mockup sampler. We define Bayesian counter
CB as:

CB = χN/(χN + 1), where χN =

N∏
k=1

Qk
Rk

. (1)

χN > 1 indicates that the experimental samples are more
likely from the GBS than the mockup. CB is the probabil-
ity that the samples are from the GBS after testing N events.
We further define Bayesian: ∆H = logχN/N , to measure
the strength of the validation for unit samples. A larger value
of ∆H indicates a larger deviation between the GBS and the
mockups [31].

Fig. 2c shows a typical example of the Bayesian test for
subsystem size from 100 to 144, which is used for the val-
idation of the sample against mockups using distinguishable
photons. The Bayesian counter CB grows rapidly and reaches
over 99.6% after 50-100 events. The Bayesian tests against
other hypotheses are plotted in Fig. S11.

The low pumping intensity regime with less than 40 max-
imal photon clicks is within the computational capability of
classical supercomputers. Thus, we can validate the data
over the full range of photon clicks and mode number. Fig.
2d shows the calculated Bayesian ∆H as a function of the
subsystem mode size from 50 to 144, which, for all the hy-
potheses, clearly shows an increasing validation confidence
for larger mode number.

Next, we move to the computationally intractable regime
under high pumping intensity. The Bayesian ∆H are calcu-
lated and plotted with varying mode size for the validations
against the thermal states (Fig. 2e), distinguishable photons
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FIG. 3. Truncated correlation functions of the GBS machine. (a) Nonclassicality test of experiment. The colored areas correspond to the
classically simulable regimes, while our experiment results (red dots) are well above color area. (b)-(e) are the truncated first- to fourth-order
correlation functions of calculated theoretical values (y axis) and extracted experimental results (x axis), respectively. The results clearly
indicate that our data have genuine correlations. (f) Extracted p-values of Spearman’s rank-order tests. The vertical axis is − ln(p)/L, where
L is the number of samples. The red dots are from our experimental dataset within 200 s, which drops exponentially when the correlation
order linearly increase. By fitting, we extrapolate that there is up to correlations of 19± 1 order in our experiment for p < 0.05. The blue dots
are from a hypothetic dataset within 100 hours. Using the same method, we estimate that correlations of 43 ± 7 order can be determined.

(Fig. 2f), uniform samplers (Fig. 2g) and coherent state (Fig.
2h). At the high laser intensity regime, the supercomputer
can only handle the data at the subspaces with 20-80 output
bosonic modes. For all the tested data, we observe that not
only ∆H > 0, but also it follows the same increasing trend as
in the low intensity regime. This allows us to infer that the full
mode samples in the quantum advantage regime that share the
same set-up can be validated with a stronger confidence.

Limits on classical simulability of GBS.—GBS is suscep-
tible to experimental imperfections which might degrade the
quality of the photon interference to the point that the experi-
ment becomes classically simulable [32–34], in the sense that
a classical efficient strategy exists to produce samples which
cannot be distinguished to within some chosen accuracy from
those coming from the quantum sampler. The main sources of
noise in GBS are photon loss, photon distinguishability, noise
on the interferometer, and detector dark counts.

For GBS, two main strategies for classical simulation exist.
The first uses the non-negativity of quasi-probability distri-
butions (QPD) (generalizations of the Wigner function) as a
strategy for simulation. The second uses the fact that in GBS,
the marginal distributions of photon numbers (i.e., the proba-
bilities to observe some subset of detection events irrespective
of the others) are informative about the complete probability
distribution.

For the QDP based simulations, an inequality exists that
that demarcates the regime of simulability [32]. Thus, any
finite-sized experiment must pass this inequality to show that
it is not simulable by this strategy. The inequality is given by
[32]:

sech
{

1

2
Θ

[
ln

(
1− 2qD

ηe−2r + 1− η

)]}
> e−ε

2/4K , (2)

where r is the squeezing parameters, η is the overall photon
transmission rate, K is the number of squeezed sources, ε
is the total variance distance of the experimental GBS sam-
ples compared to the ideal cases, Θ is the ramp function
Θ(x) := max(x, 0), and qD = pD/ηD is calculated from
the photon detector efficiency (ηD) and dark count rate (pD).
Summarizing the efficiencies at the quantum light sources, in-
terferometer, and detectors, the overall transmission rate in
our experiment is 48% and 54% at the focal waists of 65 µm
and 125 µm, respectively. As we plot in Fig. 3a, this inequal-
ity is violated for any ε for all the chosen parameters, which
makes our experiment pass the nonclassicality test.

The second family of simulation strategies [16, 31, 34, 35]
relies on low-order information of the probabilities to estimate
the true distribution, such as using the truncation of Fourier
transformation of the interfering probability amplitudes to ob-
tain a polynomial simulation scheme and the marginal distri-
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groups of TMSS phases. The average of diagonal elements is 0.068(1), which represents the statistical fluctuating noise due to finite samples.
The average of off-diagonal elements is 0.32(1), represent successfully distinguishing samples with 30 groups of TMSS phases. (c) Normalized
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(blue dot), thermal state (black triangle) mockup and distinguishable photons (purple triangle) mockup. Each point is from one setting of the
TMSS phases.

butions of photons which can be computed efficiently [36].
The physical picture in the GBS is that interference processes
of n photons are represented in the distribution by the n-th-
order marginal distributions. The computational cost of com-
puting a k-th order marginal probability is the same as com-
puting the probability of a k-photon boson sampler, i.e. 2k,
up to a polynomial factor. Since the marginals provide some
information about the distribution, it may be possible to con-
struct mockup distributions which resemble the true quantum
distribution. For Fock-state [3] and superposition state boson
sampling [34], it is known how to do this efficiently. For GBS,
a straightforward extension of this scheme has so far failed
[34].

Since there is no concrete marginal-based simulation strat-
egy based on GBS, there is no clear equation to validate
against. To argue the degree to which our results are robust
against simulation schemes based on marginal distributions,
we investigate the truncated high-order correlations present in
our dataset. The truncated k-order correlation quantifies the
degree to which the corresponding k-body marginal cannot
be explained by the marginal output distribution of 1-body to
(k − 1)-body coincidence. Truncated k-order correlation can
be recursively defined as [37–39]

κ (X1X2 . . . XN )

= E (X1X2 . . . XN )−
∑
p∈Pn

∏
b∈p

κ
[
(Xi)i∈b

]
, (3)

where Pn represents all the partitions of {1, 2, . . . , k}, except
the universal set. Examples of the experimental and theoreti-
cal truncated 1-order to 4-order correlations are plotted in Fig.
3b to 3e. It is evident that the experimental results are highly
consistent with the theoretical results, indicating the presence
of nontrivial genuine high-order correlation in the GBS data.
In order to quantitatively extract relatively small high-order
correlations from the statistical noise, we use Spearman’s

rank-order test to calculate p-values to against the hypothesis
that the experimental and theoretical results are irrelevant. We
extrapolated the p-value of Spearman’s rank-order test (Fig.
3f), and estimated that there are up to (19± 1)-order correla-
tions for p < 0.05 already in the data collected within 200 s
[40]. We estimate that a 100-hour data collection—which is
feasible in our set-up—can further reveal up to (43± 7)-order
correlations.

Finally, we comment on whether this level of higher-order
correlations is sufficient to protect against classical simula-
tion. If a scheme exists that uses the k-th order marginals
in an efficient way (e.g., by only computing those marginals
associated with a given configuration of outcomes), such a
scheme will be able to efficiently simulate our system. For a
scheme that requires a full enumeration of all marginals [31],
and then an inversion of the full marginals problem, there is
an additional efficiency overhead, since there are combinato-
rially many such marginals. We estimate that for a classical
computer, computing all marginals up to ∼ 10th order is al-
ready unfeasible. Since our experimental data contains non-
trivial correlations up to ∼ 19th order, we expect our results
to be robust against such a simulation scheme. We hope that
our work will inspire new efforts for quantitative characteriza-
tions for the GBS and new classically efficient spoofing meth-
ods [32–35] to challenge the GBS device. All raw data has
been archived online to encourage the development and test-
ing [41].

Phase-programmable GBS.—The transformation matrix in
the GBS is determined by both the interferometer and the
squeezing parameters and phases of the input TMSS. There-
fore, by changing the input parameters, the underlying matrix
can be reconfigured and the GBS machine can be programmed
to solve different parameters. Here, we demonstrate the pro-
grammability of the GBS quantum computer by setting 30 dif-
ferent groups of random phases of the input TMSS, as shown
in Fig. 4a. To change the phases, we add adjustable elec-



6

2013 2015 2017 2019 2021
100

1010

1020

1030

1040

D
im

en
si

on
of

st
at

e
sp

ac
e

Year

This work

30 45 60 75 90 105 120

100

105

1010

1015

1020

1025

Q
ua

nt
um

ad
va

nt
ag

e
ra

tio

Maximal output photon number

a

b

FIG. 5. Dimension of Hilbert space and quantum advantage ratio.
(a) Summary of the output Hilbert spaces of boson sampling and
random circuit sampling. This work (red star) has a Hilbert space
of ∼ 1043. (b) The quantum advantage ratio (compared to direct
simulation with classical computers) as a function of the maximally
detected photon clicks. Based on brute-force simulation, a tentative
quantum advantage ratio of 1024 is observed in this work.

tric delay lines to the reference signal to which each TMSS is
phase locked.

Due to the huge Hilbert space dimension, it is not feasi-
ble to directly compare the 30 groups of output samples with
their theoretical distribution. To extract distinguishable sta-
tistical properties of the 30 groups of samples, we use two-
point correlation function [37], which is defined as Ci,j =〈

Πi
1Πj

1

〉
−
〈
Πi

1

〉 〈
Πj

1

〉
, where

〈
Πi

1

〉
= I− |0〉i〈0|i represent

a click in mode i. The two-point correlation method is suit-
able for characterization as it can eliminate the influence of
unbalanced amplitudes between different modes, and allows
to extract the photon interference terms only.

There are 144 × 143/2 = 10296 combinations of Ci,j for
each phase setting. To quantify the distance between the 30
groups, we calculate the total variance distances of the Ci,j
between any two groups, and plot the results in Fig. 4b. The
diagonal elements—the settings with the same phase—have
an average of 0.068(1), which is the noise level of statistical
fluctuations due to finite samples. However, the average of
the other elements has an average of 0.32(1), which is signif-
icantly larger than the statistical fluctuation, thus successfully
distinguishing the data of the 30 different groups.

We further investigate the statistical properties of the
two-point correlation functions of the experimental samples,

their theoretical predictions, and three mockups with ther-
mal state and distinguishable photons. As shown in Fig.
4c, the horizontal axis is normalized mean in the form of
〈C〉M2/N2, and the vertical axis is skewness written as(
〈C3〉 − 3〈C2〉〈C〉+ 2〈C〉3

)
/

√
(〈C2〉 − 〈C〉2)

3, where C
represent the two-point correlation functions, and M,N rep-
resent the number of output and input modes, respectively.
Each point is from one setting of the TMSS phase. The re-
sults are close to the theoretical calculation and clearly far
away from the two mockups. Note that the statistical proper-
ties of the GBS samples vary with different phases thus have
scattered plots, while those of the mockups with thermal state
and distinguishable photons are not affected by the phase thus
have only one data point.

The classical computational cost.—Quantum computing
experiments are rapidly moving into new realms of increas-
ing size and complexity. One characteristic is output Hilbert
space dimension. Fig. 5a plots the computational state-space
dimension of the boson sampling [2, 22, 24, 26, 30, 42–53]
and random circuit sampling experiments, where the current
work reaches a new record to ∼ 1043.

Finally, we estimate the classical computational cost to sim-
ulate the GBS. We choose the benchmarking algorithm [54]
by calculating Torontonian on the Sunway TaihuLight super-
computer [55]. For each output multi-photon sample, we cal-
culate the corresponding time cost used by the supercomputer
to obtain one sample by calculating the submatrix Torontoni-
ans, which is plotted in Fig. S14 for different pumping in-
tensity. The overall classical time cost is then compared to
the sample collection time (200 s) using the GBS quantum
computer, which we call quantum advantage ratio here. The
advantage ratio is summarized in Fig. 5b as a function of
the maximally detected photon clicks in the quantum exper-
iments. We observe a transition from no quantum advantage
(the ratio is 10−3 − 100, light green area), modest speedup
(the ratio is 100 − 1010, light yellow area), to overwhelming
speedup (the ratio is 1010 − 1024, light red area).

We emphasize again that this estimation is based on the di-
rect simulation algorithm [54]. With the ongoing develop-
ment of more efficient classical algorithms [12, 14, 16, 35]
and possibly by exploiting the photon loss and partial distin-
guishability [32–34], we expect and encourage classical algo-
rithmic improvements to narrow the quantum-classical gap.
Meanwhile, inspired by the classical algorithmic improve-
ments and possible spoofing methods, the GBS quantum com-
puter will also continue to be upgraded to compete with the
classical simulation. For example, the stimulated squeezed
light sources developed here can be straightforwardly scaled
to higher orders and larger photon numbers, with near-unity
efficiency and indistinguishability simultaneously.

Outlook.—The GBS links to several potentially applica-
tions such as quantum chemistry [56–58], graph optimization
[59–61], and quantum machine learning [62, 63]. By adjust-
ing only the squeezing parameters and phases, the current set-
up can already be used for quantum machine learning [62].
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A natural next step would be to use the GBS quantum com-
puter developed here as a special-purpose photonic platform
to investigate whether these algorithms can provide any quan-
tum speedup [64]. Finally, the quantum optical set-up con-
sisting of squeezed states fed into a linear optical network
and followed by photon detection can be used for the creation
of different family of entangled states [65]. One prominent
example is the intrinsically fault-tolerant Gottesman-Kitaev-
Preskill code [66].
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