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Abstract. The Logarithmic Linear Relaxation (LLR) algorithm is an efficient method for
computing densities of states for systems with a continuous spectrum. A key feature of this
method is exponential error reduction, which allows us to evaluate the density of states of
a system over hundreds of thousands of orders of magnitude with a fixed level of relative
accuracy. As a consequence of exponential error reduction, the LLR method provides a robust
alternative to traditional Monte Carlo calculations in cases in which states suppressed by the
Boltzmann weight play nevertheless a relevant role, e.g., as transition regions between dominant
configuration sets. After reviewing the algorithm, we will show an application in U(1) Lattice
Gauge Theory that has enabled us to obtain the most accurate estimate of the critical coupling
with modest computational resources, defeating exponential tunneling times between metastable
vacua. As a further showcase, we will then present an application of the LLR method to the
decorrelation of the topological charge in SU(3) Lattice Gauge Theory near the continuum limit.
Finally, we will review in general applications of the LLR algorithm to systems affected by a
strong sign problem and discuss the case of the Bose gas at finite chemical potential.

1. Introduction
Markov Chain Monte Carlo (MCMC) are particularly well suited in calculations in which
ensemble averages of extensive quantities that can be expressed explicitly as a function of
the fields need to be computed. While cases in this category cover a good cross-section of
relevant quantities in physics, they are by no means exhaustive. In fact, there are various
scenarios, ranging from computations of partition functions to the sign problem, in which MCMC
are inefficient. In this contribution, we will review the Logarithmic Linear Relaxation (LLR)
algorithm, which enables us to overcome the limitations of MCMC methods in the presence of
small overlaps between domains of relevant configurations. The superior performance of this
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algorithm is provided by exponential error reduction1, which is a central feature of the method.
This proceeding is organised as follows. We will present the LLR algorithm for real action

systems and provide some example applications in Sect. 2. In Sect. 3, we will formulate the
algorithm for complex action systems and discuss its application in a numerical study of the Bose
gas at finite chemical potential, which is a popular benchmark model for assessing the efficiency
of an algorithm at circumventing the sign problem. Sect. 4 will summarise our contribution and
outline some further directions of investigation.

2. The LLR algorithm for real action systems
Let us start by considering an Euclidean quantum field theory2 written in a general form, whose
path integral is given by the expression

Z(β) =

∫
[Dφ]e−βS[φ] . (1)

Here, φ is a field configuration over a lattice Λ, β is the coupling and S the action. The integral
is performed over all possible values of the fields. The density of states associated to a value E
of the action S of the model is defined as

ρ(E) =

∫
[Dφ]δ(S[φ]− E) . (2)

Using this expression for ρ, we can reformulate the path integral as an integral over all possible
energy values weighted by the density of states and the Boltzmann measure:

Z(β) =

∫
dEρ(E)e−βE = e−βF . (3)

If the density of states is known, free energies and expectation values are accessible via simple
numerical integrations. For instance, for an observable that depends only on E,

〈O〉 =

∫
dEρ(E)O(E)e−βE∫
dEρ(E)e−βE

. (4)

Therefore, an algorithm that enables us to compute ρ(E) will straightforwardly give us access,
through a numerical integration, to the free energy F and to values of thermodynamic ensemble
averages of observables depending on E as a function of β. For systems with discrete energy
levels, an algorithm of this type, the celebrated Wang-Landau algorithm, was provided in [1].
The LLR method, which was inspired by the latter work, is an algorithm for the calculation of
densities of states in systems with a continuous spectrum [2, 3]. This algorithm is implemented as
follows. We start by dividing the (continuum) energy interval of the system in N sub-intervals
of amplitude δE , with the interval n centered at the value En. We then define a piecewise
continuous local linear approximation of log ρ(E) as

log ρ̃(E) = an (E − En) + cn for En − δE/2 ≤ E ≤ En + δE/2 , (5)

which is valid for sufficiently small width δE of the energy sub-intervals. We obtain an as the
root of the stochastic equation

〈〈∆E〉〉an =

∫ En+
δE
2

En−
δE
2

(E − En) ρ(E)e−anEdE = 0 (6)

1 We use the expression exponential error reduction to indicate that the relative error of a quantity is independent
from the value of the latter.
2 Although for the sake of definiteness in this work we use the language of Euclidean quantum field theories, a
translation of the method to a statistical mechanics context is immediate.



using the Robbins-Monro iterative method [4]

lim
m→∞

a(m)
n = an , a(m+1)

n = a(m)
n − α

m

〈〈∆E〉〉
a
(m)
n

〈〈∆E2〉〉
a
(m)
n

, α constant . (7)

In Eqs. (6) and (7) we have used the double-angle notation for the expectation of an observable
O(E), which is defined as

〈〈O(E)〉〉an =
1

N

∫ En+
δE
2

En−
δE
2

O(E)ρ(E)e−anEdE , N =

∫ En+
δE
2

En−
δE
2

ρ(E)e−anEdE . (8)

These energy-restricted integrals can be easily reformulated as integrals over the all spectrum
with sharp cut-offs provided by appropriate Heaviside functions. These sharp cut-offs can be
replaced with a smooth Gaussian cut-off [5]. The double-angle expectations are computed with
a MCMC restricted to the relevant energy interval. Note that if we repeat the Robbins-Monro
algorithm starting from different random numbers, asymptotically, at fixed number of iterations

m, the a
(m)
n are gaussianly distributed around the root an = a

(∞)
n with a variance that goes

to zero as m increases. This property provides an immediate strategy for converting potential
systematic errors into statistical errors in the root finding procedure.

After computing the an for all n, setting c1 = 0, the piecewise continuity of log ρ̃(E) gives

cn =
δ

2
a1 + δ

n−1∑
k=2

ak +
δ

2
an , n ≥ 2 . (9)

The numerically determined ρ̃(E) can be used in path integral calculations in lieu of ρ(E).
This procedure result in a systematic approximation error in δE that is however controlled,
since it scales quadratically with the width of the sub-intervals. Remarkably, our procedure for
determining ρ̃ provides exponential error suppression [3]. It is worth noting that the restricted
sampling discussed above is non-ergodic. Ergodicity can be recovered using the replica exchange
method, as discussed in [6].

Exponential error suppression has been proved to be spectacularly implemented in the method
in [2], where, using the piecewise continuous density of states that has been reconstructed over
250000 orders of magnitude, it has been shown that the LLR-determined SU(3) lattice gauge
theory plaquette agrees with MCMC calculations over a wide range of β values that interpolate
between the strong coupling and the weak coupling regime of the theory.

Due to the presence of a first-order deconfinement phase transition, a notoriously hard to
simulate system is compact U(1) lattice gauge theory. The best available MCMC calculations
used a large amount of computer time on then state-of-the-art supercomputers, reaching a
maximum lattice size of 184 when periodic boundary conditions were imposed [7]. Using
the LLR algorithm, we were able to perform accurate and robust calculations with moderate
computational resources on a 204 lattice [3]. A reconstruction of the probability distribution
of the energy at the pseudocritical value of β obtained on our largest system with the LLR
algorithm is shown in Fig. 1.

More recently, we have shown in [8] that the LLR algorithm mitigates significantly the
problem of the topological freezing [9] by performing a calculation of the correlation time of
the topological charge in SU(3) pure gauge theory near the continuum limit. Fig. 2 shows that,
compared to MCMC methods, the LLR algorithm reduces this correlation time by about one
order of magnitude.

Other successful applications of the LLR method include the calculation of the order-disorder
interface tension in the Potts model [6] and the calculation of the renormalisation constant for
the energy-momentum tensor in SU(2) lattice gauge theory using the method of shifted boundary
conditions, which in turn requires computations of free energies from partition functions [5].
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Figure 1. Probability distribution of the energy E for compact U(1) lattice gauge theory at
β = 1.011006 (central estimate for the critical value using the latent heat peak) on a 204 lattice.
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Figure 2. Correlation time of the topological charge for SU(3) gauge theory at the lattice
volumes shown as a function of the lattice spacing. The “unconstrained” points are obtained
with a standard heat bath method, while the “rewt” points come from LLR simulations.

3. The LLR algorithm for complex action systems
We now consider an Euclidean quantum field theory with a complex action, whose path integral
we write as

Z(µ) =

∫
[Dφ]e−βS[φ]+iµQ[φ] . (10)

The generalised density of states is defined as

ρ(q) =

∫
[Dφ]e−βS[φ]δ(Q[φ]− q) . (11)
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Figure 3. Computation of the overlap free energy for the Bose gas at finite chemical potential
for various volumes. A linear extrapolation in 1/V to the thermodynamic limit is also shown.

In terms of ρ(q), we rewrite Z as

Z(µ) =

∫
dqρ(q)eiµq . (12)

In general, the above integral is strongly oscillating, These oscillations generate the large
cancellations typical of a sign problem scenario. Because of the latter, when performing a
calculation ρ(q) in general needs to be known with an extraordinary degree of accuracy.

The severity of the sign problem is indicated by the vev of the phase factor in the phase
quenched ensemble:

〈eiµq〉 =
Z(µ)

Z(0)
= e−V∆F → 0 exponentially in V . (13)

Eq. (13) shows that the sign problem can be reformulated as an overlap problem, as the ensemble
average of the phase factor depends on the overlap of relevant configurations for two different
partition functions, which is exponentially suppressed with the volume. Since the LLR method
has proved to be very efficient at computing regions with suppressed densities, it is natural
to explore how it performs in this case3. We note though that, while the computation of the
density is in the scope of the LLR algorithm, integration is a separate problem. In particular,
in the complex case, it has been shown in [11] that a piecewise approximation of ρ does not
provide sufficient precision for computing relevant observables. In the same work, using a Z(3)
spin model as a prototype system, the authors showed that a polynomial interpolation of ρ can
be performed that is stable against the order of the interpolation and at the same time provides
the required accuracy4.

More recently, the method has been applied to the four-dimensional Bose gas system at finite
chemical potential [13]. Fig. 3 shows the computation of the overlap free energy ∆F as a function

3 A method for calculations of densities of states for systems with complex actions that is similar in spirit to the
LLR algorithm is the FFA method, first proposed in [10].
4 See [12] for a related proposal for the interpolation of the density based on a cumulant expansion.



of the volume V for the latter system at chemical potential µ = 0.8. Volumes up to the size
V = 164 have been used. A linear extrapolation in 1/V (also reported in the figure) gives

∆F = (0.012557± 0.000004)− (0.329± 0.008)

V
, (14)

whose infinite volume limit is reassuringly close to the mean-field result ∆FMF ' 0.012522
computed in [14]. At the same time, the LLR result is sufficiently accurate to expose the
expected deviations from the mean-field value.

4. Conclusions
The LLR algorithm enables accurate computations of density of states that can be used
for precise calculations in scenarios in which MCMC are known to be inefficient. In this
contribution, we have reviewed in particular some applications to first-order phase transitions,
to the decorrelation of the topological charge and to the sign problem. A natural future direction
is an extension to the algorithm to systems with fermions [15].
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