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Abstract: Cosmologically active Brans-Dicke (or dilaton) scalar fields are generically ruled

out by solar system tests of gravity unless their couplings to ordinary matter are much sup-

pressed relative to gravitational strength, and this is a major hindrance when building realistic

models of light dilatons coupled to matter. We propose a new mechanism for evading such

bounds if matter also couples to a light axion, that exploits nonlinear target-space curvature

interactions to qualitatively change how the fields respond to a gravitating source. We find

that dilaton-matter couplings that would be excluded in the absence of an axion can become

acceptable given an additional small axion-matter coupling, and this is possible because the

axion-dilaton interactions end up converting the would-be dilaton profile into an axion profile.

The trajectories of matter test bodies are then controlled by the much weaker axion-matter

couplings and can easily be small enough to escape detection. We call this mechanism Axion

Homeopathy because the evasion of the dilaton-coupling bounds persists for extremely small

axion couplings provided only that they are nonzero. We explore the mechanism using axio-

dilaton equations that are SL(2,R) invariant (as often appear in string compactifications),

since for these the general solutions exterior to a spherically symmetric source can be found

analytically. We use this solution to compute the relevant PPN parameter, γPPN , and verify

that γPPN − 1 can be much smaller than it would have been in the absence of axion-matter

couplings and can therefore evade the experimental bounds.
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1. Introduction

Brans-Dicke (BD) theories of gravity have a long, well-motivated history [1, 2, 3, 4]. They

are perhaps the simplest examples of scalar-tensor theories [5] that satisfy the principle of

equivalence, and so automatically evade all constraints coming from its very stringent obser-

vational tests [6] even if they are light enough to mediate macroscopically long-range forces.

They can do so because of their defining feature: the Brans-Dicke scalar couples to matter

only as part of a scalar-dependent ‘Jordan-frame metric’,

g̃µν = A2(ϕ) gµν , (1.1)

that is related to the ‘Einstein-frame’ metric, gµν (for which the Einstein equations take the

standard form) by aWeyl-rescaling factorA2(ϕ). The original Brans-Dicke theory corresponds

to the choice

A(ϕ) = egϕ/Mp (1.2)

where ϕ is the canonically normalized Einstein-frame scalar field and g is the Brans-Dicke

coupling.1 More general ‘quasi-Brans-Dicke’ models correspond to other choices for A(ϕ).

Although not limited by Equivalence-Principle tests, the strength of BD-matter couplings

are constrained to be much weaker than gravity by other, somewhat less sensitive, tests of

General Relativity (GR) (see for instance [7, 8, 9, 10, 11, 12, 13]). The best solar-system

1This is related to the traditional Brans-Dicke parameter ω through the relation g2 = 1/(3 + 2ω).
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tests currently come from the radar-delay measurements performed in the solar system using

the Cassini probe [14], and require that the parameterized post-Newtonian (PPN) metric

parameter [15] γPPN , arising in the expansion of g̃µν in powers of GM/r, must satisfy∣∣∣γPPN − 1
∣∣∣ = 2g2

1 + g2
< 2.3× 10−5 , (1.3)

where γPPN = 1 is the prediction of GR.

Theorists often revisit this class of models because it is also theoretically well-motivated.

Brans-Dicke-like scalars appear naturally in UV complete theories like string theory, where

they arise as the dilatons for the various accidental scaling symmetries that are generic in

higher-dimensional supergravities [16, 17, 18, 19]. These supergravities in turn inherit these

scaling symmetries from the perturbative expansions of string theory itself [20]. They also

arise in other cosmological models that involve scaling symmetries (accidental or otherwise)

[21], such as in attempts to describe the current cosmic acceleration in terms of a rolling

scalar (quintessence) field [22, 23], and in particular those that rely on exponential scaling

potentials [24, 25, 26, 27].

Unfortunately most models predict matter-dilaton couplings that are of gravitational

strength2 and so too large to be consistent with (1.3). For this reason it is natural to conclude

that these scalars should acquire potential energies that stabilize them and give them masses

heavy enough to preclude them mediating forces with ranges significant for astrophysics. If

so they would be irrelevant for late-universe cosmology. This point of view is also reinforced

by the well-known sensitivity of scalar potentials to quantum effects (usually summarized as

‘technical naturalness’ difficulties associated with keeping scalars very light).

Can Brans-Dicke scalars ever escape these arguments and be relevant to cosmology? So

far as masses go, the objection to having a small but technically natural mass can be evaded

if the BD scalar is a pseudo-Goldstone boson [28] with a shift symmetry.3 Alternatively, a

gravitationally coupled scalar with lagrangian

L = −
√
−g

[
M2

p

2
∂µφ∂

µφ+ v4U(φ)

]
(1.4)

and generic potential satisfying U(φ⋆) ∼ U ′′(φ⋆) ∼ O(1) in the vicinity of a minimum at

φ = φ⋆ generically has a mass of order v2/Mp and it is an old observation [29] that this is

automatically extremely light (of order the present-day Hubble scale H0) if there should be

a natural explanation why v4 is of order the present-day Dark Energy density (i.e. if there

were a solution to the cosmological constant problem4).

2Light axions need not satisfy similar constraints because their pseudoscalar nature can allow them not to

couple as strongly to matter.
3Being the Goldstone boson for scale invariance itself is usually insufficient because the strength of scale-

breaking effects.
4See [30] for a recent approach to this problem that builds on scale invariance and so indirectly rests on a

mechanism like the one we describe to evade solar-system bounds.
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But can gravitational strength dilaton-matter couplings for such light particles escape

solar system tests? Over the years several proposals have been made to effectively screen the

coupling of a BD field to ordinary matter. Damour and Polyakov [31] for instance exploit

the fact that matter couplings dominate scalar evolution during cosmology to argue that BD

fields should evolve cosmologically to eliminate any matter couplings.5 Khoury and Weltman

[32] proposed the chameleon mechanism in which the matter density modifies the mass of

the BD field that is large enough to evade the bounds. Other related mechanisms have been

also considered (for a review see for instance [33] and references therein). These screening

mechanisms usually assume fairly specific couplings and in particular usually do not apply for

scale-invariance dilatons. Despite many attempts, no working mechanism has emerged that

applies to the dilaton (or to other moduli fields that arise from UV completions like string

theory).

We here introduce a new mechanism that can allow gravitational strength dilaton cou-

plings to evade observational bounds provided the low-energy theory contains an axion partner

that combines with the dilaton to have a curved target-space metric. For instance, in string

examples the dilaton, τ , and axion, a, would be the real and imaginary parts of the complex

axio-dilaton field T = 1
2(τ + ia). Although the dilaton-matter coupling tries to generate an

unacceptably large dilaton field, our mechanism uses the dilaton-axion derivative couplings

(associated with target-space curvature) to convert the would-be dilaton into a dominantly

axion configuration. Provided the axion field has even a very small but non-vanishing cou-

pling to matter (and so must have nonzero derivatives) this mechanism is able to ensure that

the resulting field configuration does not much affect test-particle motion (thereby avoiding

solar system bounds), and instead mediates weaker spin-dependent interactions which are

much less constrained (see for instance [34]). The couplings required by our mechanism are

generically present in UV completions such as string theory.

We illustrate the physics using the special case of the SL(2,R) invariant axio-dilaton

system, for which the field equations external to a spherically symmetric source can be ex-

plicitly integrated. We assume when doing so that any potential energy of the axio-dilaton

field is negligible compared to the matter density, and we compute the boundary conditions

that match the external solutions to the interior solution at the surface of the source (e.g. a

star) at r = R.

Although our mechanism was motivated by a recent proposal to address the dark energy

problem [30] in which this type of complex axio-dilaton field plays a key role, most of this

proposal’s bells and whistles are not required for the underlying mechanism described here.

2. Brans-Dicke scalars

This section summarizes the bare bones couplings of a Brans-Dicke scalar under the assump-

tion that its scalar potential – and in particular its mass – is small enough to be negligible on

5Unfortunately this process is usually too slow for gravitationally coupled scalars, motivating studies with

stronger couplings [9].

– 3 –



the scales of to be studied. Our interest is in how such scalars impinge on tests of GR in the

solar system, and to do so we rederive the PPN parameter that appears in the most dangerous

constraints (which the models of §3 subsequently evade despite having couplings that at face

value should have been ruled out). This section contains largely standard material and so

impatient readers and axio-dilaton aficianados can skip this section without loss.

2.1 The vanilla model

Brans-Dicke model is a particular instance of class of scalar-tensor theories that couple a

single light scalar ϕ to matter and to gravity through a Lagrangian density of the form

L = −
√
−g

[
M2

p

2
R+

1

2
(∂ϕ)2 + V (ϕ)

]
+ Lm(g̃µν , ψ) . (2.1)

Here R is the Ricci scalar built from gµν , while M
−2
p = 8πG with G being Newton’s constant

for universal gravitation and ψ is a representative matter field. The defining feature of this

class of models is that ϕ couples to matter only through the Jordan-frame metric, defined by

g̃µν = A2(ϕ) gµν , (2.2)

where gµν is the Einstein-frame metric used in the rest of the lagrangian (2.1). Having matter

only couple through g̃µν ensures that the model predicts no preferred-frame effects and so

immediately evades all bounds coming from tests of the Equivalence Principle [6].

Brans-Dicke theory corresponds to the special case where the scalar potential V (ϕ) is

negligible and where

A(ϕ) = exp
(
gϕ/Mp

)
, (2.3)

for some coupling g. For historical reasons g is often traded for the Brans-Dicke parameter ω

defined by g2 = 1/(3+ 2ω). This kind of coupling is theoretically well-motivated and is often

encountered in the context of theories with approximate scale invariance for which ϕ is called

the dilaton and the above assumptions imply that matter fields have a universal ϕ-dependent

mass m = m0A(ϕ).

Conserved currents

With these choices a matter stress-energy can be defined using either metric:

T̃µν :=
2√
−g̃

δSm
δg̃µν

and Tµν :=
2√
−g

δSm
δgµν

, (2.4)

that are related to one another by

Tµν(x) = A6(ϕ) T̃µν(x) , Tµ
ν = A4 T̃ ν

µ and Tµν = A2 T̃µν , (2.5)

where Tµ
ν = gµλT

λν while T̃ ν
µ = g̃µλT̃

λν and so on. Of these, diffeomorphism invariance

ensures that the matter equations of motion alone suffice to imply conservation of D̃µT̃
µν = 0,
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where D̃µ is the covariant derivative built using the Christoffel symbol of g̃µν . By contrast,

diffeomorphism invariance only ensures that the sum of Tµν with the ϕ-field stress energy is

covariantly conserved when the matter equations of motion for both ϕ and matter are satisfied.

It is sometimes useful to consider perfect fluids and for these the stress tensors define the

pressure and energy density,

T̃µν = (ρ̃+ p̃) ŨµŨν + p̃ g̃µν and Tµν = (ρ+ p)UµUν + p gµν (2.6)

where Uµ and Ũµ are the 4-velocities of observers co-moving with the fluid, normalized to

satisfy g̃µνŨ
µŨν = −1 and gµνU

µUν = −1. Chasing through the definitions implies the

Einstein-frame and Jordan-frame energy density and pressure are related by

p = A4(ϕ) p̃ and ρ = A4(ϕ) ρ̃ , (2.7)

and so an equation of state like w = p/ρ = p̃/ρ̃ takes the same form in either frame.

Response to nonrelativistic sources

Varying the action built from the lagrangian density (2.1) leads (in Einstein frame) to the

dilaton equation

□ϕ(x) +
g

Mp
gµνT

µν = 0 , (2.8)

and the trace-reversed Einstein’s equation

Rµν +
1

M2
p

∂µϕ∂νϕ+
1

M2
p

[
Tµν −

1

2
gλρTλρ gµν

]
= 0 . (2.9)

The trace-reversed Einstein equation simplifies in the nonrelativistic limit near flat space,

for which the only significant source of stress energy is the energy density ρ≫ p and the only

significant source of curvature is Rtt ≃ ∇2Φ, where Φ ∈ g00 is the Newtonian potential.

In this case, if ϕ is time-independent, then the t-t component of (2.9) simplifies to Pois-

son’s equation

∇2Φ− ρ

2M2
p

= ∇2Φ− 4πGρ ≃ 0 , (2.10)

which for a spherically symmetric source of mass M =
∫
d3x ρ implies the usual exterior

solution Φ = −GM/r where (as usual) an integration constant is chosen by requiring Φ

vanish as r → ∞.

The dilaton equation (2.8) in this same limit becomes

0 = □ϕ+
g

Mp
gµνT

µν ≃ ∇2ϕ− gρ

Mp
. (2.11)

Defining the dimensionless field φ := ϕ/Mp we see that φ/(2g) satisfies the same equation as

does Φ and so φ ≃ φ∞ + 2gΦ. Exterior to the star this implies

φ = φ∞ − 2gGM

r
. (2.12)

What complicates finding similarly explicit solutions to these equations interior to the star is

the φ-dependence that is hidden in ρ due to expressions like (2.7) (see for example [35, 11]).
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2.2 Parameterized post-Newtonian metric

Tests of gravity compare the observed motion of test particles with the motion predicted by

the above field configurations. In this theory test particles built from the matter part of

the lagrangian move (in the absence of other forces) along the geodesics of the Jordan frame

metric, g̃µν . They do so because this is the metric that appears in their kinetic term (and so

which controls the eikonal approximation for matter fields, whose point-particle limit gives

geodesic motion [7]).

The parameterized post-Newtonian (PPN) framework [15] compares the motion predicted

by g̃µν to that obtained in GR order-by-order in powers of GM/r by writing

g̃µνdx
µdxν = −

[
1− 2GM

r
+ 2(βPPN − γPPN)

(
GM

r

)2

+ · · ·

]
dt2 (2.13)

+

[
1 + 2γPPN

(
GM

r

)
+ · · ·

]
dr2 + r2dΩ2 .

The Schwarzschild solution of General Relativity corresponds to γPPN = βPPN = 1 and GR’s

success in describing solar-system observations using the Cassini probe [14] currently requires

the bound (1.3).

We next rederive the standard formula for how γPPN depends on g so that we can repeat

this calculation for the model encountered in §3. Conceptually, there are two reasons why g̃µν
differs from the metric one would have had in GR: (i) the Weyl factor A in g̃µν = A2gµν causes

the Jordan-frame and Einstein-frame metrics to differ, and (ii) the Einstein-frame metric gµν
itself solves the Einstein equation with scalar stress energy even exterior to the source (rather

than being Ricci flat as in GR). We consider each of these contributions in turn, and show

why it is the contribution from the Weyl scaling factor A(ϕ) that dominates at leading order

in GM/r.

Response to φ stress-energy

Consider first the change in the Einstein-frame metric due to the presence of scalar-field stress

energy. The field equation (2.9) becomes (outside the matter source)

Rµν + ∂µφ∂νφ = 0 , (2.14)

and so writing φ = φ∞ + φ1/r (with φ1 = −gGM) and adopting the metric

ds2 = −e2u(r)dt2 + e2v(r)dr2 + r2dΩ2 , (2.15)

we have6

Rrr = u′′ + (u′)2 − u′v′ − 2v′

r
= −(φ′)2 = −φ

2
1

r4
, (2.16)

6Using Weinberg’s curvature conventions [36].
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while

Rtt = e2(u−v)

[
−u′′ − (u′)2 + u′v′ − 2u′

r

]
= 0 , (2.17)

and

Rθθ = −1 + e−2v
[
1 + r(u′ − v′)

]
= 0 . (2.18)

Eliminating u′′ between (2.16) and (2.17) leads to

r

2

[
−Rrr − e2(v−u)Rtt

]
= u′ + v′ =

φ2
1

2r3
, (2.19)

which integrates to give

u+ v = − φ2
1

4r2
, (2.20)

once the integration constant is fixed by the asymptotic condition u+ v → 0 as r → ∞.

Substituting this into (2.18) gives a differential equation for u(r) alone that can be ap-

proximately solved by linearizing, u = ū+u and v = v̄+v, around the Schwarzschild solution

e−2v̄ = e2ū = 1 − (ℓ/r), with integration constant ℓ. One finds in this way the linearized

version of (2.18),

u′ − v′

r
− 2v

r2
e−2ū = 0 (2.21)

which together with u+ v = −φ2
1/(4r

2) implies

v′ +
v

r − ℓ
=

φ2
1

4r3
. (2.22)

This has as general solution

v =
C

r − ℓ
+
φ2
1(ℓ− 2r)

8r2(r − ℓ)
=
C

r
+
Cℓ

r2
− φ2

1

4r2
+O(1/r3) (2.23)

and

u = −v− φ2
1

4r2
= −C

r
− Cℓ

r2
+O(1/r3) . (2.24)

where C is the integration constant.

The metric components to leading order in GM/r then are

e2u ≃ 1− ℓ+ 2C

r
+O(1/r2) and e2v ≃ 1 +

ℓ+ 2C

r
+O(1/r2) , (2.25)

showing that C can be absorbed into the definition of ℓ (i.e. requiring the correct Newtonian

limit requires we set ℓ+ 2C = 2GM). Once this is done expressions (2.25) first deviate from

Schwarzschild at order 1/r2 and so are too small to contribute to the key PPN parameter

γPPN of (2.13), given that φ1 = gGM .
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Weyl rescaling

At linear order in 1/r only the Weyl factor A is therefore relevant for γPPN . Writing

A = A∞

[
1 +

a1
r

+
a2
r2

+ · · ·
]

(2.26)

the Jordan-frame metric becomes

g̃µν dx
µ dxν = A2

∞

[
1 +

2a1
r

+
a21 + 2a2

r2
+ · · ·

]
×
[
−
(
1− 2GM

r
+O(r−2)

)
dt2 (2.27)

+

(
1 +

2GM

r
+O(r−2)

)
dr2 + r2dΩ2

]
.

To preserve the standard form for the metric’s angular part we redefine the coordinate

r → r̂ :=
A(r)

A∞
r = r + a1 +

a2
r

+ · · · (2.28)

so that
GM

r
=
GM

r̂
+ a1

(
GM

r̂2

)
+ · · · and dr = dr̂

(
1 +

a2
r̂2

+ · · ·
)
. (2.29)

After the additional coordinate rescalings t̃ := A∞t and r̃ := A∞r̂ the metric becomes

g̃µν dx
µ dxν = −

[
1− 2(GM − a1)A∞

r̃
+ · · ·

]
dt̃2

+

[
1 +

2(GM + a1)A∞
r̃

+ · · ·
]
dr̃2 + r̃2dΩ2 ,

The coefficient of 1/r̃ in g̃tt defines the mass of the gravitating source if this is only

measured by the geodesic motion of bodies in its gravitational field (as is usually the case in

astronomy). Defining therefore GM̃ = (GM − a1)A∞ and ã1 := a1A∞ and ã2 := a2A
2
∞ and

so on, we have −gt̃t̃ = 1− (2GM̃/r̃) + · · · while the radial component becomes

g̃r̃r̃ = 1 +
2(GM̃ + 2ã1)

r̃
+ · · · . (2.30)

Comparing this with (2.13) then implies

γPPN = 1 +
2ã1

GM̃
=
GM + a1
GM − a1

. (2.31)

For instance for a Brans-Dicke scalar we have A = egφ and φ = φ∞ − (gGM/r) and so

A∞ = egφ∞ and a1 = −g2GM , reproducing the familiar result [7]

γPPN =
1− g2

1 + g2
=
ω + 1

ω + 2
, (2.32)

and the last equality trades g for the traditional Brans-Dicke parameter using g−2 = 2ω + 3.
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2.3 Multiple scalars

The mechanism described here relies fundamentally on the existence of target-space curvature,

and so cannot be formulated without having at least two scalars. Consider the action

S = −
M2

p

2

∫
d4x

√
−g gµν

[
Rµν + Gab(φ) ∂µφ

a ∂νφ
b
]
+ Sm[g̃µν , ψ] (2.33)

where again g̃µν = A2(φ) gµν . The Einstein equation obtained from this generalizes (2.9) to

Rµν + Gab(φ) ∂µφ
a ∂νφ

b +
1

M2
p

[
Tµν −

1

2
gλρTλρ gµν

]
= 0 , (2.34)

where, as before, Tµν is the Einstein-frame stress-energy tensor obtained from Sm.

The scalar equation obtained by varying φa similarly generalizes (2.8) to

∂µ

[√
−g Gab ∂

µφb
]
+
√
−g

[
−1

2
∂aGbc ∂µφ

b ∂µφc +
ηa(φ)

M2
p

gµνT
µν

]
= 0 , (2.35)

where the coupling function is defined by

ηa(φ) :=
∂aA

A
. (2.36)

Eq. (2.35) can be more geometrically written as

□φa + Γa
bc ∂µφ

b ∂µφc +
1

M2
p

ηa(φ) gµνT
µν = 0 , (2.37)

where ηa := Gabηb and

Γa
bc :=

1

2
Gad

[
∂bGcd + ∂cGbd − ∂dGbc

]
(2.38)

is the Christoffel symbol of the second kind built from the target-space metric Gab. It is the

Γa
bc∂φ

b∂φc terms in (2.37) that are crucial in the discussions of §3. This term is not usually

present in the single-scalar example because it can be eliminated using a field redefinition.

Kähler target space

In order to be more explicit, let us consider a Kähler target space typical of the supersymmet-

ric case in which we have complex fields, za and zā and the metric is Kähler: Gac = Gāc̄ = 0

while locally Gac̄ = ∂a∂c̄K for some choice of Kähler potentialK(z, z̄). For such geometries all

components of the Christoffel symbols with mixed a and ā indices vanish, leaving as nonzero

only the purely holomorphic combination Γa
bc and its complex conjugate:

Γa
bc = Gēa∂bGcē = K ēaKbcē , (2.39)

where subscripts as usual denote derivatives. Motivated by [30] we are also interested in the

case where the coupling to matter is controlled by7

A = eK/6 , (2.40)

7Supersymmetry underlies this motivation because the function K controls both the geometry of the scalar

target-space metric and the non-minimal coupling of the scalars to the spacetime curvature.
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in which case the matter-coupling vector has complex components

ηa =
∂aA

A
=
Ka

6
and ηa = K c̄aηc̄ =

K c̄aKc̄

6
. (2.41)

Axio-dilaton example

The important yet minimal example used in §3 involves two real fields combined into a single

complex field T = 1
2(τ + ia), for which K = −3 ln(T + T ) = −3 ln τ . These choices imply

GTT = KTT =
3

(T + T )2
=

3

τ2
and ΓT

TT = − 2

T + T
= −2

τ
, (2.42)

and the further choice

A = eK/6 =
1√
τ

implies ηT =
KT

6
= − 1

2τ
and ηT = −τ

6
. (2.43)

With these choices — and choosing non-relativistic matter (for which gµνT
µν = −ρ) —

eq. (2.37) then becomes

□T − 2

τ
∂µT ∂

µT +
τ

6M2
p

ρ = 0 , (2.44)

whose real and imaginary parts then give

□a− 2

τ
∂µτ ∂

µa = 0 (2.45)

and

□τ − 1

τ

[
∂µτ ∂

µτ − ∂µa ∂
µa

]
+

τ

3M2
p

ρ = 0 . (2.46)

Notice that constant a solves these equations and switching in this case to the new variable

τ = eζφ [for which τ−1□τ = ζ □φ+ζ2∂µφ∂µφ] implies (2.46) reduces to the Brans-Dicke form

□φ = −ρ/(3ζM2
p ) (as in (2.11)). As elaborated below, canonical normalization corresponds

to ζ =
√
2/3, and so comparing to (2.11) shows that the Brans-Dicke coupling is g = −1/

√
6.

3. Axio-Dilaton

The previous section introduces a simple axio-dilaton model involving a complex field T =
1
2(τ + ia) for which the dilaton-matter coupling obtained for τ when a is constant is g =

−1/
√
6 ≃ −0.41. At face value, using γPPN = (1− g2)/(1 + g2) then implies |γPPN − 1| = 2

7 ,

which is much too large to satisfy the observational constraint (1.3).

In this section we show how even extremely small matter couplings to the axion a can

allow this size of a matter-dilaton coupling to escape solar system bounds. This happens

because the nonlinear τ -a derivative couplings modify the prediction (2.32) for γPPN , and

do so by having the matter-τ coupling largely produce an external a profile rather than a τ

profile. This evades solar-system bounds because the axion field influences test-body motion

much less efficiently than does the dilaton.

We continue to assume throughout this section that the axion and dilaton masses are

negligible for solar-system applications (but return briefly in §4 to comment on possible

implications of an axion mass).

– 10 –



3.1 Symmetries and field equations

Consider therefore the special case of the axio-dilaton described in §2.3 in somewhat more

detail. The model’s lagrangian density is

L = −
√
−g M2

p

[
R
2

+
3 ∂µT ∂µT

(T + T )2

]
+Lm = −

√
−g M2

p

[
R
2

+
3

4

(
∂µτ ∂µτ + ∂µa ∂µa

τ2

)]
+Lm ,

(3.1)

where T = 1
2(τ + ia) and we assume the matter couples to τ only through the Jordan-frame

metric g̃µν = A2(τ) gµν with A = τ−1/2. We do allow the possibility that matter can also

couple directly to the axion independent of g̃µν , though only very weakly. Writing τ = eζφ and

demanding the kinetic term in (3.1) become −1
2 M

2
p

√
−g (∂φ)2 is what determines ζ =

√
2/3,

as quoted earlier.

Specialized to non-relativistic sources these choices give the following axio-dilaton field

equations

□τ − 1

τ

(
∂µτ ∂

µτ − ∂µa ∂
µa

)
+

τ ρ

3M2
p

= 0 , (3.2)

and

□a− 2

τ
∂µτ ∂

µa+
τ2A
3M2

p

= 0 , (3.3)

where ρ = −gµνTµν is used for non-relativistic matter with

Tµν :=
2√
−g

δSm
δgµν

and A :=
2√
−g

δSm
δa

. (3.4)

The trace-reversed Einstein equations are given by (2.34), specialized to the above choices:

Rµν +
3

4τ2

(
∂µτ ∂ντ + ∂µa ∂νa

)
+

1

M2
p

[
Tµν −

1

2
gλρTλρ gµν

]
= 0 . (3.5)

3.1.1 SL(2,R) invariance and conservation laws

These equations prove to be relatively simple to integrate, largely because of the number of

conservation laws that they admit. In particular notice that the non-matter part of the action

is invariant under the following SL(2,R) transformation

T =
1

2
(τ + ia) → aT − ib

icT + d
(3.6)

where the four real parameters a through d satisfy the constraint ad − bc = 1. Notice that

these three real parameters include as special cases the axionic shift symmetry a → a − 2b

(when a = d = 1 and c = 0) and scale invariance T → a2T (when d = 1/a and b = c = 0).

Noether’s theorem implies there must be three conserved currents, and these can be taken

to be

Jµ
A =

∂µa

τ2
(axion shift symmetry) (3.7)
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Jµ
S =

∂µτ

τ
+
a ∂µa

τ2
(scaling symmetry) (3.8)

as well as

Jµ
N =

(τ2 − a2)

τ2
∂µa− 2a

τ
∂µτ (nonlinear symmetry) , (3.9)

where the last conservation law corresponds to the nonlinear transformation δT = −iϵT 2

obtained when a = d = 1 while b = 0 and c = ϵ ≪ 1. As is straightforward to verify, direct

differentiation together with use of the field equations (3.2) and (3.3) implies these currents

are all conserved in the absence of sources

DµJ
µ
A = − A

3M2
p

, DµJ
µ
S = −(ρ+ aA)

3M2
p

and DµJ
µ
N =

(a2 − τ2)A+ 2a ρ

3M2
p

. (3.10)

Spherically symmetric source

We next record the field equations and conservation laws for spherically symmetric solutions,

for which τ = τ(r) and a = a(r). Denoting differentiation with respect to r by primes, the

field equations (3.2) and (3.3) reduce to

τ ′′ +
2τ ′

r
− (τ ′)2

τ
+

(a′)2

τ
+

τ ρ

3M2
p

= 0 , (3.11)

and

a′′ +
2 a′

r
− 2 a′τ ′

τ
+
τ2A
3M2

p

= 0 , (3.12)

while the three conservation laws become[
r2

(
a′

τ2

)]′
= − r2A

3M2
p

(Jµ
A conservation) , (3.13)

[
r2

(
τ ′

τ
+
a a′

τ2

)]′
= − r2

3M2
p

(ρ+ aA) (Jµ
S conservation) (3.14)

and {
r2

[
(τ2 − a2)a′

τ2
− 2a τ ′

τ

]}′
=

r2

3M2
p

[
(a2 − τ2)A+ 2 a ρ

]
(Jµ

N conservation) . (3.15)

The conservation laws (3.13) and (3.14) provide useful information when they are inte-

grated within the interior of the source, using the boundary condition a′(0) = τ ′(0) = 0 at the

center of the matter distribution at r = 0 that is required by spherical symmetry. Assuming a

and τ themselves remain bounded at r = 0 we find expressions for the radial field derivatives

just exterior to the edge of the source (which we imagine occurs at r = R):(
a′

τ2

)
r=R

= − 1

3M2
pR

2

∫ R

0
dr r2A(r) , (3.16)

and (
τ ′

τ
+
a a′

τ2

)
r=R

= − 1

3M2
pR

2

∫ R

0
dr r2

[
ρ(r) + a(r)A(r)

]
. (3.17)

The implication of the third conservation law is explored in the next section.
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3.2 Spherically symmetric exterior solutions

We next explicitly integrate the axio-dilaton field equations to obtain their general solution

external to the gravitating source.

3.2.1 Trivial axion solution

For the purposes of making contact to the Brans-Dicke special case it is worth first exploring

the limit A = 0. In this case the axion equation (3.12) is trivially solved by a constant axion

field a = a0 and the dilaton equation (3.11) then becomes

φ′′ +
2φ′

r
+

ρ

3ζM2
p

= 0 , (3.18)

where τ(r) := eζφ(r).

This last form is the usual Brans-Dicke result, and is solved in the exterior region (where

ρ = 0) by the usual Coulomb-like solution found in previous sections

φ = φ∞ +
φ1

r
, (3.19)

with integration constants φ∞ and φ1. In this case the above conservation laws degenerate

into the single independent condition[
r2

(
τ ′

τ

)]′
= ζ

(
r2φ′

)′
= − r2ρ

3M2
p

(3.20)

that implies the boundary condition

φ′(R) = − 1

3ζM2
pR

2

∫ R

0
dr r2ρ = −2GM

3ζR2
(3.21)

just exterior to the source, where M = 4π
∫ R
0 dr r2ρ(r) is the mass in the absence of gravita-

tional back-reaction. Comparing to (3.19) determines the integration constant ζφ1 = 2
3GM

and comparing this to (2.12) implies g = −1/(3ζ) = −1/
√
6, as before. We wish to similarly

determine how the boundary conditions (3.16) and (3.17) fix the integration constants in the

more general case where A ≠ 0.

3.2.2 Full axio-dilaton solutions

The first step to this end is to find the general exterior solutions to identify its integration

constants and the existence of so many conservation laws allows this to be done more explicitly

than is usually possible. In the absence of sourcesA = ρ = 0 and eqs. (3.11) and (3.12) become

τ ′′ +
2τ ′

r
− (τ ′)2

τ
+

(a′)2

τ
= 0 and a′′ +

2 a′

r
− 2 a′τ ′

τ
= 0 . (3.22)
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The conservation laws provide immediate first integrals of these equations. In particular,

when ρ = A = 0 (3.13) and (3.14) trivially integrate to give

a′

τ2
=
CA

r2
(3.23)

and
τ ′

τ
=
CS

r2
− a a′

τ2
=
CS − aCA

r2
. (3.24)

Using these to eliminate τ ′ and a′ in the third conservation law (3.15) then gives an algebraic

condition relating τ and a

CN

r2
=

(τ2 − a2)a′

τ2
− 2a τ ′

τ
=

(τ2 + a2)CA

r2
− 2aCS

r2
. (3.25)

For later purposes it is noteworthy that the character of the solutions to these equations

when CA = 0 can differ qualitatively from those that arise when CA ̸= 0. To see why, notice

that if a′ = CA = 0 then equations (3.24) and (3.25) imply

τ ′

τ
=
CS

r2
and

2aτ ′

τ
= −CN

r2
, (3.26)

and so CN +2aCS = 0. This is the trivial solution given in (3.19) for which τ varies monoton-

ically with a fixed, corresponding to a vertical line when drawn in the a-τ plane. But when

CA ̸= 0 eq. (3.25) instead implies

τ2 + (a− α)2 = β2 , (3.27)

where

α :=
CS

CA

and β2 :=

(
CS

CA

)2

+
CN

CA

. (3.28)

This says that solutions sweep out circles of radius β centered at the point a = α on the

a-axis of the a-τ plane (or – more properly – semi-circles in the upper-half a-τ plane since

τ > 0: see Fig. 1).

Now comes the crucial point: retrieving Brans Dicke theories in the CA → 0 limit corre-

sponds mathematically to the observation that any vertical line is well approximated as the

arc of a circle of infinitely large radius (as in region A of Fig. 1). But that does not mean

that all arcs of that same circle look like vertical lines (such as region B of Fig. 1). For any

nonzero CA no matter how small there are always places on the circle where the dilaton τ

reaches a maximum and then decreases and these parts of the solutions do not resemble the

vertical straight lines of Brans Dicke theory at all.

The explicit r-dependence of these solutions is found by using (3.27) to eliminate τ from

(3.23), leading to

a′ =
CAτ

2

r2
=
CA

r2

[(
CS

CA

)2

+
CN

CA

−
(
a− CS

CA

)2
]
=
CA

r2

[
β2 − (a− α)2

]
. (3.29)
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𝜏

𝔞

A

B

Figure 1: Plot of semicircular axio-dilaton trajectories in the τ–a plane, together with an example

of the vertical straight line trajectory obtained in the special case a′ = 0. Region A shows how the

semicircle closely approximates the vertical straight line in the limit of very large radius. Region B

shows the screening regime in which the dilaton is suppressed for any small but finite radius.

This integrates to give ∫
da

β2 − (a− α)2
= CA

∫
dr

r2
, (3.30)

and the result is only consistent with τ2 > 0 when β2 > 0, in which case

a(r) = α− β tanhX with X(r) :=
βγ

r
+ δ , (3.31)

and γ := CA. Using this in (3.27) then gives

τ(r) =
β

coshX(r)
. (3.32)

We obtain in this way the general spherically symmetric solutions to the vacuum field equa-

tions, parameterized by the four integration constants α, β, γ and δ.

Two of the integration constants are determined by the conservation laws (3.16) and

(3.17) which become

γ = CA = R2

(
a′

τ2

)
r=R

= − 1

3M2
p

∫ R

0
dr r2A(r) , (3.33)

while

γα = CS = R2

(
τ ′

τ
+
a a′

τ2

)
r=R

= − 1

3M2
p

∫ R

0
dr r2

[
ρ(r) + a(r)A(r)

]
. (3.34)
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Figure 2: Sample dilaton (blue) and axion(orange) profiles as functions of r. Also shown is the

dilaton profile (green) in the absence of axions (i.e. when a′ = 0).

These combine to give a formula for the radial derivative of τ at the source’s surface:(
τ ′

τ

)
r=R

= −γ[a(R)− α]

R2
= − 1

3M2
pR

2

∫ R

0
dr r2

{
ρ(r) + [a(r)− a(R)]A(r)

}
. (3.35)

The third conservation law (3.15) gives CN in terms of the integration constants, with

CN = r2
[
(τ2 − a2)a′

τ2
− 2a τ ′

τ

]
= γ(β2 − α2) (Jµ

N conservation) , (3.36)

but does not provide independent information beyond what is already contained in (3.27).

The boundary condition (3.35) shows that the dilaton ‘charge’ takes its usual form (3.20)

if a(R) agrees with the weighted average (weighted by A) of a inside the source. This never

occurs if A has a definite sign, because then γ must have the opposite sign as must a′(r) for

all r interior to the source. But this also implies that a is monotonic within the source and

so a(R) cannot agree with the source average of a(r).

Similarly, γα and τ ′/τ (at r = R) must both be negative if A is negligible relative to ρ in

eqs. (3.34) and (3.35). The value of τ ′/τ at r = R is also negative whenever A has a definite

sign (regardless of whether or not it dominates ρ), because this dictates the sign of a′ and so

also fixes the sign of a(r)− a(R) in such a way that ensures [a(r)− a(R)]A is positive. And

once we know that τ ′(R) < 0 the fact that τ evolves along a circle centered on the a-axis

implies that τ(r) is monotonically decreasing outside the source as well.

Eqs. (3.33) and (3.34) show that the boundary conditions at r = R dictate the two inte-

gration constants α and γ. The remaining two integration constants are instead determined
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by the values of the fields at spatial infinity: a(r → ∞) = a∞ and τ(r → ∞) = τ∞ which the

solutions (3.31) and (3.32) imply are given by

a∞ = α− β tanh δ and τ∞ =
β

cosh δ
=

√
β2 − (a∞ − α)2 . (3.37)

In general the integration constants are therefore determined as follows: β and δ are fixed

using (3.37), and so are usually specified by the physics of the environment (such as by match-

ing to the homogeneous fields bequeathed by earlier epochs of cosmology). This boundary

condition identifies the circle on which these asymptotic fields must lie. The precise position

on this circle as a function of r is then set once α and γ are fixed by the properties of the

local gravitating source through eqs. (3.33) and (3.34).

For future use we also record the solution’s asymptotic approach to the limiting forms

(3.37), applicable when |βγ/r| ≪ |δ|:

τ =
β

coshX
=

β

cosh δ

[
1− βγ

r
tanh δ + · · ·

]
a− α = −β tanhX = −β

[
tanh δ +

βγ/r

cosh2 δ
+ · · ·

]
. (3.38)

Notice in particular that the dilaton ‘charge’ – defined as the coefficient of 1/r in the expression

for ln τ in the far-field regime – is proportional to the parameter combination βγ tanh δ. This

is what would be interpreted as 2g if the absence of the axion field, and as we see below is

what controls the size of the PPN parameter γPPN . As the next section shows, observable

effects in tests of gravity should be suppressed as either γ or δ tend to zero.

3.3 Gravitational response

We now collect all the threads: having such an explicit exterior solution allows us to compute

the metric response for this system and thereby determine its implications for the motion of

matter test-particles.

In principle the presence of the direct matter-axion coupling embodied byA(r) means that

motion of matter particles differs from the treatment described in §2.2, because direct axion-

induced forces can prevent them from moving along geodesics of the Jordan-frame metric g̃µν .

We choose as our particular focus here the limit where |A| ≪ ρ so that these direct axion-

related forces are negligible. This is a fairly natural limit given that the pseudoscalar nature

of the axion makes its individual couplings to atoms not sum as coherently in macroscopic

matter as does the energy density.

What is interesting is that despite this a tiny but nonzero A nevertheless significantly

changes how matter responds to the dilaton, because the produced axion field can divert the

external field of a source away from the dilaton and towards the axion.

To see how this works we therefore follow §2.2 and assume that A is small enough that

direct axion forces are negligible in which case test particles move along the geodesics of the

Jordan frame metric, g̃µν . Tests of gravity then test whether these differ from the geodesics

– 17 –



predicted by General Relativity. Just as in §2.2 there are two reasons why g̃µν differs from

GR: (i) the Weyl factor A in g̃µν = A2gµν causes the Jordan- and Einstein-frame metrics to

differ, and (ii) the Einstein-frame metric gµν solves the Einstein equation with axiodilaton

stress energy rather than being Ricci flat as in GR.

Consider first the second of these effects. The Einstein-frame metric’s response to scalar

stress-energy is expressed by the field equation (2.34) with ρ = A = 0:

Rµν +
3

4τ2

[
∂µτ ∂ντ + ∂µa ∂νa

]
= 0 . (3.39)

Specialized to a = a(r) and τ = τ(r) only the component Rrr is nonzero, satisfying

Rrr = −3

4

[
(τ ′)2 + (a′)2

τ2

]
= −3

4

[
C2

S − 2aCSCA + C2
A(a

2 + τ2)

r4

]
= −3γ2β2

4r4
. (3.40)

This uses the conservation laws (3.23) and (3.24) together with the semi-circle condition (3.27)

and the definitions γ = CA and β2 = (CS/CA)
2 + (CN/CA).

What is important is that eq. (3.40) is an exact expression for the axio-dilaton solution

everywhere exterior to the star, and does not invoke a large-r expansion. This means that from

the point of view of the metric the stress energy for the full axio-dilaton solution is precisely

the same as for a Brans-Dicke field – c.f. eq. (2.16) – with the replacement φ2
1 → 3β2γ2.

Repeating the arguments of §2.2 then show that within a parameterized post-Newtonian

expansion the leading corrections to the Einstein-frame metric far from the source first arise

at order 1/r2 and so are too small to contribute to the PPN parameter γPPN .

This leaves only the contribution (i) listed above; the contribution of the Weyl factor in

the expression g̃µν = A2gµν . In the present case the large-r expansion of eq. (3.38) shows that

the far-field position-dependence of the Weyl factor predicted by the axio-dilaton solutions is

A2 = eK/(3M2
p ) =

1

τ
=

coshX

β
=

cosh δ

β
+
γ

r
sinh δ +

βγ2

2r2
cosh δ + · · · . (3.41)

This also has the same form A = A∞ [1 + (a1/r) + · · · ] used for the Brans-Dicke analysis in

§2.2, allowing the results of that section to be carried over in whole cloth subject only to the

replacement

a1 =
γ

2
sinh δ . (3.42)

In particular this is what should be used in the source’s gravitational massGM̃ = GM−a1
as identified using the far-field metric component g̃t̃t̃. The key PPN parameter controlling

the leading contribution to the metric component g̃r̃r̃ similarly is

γPPN =
GM + a1
GM − a1

=
2GM + γ sinh δ

2GM − γ sinh δ
. (3.43)

What is clear is that a1 can be made as small as desired by making A sufficiently small, since

γ is completely determined by A through the boundary condition (3.33). This allows γPPN
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to be brought arbitrarily close to unity provided that δ is not compensatingly large. But the

value for δ is controlled by the boundary condition (3.37) at spatial infinity and so δ can be

arranged to be small simply by requiring a∞ not to differ much from the value of α that is

set by the boundary condition (3.34).

4. Conclusions

In summary, we propose a concrete screening mechanism for Brans-Dicke scalar fields that

can allow gravitational-strength couplings to be consistent with solar system tests of GR. In

order to be effective the mechanism requires the following conditions:

Multiple scalar fields with a curved target space (and so nonlinear derivative cou-

plings) and negligible scalar potential that have small but nonzero matter couplings.

We explore the mechanism in an explicit model consisting of an axio-dilaton whose target

space enjoys an SL(2,R) symmetry. The conservation laws associated with this symmetry

allow explicit solutions to the field equations outside a spherically symmetric source, and this

allows us to determine the exact axion and dilaton profiles. We find these profiles to have

several noteworthy features.

• Test-particle motion dominantly responds to the Jordan-frame metric, and outside the

source this differs in two ways from the metric in standard General Relativity. It

first differs because of the Weyl factor A that relates the Einstein and Jordan frame

metrics in eq. (1.1). The second difference arises because the Einstein-frame metric

responds to the stress-energy in the axio-dilaton field exterior to the source. Of these,

the former dominates because the curvature due to the presence of axio-dilaton stress-

energy appears in the metric at order 1/r2 and so is too small to contribute to the

post-Newtonian parameter γPPN .

• The contribution to γPPN coming from the Weyl factor comes through the coefficient

a1 given in (3.42). This coefficient can be determined in terms of the constants of

integration and – provided there is a small but nonzero coupling of axion to matter –

it can easily be small enough to satisfy the experimental constraint (1.3).

• The mechanism works because the target space curvature converts the field outside

the star from dilaton to axion despite the dilaton-matter coupling being much larger

than the axion-matter coupling. The axion field is not detected in solar-system tests

because its coupling to matter is assumed to be small enough that direct axion-induced

forces are negligible and because it does not appear in the the Weyl factor, to which

test-particle motion is mostly sensitive.

• The Brans-Dicke limit of vanishing axion-matter coupling is a subtle one and is illus-

trated in Fig. 1. In general the solutions trace out semicircles in the τ–a plane, centered
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on a point along the a-axis. This degenerates to a vertical line in the limit of vanishing

axion-matter coupling; a solution that becomes indistinguishable from the semicircle in

the limit of extremely large circle radius (see region A of Fig. 1). But for any finite

radius, no matter how large, the other parts of the semicircle (such as region B in Fig. 1)

do not resemble a vertical straight line. This is why small nonzero axion couplings can

change the field response relative to zero coupling in such a homeopathic way.

We believe our mechanism can help open up the exploration of cosmologies driven by axio-

dilaton fields by providing a mechanism for them to evade solar-system constraints despite

their gravitational-strength dilaton couplings. Although this does not in itself also solve the

technical naturalness problems (small scalar masses and small vacuum energies) associated

with such cosmologies, it provides a necessary ingredient once these problems are addressed.

Indeed our mechanism emerged from parallel work aimed at these naturalness problems in

which the axio-dilaton structure used here plays a central role (details of which can be found

in companion papers [30, 37]).

There is clearly much more that can be done to develop and better understand the

homeopathic screening mechanism. GR is tested in a great many ways these days, and it is

worthwhile establishing which of these tests is most sensitive to the presence of an axio-dilaton

with the assumed matter couplings.

Although not explored here, the scenario of [30] also allows (but does not require) the

axion to acquire a mass by being eaten by a dark photon through the Higgs mechanism. In

particular, the same parameters that describe the Dark Energy density easily can give a mass

of order 10−12 eV, corresponding to a Compton wavelength of order 105 km whose presence

could also have distinctive implications for observations in the solar system.

The cosmology of such a model also becomes of great interest, and [30] provides first steps

towards identifying successful cosmology. Intriguingly, because the resulting model causes

particle masses to vary as the dilaton evolves, differences between its value at recombination

and now provide an opportunity to help ameliorate the Hubble tension [38] via the mechanism

described in [39] (see also [40, 41]).
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