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Abstract: We compute the excitation of double giant resonances due to a rel-
ativistic coulomb field using a one dimensional quantic oscillator model. We show
that the introduction of small anharmonicities in the hamiltonian of the oscillator
and small non-linearities in the external exciting field changes the cross section of the
two-phonon states up to a factor 2. The results obtained within this very schematic
model indicate that small anharmonicities and non-linearities could bring the theo-

retical predictions of the cross section of double giant resonances close to the experi-
mental value.

1. Introduction

Giant resonances are collective vibrations of the nucleus. Since their discovery
in 1947, different vibrating modes of nuclei have been observed and studied. In
particular, those of lower angular momentum L are the monopole mode or "breathing
mode” (L = 0), in which the nucleus undergoes a compression and a dilatation; the
dipole mode (L = 1), where protons and neutrons oscillate one against the other and
the quadrupole mode (L = 2), where the nuclear shape changes from oblate to prolate
and viceversa (fig.1). A typical evidence of the excitation of a giant dipole resonance
is given by the photoabsorption cross section in a nucleus (fig.2)[1].

If we suppose-that-the potential-of the-nucleus is-harmonic in the general deforma-
tion parameters, then we can think of a giant resonance as the first excited state (or
1-phonon state) of an oscillator and a double giant resonance as the second excited
state (or 2-phonon state). In 1977, an indication of the existence of excited states
where a giant resonance is built on top of another one was reported for the first time
[2]. Since then the existence of two phonon states has been clearly established. These
states can be excited either through double charge exchange reactions or through
heavy ion collisions at intermediate and relativistic energies (fig.3). The latter in
particular are appropriate to strongly excite two dipole giant resonances.

In the last years , a quite huge systematics has been collected on the properties of
2-phonon states, that is their energy, their width and their cross section. From this
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Fig. 1: Three different modes of vibration of the nucleus which correspond to the Giant Monopole

Resonance (GMR), the Giant Dipole Resonance (GDR) and the Giant Quadrupole Resonance
(GQR).
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Fig. 2: Total photo neutron cross section for the ®*Cu showing the strong resonance associated with

a GDR [1].
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Fig. 3: upper left: Excitation energy spectrum obtained for 13 X e projectile interacting with a 298 Pb
target and a 12C target (circles) at 700 MeV/n (squares). The second bump (2-ph) is associated to
the excitation of a two phonon state [4]. upper right: Sum energy of coincident photon pairs with
an energy difference less than 6 MeV for peripheral events from 2°°Bi target at 1 GeV/n on 2%8Pb.
The shoulder is assigned to a two phonon state [5]. lower left: Inelastic spectrum corrected for
proton multiplicity from °Ca +70 Ca at 44 MeV/n. The peak has been shown to be the excitation
of a GQR ® GQR {6]--lewer-right:-Double-differential- cross-section for the- *®Ca(xr*, 7~)1°T; at
Tr = 295MeV. The peak corresponds to a GDR® GDR [7].
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Fig. 4: Systematics on the properties of two phonon states. The first two figures on the top show as
a function of the mass number A, the ratio of the energy of the second phonon to the energy of the
first phonon and the ratio of the width of the second phonon to the width of the first phonon. These
two ratios are consistent with a harmonic picture of the nucleus. The last figure on the bottom
shows the ratio of the experimental to the theoretical cross section of the second phonon calculated

with this harmonic approximation. As we can see, the experimental value of this cross section is -
two to four time larger than the theoretical one [3].

systematics, we can see that the ratio of the energy of the two-phonon state to the
energy of the one-phonon state is almost two (anharmonicities are at maximum of
the order of 10%) and that the width of the two-phonon state is about the width of
the one-phonon-state-times-the square-root of twe (fig.4). These results are consistent
with the hypothesis that the nucleus behaves as a harmonic oscillator. Now, the cross
section of the two-phonon state, calculated with different approaches which use this
harmonic picture happens to be two to four times smaller than the experimental value
(fig.4, [3]). In the present contribution, we will show with a very simple model that
the introduction of small anharmonicities on the energies of a quantic oscillator and

small non-linearities in the exciting coulomb field can change the cross section of the
2-phonon states up to a factor 2.



Fig. 5: Schematic representation of a harmonic oscillator potential (solid line) and of an anhar-

monic one (dashed line). The introduction of anharmonicities changes the encrgy levels and the
corresponding wave functions.

2. A simple model

In our schematic model, we consider a quantic oscillator whose hamiltonian is

- PP 1 ., a.y B,

HAN_E;+§kA +3X +ZX (1)
and where the operator X measures the deformation. For example, in the case of
a GDR, X is the distance between the centre of charge of protons and neutrons.
The higher order terms %Xs and %X" in the harmonic oscillator potential have two
effects. On one hand they change the wavefunctions because they introduce a mixing
between eigenstates with different number of phonons (fig.5) and on the other hand
they change the eigenvalues of the oscillator. The breaking of the harmonicity of the
energy spectrum depends on the sign and the values of the coefficients @ and 5. We
have evaluated these coefficients by imposing the matrix elements < 2|$X?|1 > and
<2|: gz\:’“ : |2 > equal to 1MeV, as expected from microscopic calculations {8]. As
far as the eigenenergies are concerned, the sign of a is irrelevant whereas a negative
or a positive sign of 8 makes the harmonic potential stiffer or softer, increasing or
decreasing the eigenenergies. We have chosen a negative § because, in the case of
two-GDR pheron states ~their energy should-be lower-than twice the energy of a GDR
because the anharmonicities are expected to produce a reduction of the collectivity
of the RPA states [8]. Now, when we consider a heavy-ion collision at relativistic
energies, the strongest component of the electric field is the transverse one. If we
assume that the projectile of charge Zp is travelling on a straight line trajectory
defined by an impact parameter b and a constant velocity v associated with the
Lorentz contraction factor v [9], the excitation of the transverse GDR degrees of
freedom in a nucleus of mass Ar, charge Z7 and neutron number Nr, in the linear
response approximation, can be simulated in our one dimensional oscillator model by
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Fig. 6: Schematic representation of a heavy ion collision.

the linear external field

. ZTN- - Zr N 2~b N
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which corresponds to the excitation of a GDR with 100 % of the energy weighted
sum rule (fig.6). The hamiltonian of our oscillator then becomes

H(t) = Han + W(2). (3)

In order to find the evolution of our anharmonic oscillator, we can write its wavefunc-
tion |¥(t) > as _

[B(t) >= 3" Aa(t)e™ 5! o > (4)

where the basis |¢, > and the corresponding eigenergies E, can be obtained by solving
the stationary Schroedinger equation for the hamiltonian (1). The amplitudes A,(t)
which are the projections of the wave function |(t) > on the anharmonic basis |¢, >
are obtained by solving the time-dependent Schroedinger equation associated with

H(t) and the boundary condition |[¢)(—oo) >= |0 >. Then, the probability to excite

at a given impact parameter b the first, Pj;, or the second Py, excited state of the
anharmonic oscillator will be given by

Py = |Ap(t= —+—oo)[2 and Py, = |Ay(t = +00)|2
(5)

and the integrated-eress—section 645 @ = 1,2,-can-be calculated as
oo = 27 / P (b)bdb (6)
bo

where by has to be taken such that contributions from the nuclear part of the external
field can be neglected. We have chosen by = TO(A};/J + A}r/s) with 7o = 1.5fm.

3. Results

In order to see the influence of anharmonicities on the cross section of the two-
phonon states, we have considered the reaction '3 Xe(0.7AGeV) on ?°® Pb. The mea-
sured energies of the one- and the two-phonon states in '**Xe are Egpr = 15.2MeV
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and Egprecpr = 28.3 £ 0.7TMeV and the cross sections o; = 1485 + 100mb and
0y = 215 + 50mb, respectively [4]. In the reference calculation of a harmonic oscil-
lator (@ = B = 0.) linearly excited, the cross sections result o,y = 1153mb and
Ozrey = 33mb. When we introduce a 10% of anharmonicity in the hamiltonian of the
oscillator, requiring < 2|§X3|1 >~ 1MeV and < 2| : %’X“ : |2 >~ 1MeV (that means
o = —38.6MeV /fm?, § = —188.18MeV /fm?), we get, for the 136Xe Egpr = 15.2MeV
and Egprecpr = 28.3MeV, in agreemert with the experimental data. The first value
has been kept constant by renormalizing the hamiltonian (1). The cross section of
the two-phonon state, o7, is then a factor 1.67 greater than the value obtained in
the reference calculation, whereas the cross section of the one-phonon, a1, keeps al-
most constant (first line of table 1). In order to understand the origin of the large

increase of 05, we have calculated P, and P, within perturbation theory. In first order
perturbation theory, P; is equal to

400 . .
Pelaf =1 [ < WD > Bl (7)
and can be factorised as

P, = | < &1 X|¢o > PIF1(Er)| (8)

where the first term is a transition matrix element which depends only on the wave
functions and the second term, Fy(E,), is the Fourier transform of the external field
evaluated at the energy of the one-phonon E;. In a similar way, we can write P,, in
second order perturbation theory, as

P (Al = 1 < 6o X161 >< 411X Ido > 1 Fa( B, B ()

where FQ(EQ, E;) is a double Fourier transform of the external field evaluated at the
energies E, and E, of the one-phonon and two-phonon state respectively. The first
order contribution of P, which is relative to direct transitions from the ground state

to the two-phonon state, has been evaluated and is negligeable. If we consider now
the ratio P,/P?, we have

P 1| < $:lX|dr > [* |Fa(Bs, BV (10)
PP A <X g > P AR(ED!

In the harmonic case (E, = 2E,), < d)g]X{d)l >=4v2 < ¢11X|¢0 > and Fg(Eg,El) =
|Fy(E1)|?. Therefore, the above ratio is equal to 1/2, while when anharmonicities are
taken into account, it departs from this value. The first factor contains the effects of
the anharmonicities present in the wavefunctions, while the second factor contains the
effects of the anharmonicities of the energy spectrum. It turns out that both effects
are quite important. To show this, in fig. 1, we report the ratio P,/ P2, as a function
of the impact parameter b, as obtained from four different calculations. The first
one, corresponding to the thick full line, is the complete calculation. The second one,
dashed line, is a calculation in which the wave functions are those of the harmonic
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Fig. 7: Ratio of the excitation probability of the two- to the one-phonon states, P2/ P?, as a function
of the impact parameter b. The thin solid line shows the results of the reference calculation (harmonic
and linear), the thick solid line those of the complete calculation. The dashed line represents the
results of the calculation in which only the anharmonicities in the energy spectrum are included.
Finally, the dot-dashed line refers to the case where only the mixing of the wavefunctions is included.

hamiltonian while the energies are the anharmonic ones. The third one, dash-dotted
Jine, was obtained by considering harmonic energies while the wavefunctions are those
of the anharmonic hamiltonian. For comparison, the results concerning the linear
excitation of the harmonic oscillator are also plotted. Looking at the figure, we see
that the anharmonicities in the wave functions give rise to a sizeable enhancement of
the ratio with respect to the harmonic case, whereas a very large effect comes from the
anharmonicities in the energy spectrum, especially for large impact parameters. Now,
if we turn to the cross section, we observe that the change of the matrix elements due
to the anharmonicities leads to o3/02re; = 1.44, while the modification of the energy
spectrum alone gives 0;/02,ey = 1.22. Therefore both effects equally contribute to
the factor 1.67 of increase of the two-phonon cross section.

As a final step, we can introduce in the external exciting field non-linearities
of the type SW(t)X, where the coefficient § is equal to 4.04fm~? as expected from
microscopic calculations [10]. ! In this complete calculation, 2 non-linear excitation
of an anharmonic oscillator, o, increases by a factor 2 (table 1).

In conclusion, we have seen that the introduction of small anharmonicities in
the hamiltonian of an oscillator and non linearities in the relativistic coulomb field
change significantly the cross section of the 2-phonon state. In particular, a 10%
of anharmonicity and a 17% of non-linearity can increase o, by a factor 2. This
important modification of the calculated o2 obtained with our simple model indicate
that, in a realistic calculation, this could be a way to reduce the discrepancy between

1For a microscopic justification of the anharmonic and non-linear terms, see ref.[11].



o1/a1"_aafoy”

Iin. and anhar. 1.1 1.67
non-lin. and anhar. | 1.17 2.04

Table 1: Ratios of the cross sections of the first and second phonon, o, and o3, calculated in the
case of a linear excitation of an anharmonic oscillator (first row) and of a non-linear excitation of
an anharmonic oscillator (second row) to the reference values, oy,¢y and o2,¢s, obtained in the case
of a linear excitation of a harmonic oscillator.

the theoretical and the experimental cross section of double giant resonances.

References

(1) B.L. Berman, Atomic Data and Nuclear Data Tables 15 (1975) 319.

2] N. Frascaria et al, Phys. Rev. Lett. 39 (1977) 918

[3] For a review, see Ph. Chomaz and N. Frascaria; Phys. Rep. (1995) in press.
[4] R.Schmidt et al., Phys. Rev. Lett. 70 (1993) 1767.

5] W. Kuhn, Nucl. Phys. A569 (1994) 175¢-182c

(6] J.A. Scarpaci et al, Phys. Rev. Lett. 71 (1993) 3766.

7] S. Mordechai and C. Fred Moore, Nature 352 (1991) 393.

8] F. Catara, Ph. Chomaz and N. Van Giai, Phys. Lett. B233 (1989) 6.

9] C.A. Bertulani and G.P. Baur, Phys. Rep. 163 (1988) 299.
[10] F. Catara, Ph. Chomaz and N. Van Giai, Phys. Lett. B277 (1992) 1.

[11] C. Volpe et al; submitted to Nuclear Physics A.



