Search for Non-Resonant Di-Higgs Production in the bby γ Final State at 13 TeV with the ATLAS Experiment

Jannicke Pearkes

on behalf of the ATLAS Collaboration

YSF Plenary - Higgs 2021

ATLAS-CONF-2021-016 https://cds.cern.ch/record/2759683

New physics could affect the Higgs self-coupling (λ), and greatly impact the HH cross-section.

Why HH to $bb\gamma\gamma$?

Non-SM values of κ_{λ} tend to enhance the HH production rate, especially at *low* HH invariant masses (m_{HH}).

Low trigger thresholds with $\gamma\gamma$ system \rightarrow Can select lower energy Higgs bosons

Lower energy Higgs bosons \rightarrow Sensitive to events with low m_{HH}

This leads to $bb\gamma\gamma$ being one of the best channels for measuring the Higgs self-coupling!

Selection Strategy

GeV

Events / 2.5

Excellent di-photon mass resolution allows for signal extraction in $m_{\gamma\gamma}$

Major backgrounds:

- Diphoton $\gamma\gamma$ (largest contributor)
- Single Higgs (peaks at same $m_{\gamma\gamma}$ as signal)

s/b in signal region after pre-selection is ~0.1%

Selection Strategy

Split signal regions by mbb $\gamma\gamma^*$ for sensitivity to SM and BSM HH.

Train two BDTs to target each signal region.

Selection Strategy

0.9

BDT Score

HH ggF, κ_{λ} =1

Single H

γγ**+jets**

Data

0.6

0.7

HH ggF, κ_{λ} =10

0.8

Post Selection Data/Predictions

s/b in signal region after high mass BDT tight selection is 14%

Signal Extraction

Signal model: Double-Sided Crystal Ball Normalization and shape for HH signal and single Higgs background models determined from fits to Monte Carlo simulation.

Background model: Exponential function Shape chosen by fitting Monte Carlo simulation. Normalized to the data sidebands where $m_{\gamma\gamma}$ is between 105-120 & 130-160 GeV.

Spurious signal tests performed to estimate bias introduced by choice of functional form.

HH signal strength determined through maximum likelihood fit on $m_{\gamma\gamma}$ across all four BDT categories

Results

No excess was observed, upper limits on the SM cross-section are set using the CLs method.

Observed 95% CL limit on SM crosssection is <u>4.1xSM</u> (5.5xSM expected)

Observed (expected) limits on k_{λ} : <u>-1.5 < k_{λ} < 6.7, (-2.4 < k_{λ} < 6.7)</u>

Previous Run 2 limits with 36.1 fb⁻¹ : 20xSM, -8.2 < k_{λ} < 13.2. New limits greatly improved by updated selection strategies.

Thank you!

HH Production Cross-Sections

Higgs Branching Ratios

Decay channel	Branching ratio	Rel. uncertainty
$H ightarrow \gamma \gamma$	2.28×10^{-3}	$+5.0\%\ -4.9\%$
$H \rightarrow ZZ$	2.64×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \to W^+ W^-$	2.15×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$	6.32×10^{-2}	$+5.7\% \\ -5.7\%$
$H \to b \bar{b}$	5.77×10^{-1}	$+3.2\% \\ -3.3\%$
$H \to Z \gamma$	1.54×10^{-3}	$+9.0\%\ -8.9\%$
$H \to \mu^+ \mu^-$	2.19×10^{-4}	$+6.0\%\ -5.9\%$

The Higgs Potential

The Standard Model Higgs Potential is:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$
 \uparrow
mass term self-coupling term

In the SM the shape of the potential is is well constrained by the Higgs mass and vacuum expectation value.

$$\mu = \frac{m_h}{\sqrt{2}} \qquad \lambda = \frac{m_h^2}{2\nu^2} = 0.129 \qquad \nu = \frac{\mu}{\sqrt{\lambda}} = 246 \text{ GeV}$$

But we have not directly measured the shape of the potential!

Single Higgs + HH κ_{λ}

ATLAS-CONF-2019-049

Jannicke Pearkes 18

ATLAS-CONF-2019-049

Model	$\overset{+1\sigma}{\kappa_{W-1\sigma}}$	$\kappa_{Z-1\sigma}^{+1\sigma}$	$\kappa_{t-1\sigma}^{+1\sigma}$	$\kappa_{b-1\sigma}^{+1\sigma}$	$\kappa_{\ell-1\sigma}^{ +1\sigma}$	$\kappa^{+1\sigma}_{\lambda-1\sigma}$	$\kappa_{\lambda}~[95\%~{\rm CL}]$	
κ_{λ} -only	1	1	1	1	1	$4.6^{+3.2}_{-3.8}$	[-2.3, 10.3]	obs.
					$1.0^{+7.5}_{-3.8}$	[-5.1, 11.2]	exp.	
Generic	$1.03_{-0.08}^{+0.08}$	$1.10_{-0.09}^{+0.09}$	$1.00_{-0.11}^{+0.12}$	$1.03_{-0.18}^{+0.20}$	$1.06\substack{+0.16 \\ -0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5]	obs.
Generic	$1.00_{-0.08}^{+0.08}$	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.12}_{-0.12}$	$1.00_{-0.19}^{+0.21}$	$1.00\substack{+0.16 \\ -0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6]	exp.

HH Production Channels

ggF and VBF HH Production

$bb\gamma\gamma$ Selection

<u>Two b-jets</u>

- DL1r b-tagging
- one or two jets with 77% b-tag
 WP

Trigger: Loose di-photon

HLT_g35_loose_g25_loose (15-16) HLT_g35_medium_g25_medium_L12EM20VH (17-18)

Pre-selection:

Tight and isolated

$$p_{T,1} / m_{\gamma\gamma} > 0.35, p_{T,2} / m_{\gamma\gamma} > 0.25, \eta < 1.37 \text{ or } 1.52 < \eta < 2.37 m_{\gamma\gamma} [105,160] \text{ GeV}$$

MV2 (2018) ATLAS Preliminary Simulation DL1 $f_c = 0.08$ (2018) √s = 13 TeV, PFlow jets, tt Sim. 20 GeV < p_T < 250 GeV, |η| < 2.5 ÷ $DL1r f_{p} = 0.018 (2019)$ b-jets Inclusive $\epsilon_{\rm h}$ = 77% requiremen 1.0 0.8 0.6 0.4 0.2 0.0 150 50 100 200 250 Jet p_T [GeV]

ttH suppression:

 $N_{\text{central,jets}} < 6$, to help reject hadronic top decays $N_{\text{leptons}} = 0$, to help reject leptonic top decays

b-jet Signature

Hadrons with a b-quark have a long lifetime that allows them to travel on average ~2.5mm before decaying

<u>b-tagging</u>: multivariate method for identifying jets coming from bottom quarks, combines information from track impact parameters, and secondary vertexing Require exactly two jets passing the 77% b-tag working point

MC Samples

Process	Generator	PDF set	Showering	Tune
ggF	NNLOPS	PDFLHC	Рутніа 8.2	AZNLO
VBF	Powheg Box v2	PDFLHC	Ρ υτηία 8.2	AZNLO
WH	Powheg Box v2	PDFLHC	Ρ υτηία 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Ρ υτηία 8.2	AZNLO
tTH	Powheg Box v2	NNPDF3.0nlo	Ρ υτηία 8.2	A14
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Ρ υτηία 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Ρ υτηία 8.2	A14
$\gamma\gamma$ +jets	Sherpa v2.2.4	NNPDF3.0nnlo	Sherpa v2.2.4	_
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.3lo	Рутніа 8.2	_

BDT Input Variables

Variable	Definition				
Photon-related kinematic variables					
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their				
	invariant mass $m_{\gamma\gamma}$				
n and d	Pseudo-rapidity and azimuthal angle of the leading and				
η and φ	sub-leading photon				
Jet-related kinemat	Jet-related kinematic variables				
<i>b</i> -tag status	Highest fixed <i>b</i> -tag working point that the jet passes				
	Transverse momentum, pseudo-rapidity and azimuthal				
$p_{\rm T}, \eta$ and ϕ	angle of the two jets with the highest <i>b</i> -tagging score				
4. . .	Transverse momentum, pseudo-rapidity and azimuthal				
$p_{\rm T}^{bb}$, $\eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$	angle of <i>b</i> -tagged jets system				
	Invariant mass built with the two jets with the highest				
$m_{b\bar{b}}$	<i>b</i> -tagging score				
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event				
Single topness	For the definition, see Eq. (1)				
Missing transverse momentum-related variables					
$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle				

Main Systematics

Statistically limited analysis

		Relative impact of the systematic uncertainties in $\%$		
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$	
Experimental				
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5	
Theoretical				
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5	
Spurious signal	Normalization	5.5	5.4	

Many of these systematics will continue to decrease as more data is collected

Yields

In signal region (120 GeV < $m_{\gamma\gamma}$ < 130 GeV)

	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose
Continuum background	4.9 ± 1.1	9.5 ± 1.5	3.7 ± 1.0	24.9 ± 2.5
Single Higgs boson background	0.670 ± 0.032	1.57 ± 0.04	0.220 ± 0.016	1.39 ± 0.04
ggF	0.261 ± 0.028	0.44 ± 0.04	0.063 ± 0.014	0.274 ± 0.030
$t\overline{t}H$	0.1929 ± 0.0045	0.491 ± 0.007	0.1074 ± 0.0033	0.742 ± 0.009
ZH	0.142 ± 0.005	0.486 ± 0.010	0.04019 ± 0.0027	0.269 ± 0.007
Rest	0.074 ± 0.012	0.155 ± 0.020	0.008 ± 0.006	0.109 ± 0.016
SM <i>HH</i> signal	0.8753 ± 0.0032	0.3680 ± 0.0020	$(49.4 \pm 0.7) \cdot 10^{-3}$	$(78.7 \pm 0.9) \cdot 10^{-3}$
ggF	0.8626 ± 0.0032	0.3518 ± 0.0020	$(46.1 \pm 0.7) \cdot 10^{-3}$	$(71.8 \pm 0.9) \cdot 10^{-3}$
VBF	0.01266 ± 0.00016	0.01618 ± 0.00018	$(3.22 \pm 0.08) \cdot 10^{-3}$	$(6.923 \pm 0.011) \cdot 10^{-3}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	6.36 ± 0.05	3.691 ± 0.038	4.65 ± 0.04	8.64 ± 0.06
Data	2	17	5	14

Two reconstructed photons ($\gamma\gamma$) coming from a Higgs candidate

> Two reconstructed bottom quark jets (bb) coming from a Higgs candidate