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We study the information content of the angle-averaged redshift space galaxy bispectrum. The main
novelty of our approach is the use of a systematic tree-level perturbation theory model that includes galaxy
bias, IR resummation, and also accounts for nonlinear redshift space distortions, binning, and projection
effects. We analyze data from the perturbation theory challenge simulations, whose cumulative volume of
566 h−3 Gpc3 allows for a precise comparison to theoretical predictions. Fitting the power spectrum and
bispectrum of our simulated data, and varying all necessary cosmological and nuisance parameters in a
consistent Markov chain Monte Carlo analysis, we find that our tree-level bispectrum model is valid up to
kmax ¼ 0.08 hMpc−1 (at z ¼ 0.61). We also find that inclusion of the bispectrum monopole improves
constraints on cosmological parameters by (5–15)% relative to the power spectrum. The improvement is
more significant for the quadratic bias parameters of our simulated galaxies, which we also show to deviate
from biases of the host dark matter halos at the ∼3σ level. Finally, we adjust the covariance and scale cuts to
match the volume of the BOSS survey, and estimate that within the minimal ΛCDM model the bispectrum
data can tighten the constraint on the mass fluctuation amplitude σ8 by roughly 10%.
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I. INTRODUCTION

The three-point function, or its Fourier transform the
bispectrum [1], is the simplest statistic beyond the power
spectrum that captures information about the large-scale
spatial distribution of galaxies. The shape dependence of
the bispectrum is sensitive to cosmological initial condi-
tions, gravitational instability, and galaxy formation
physics. For this reason the bispectrum is an important
observational probe which can improve our understanding
of both galaxy formation and fundamental cosmology
[2,3]. It has been argued that it may help sharpen the
limits on conventional cosmological parameters [3–6],
neutrino masses [6–8], and primordial non-Gaussianity
[4,9,10]. While these results are encouraging, they are

often based on idealized Fisher forecasts and overoptimistic
assumptions about the validity of theoretical models needed
to describe the data. Most of the detailed comparisons of
theoretical models to large-volume simulations and joint
galaxy power spectrum and bispectrum fits were done in
real space [11–13]. However, these works have ignored
redshift space distortions, which are an important obser-
vational effect that breaks many degeneracies, but which
are, at the same time, the largest source of nonlinearities.
Therefore, it remains unclear whether the inclusion of the
bispectrum really makes a difference in a realistic analysis
of spectroscopic data, once all relevant cosmological and
nuisance parameters are varied.
A quantitative answer to this question cannot be given

without performing a consistent data analysis. While the
three-point functions and bispectra of the galaxy density
field have been measured both in simulations and in a
number of past and current datasets (e.g. Zwicky and Lick
catalogs [14,15], IRAS [16,17], WiggleZ [18], Baryon
Oscillation Spectroscopic Survey (BOSS) [19–22]), the
proper cosmological analyses of the bispectrum are still
lacking. This is clearly in sharp contrast with the galaxy
power spectrum analyses, which have been routinely used
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as an important source of information on cosmological
parameters. There are multiple factors that make the
bispectrum analysis much more challenging.
From the computational side, the main challenge is a

large number of data points, which correspond to triangle
configurations formed by three wave vectors k1, k2, k3.
Typical bispectra datasets consist of hundreds of triangles,
which makes it hard to estimate the bispectrum from
catalogs, compute the covariance matrix, and perform
likelihood analysis. This stimulated the development of
fast estimators [23–27], various compression techniques
[2,28–30], and efficient mock catalog pipelines [31].
From the theory side, the main challenge is modeling

nonlinear effects of matter clustering, galaxy bias, and
redshift space distortions. Recent analyses described
these effects by means of N-body simulations, which were
used to calibrate phenomenological bispectrum models
[19–21,32,33]. This simulation-based approach naturally
extends to “emulation,” in which the data is fitted directly to
the simulation output [7,8,34–36]. Despite significant
progress in numerical modeling of galaxy clustering over
last years, it is not yet clear if emulators can meet precision
requirements of future surveys, see e.g. [37]. The main
issue is persistent uncertainty in galaxy formation physics,
which has to be marginalized over in order to obtain robust
cosmological constraints. This motivates the development
of more conservative perturbative techniques [38–41],
which have recently taken nonlinear large-scale structure
modeling to a new precision level by virtue of the progress
in the effective field theory (EFT) of large-scale struc-
ture [42,43].1

Unlike simulation-based approaches, EFT is fundamen-
tally restricted to scales larger than 2πk−1NL ∼ 10 Mpc.
However, in the regime where it is applicable, EFT allows
calculations to arbitrary order, and hence it provides a
program of systematic successive approximations to the
true answer. Moreover, by construction, EFT covers all
possible galaxy formation scenarios by means of “nuisance
parameters,” which fully capture the impact of galaxy
evolution on large scale clustering. Thus, this framework
is naturally designed for the marginalization over galaxy
formation physics, which boils down to a literal margin-
alization over nuisance parameters. Finally, EFT-based
theoretical templates for a given cosmological model can
be quickly generated with modifications of Boltzmann
codes, e.g. [44–46], which allow one to efficiently explore
the cosmology-dependence of large-scale structure data.
The full utility of the EFT approach has been shown

recently in the analysis of the galaxy power spectrum data
from BOSS [47]. This has resulted in first-ever measure-
ments of fundamental cosmological parameters, such as the

Hubble constant and the amplitude of the primordial scalar
fluctuations, from the full shape of the galaxy power
spectrum [48,49]. Moreover, the EFT-based full shape
analyses have opened up a new opportunity to testing
beyond-ΛCDM scenarios in a rigorous and self-consistent
fashion [45,50–53].
An important step in applying the EFT calculations

to the real data was the validation of the EFT-based
power spectrum likelihoods on high-fidelity simulations
[48,49,53,54]. In particular, the EFT-based pipelines have
passed a blind test on galaxy mock catalogs called the
“perturbation theory (PT) challenge” [55].2 The PT chal-
lenge simulation suite covers a cumulative volume of
566 h−3 Gpc3, which is significantly larger than the volume
of current and planned surveys. This large volume is chosen
with the purpose of dramatically reducing statistical error
and thereby identifying systematic uncertainties in theo-
retical modeling at the unprecedented subpercent level.
Inspired by the success of the EFTapproach in the power

spectrum analysis, in this work we extend the study of
the PT challenge simulation data from Ref. [55] to the
galaxy bispectrum. We analyze this data with the currently
available tree-level EFT model.3 The two main goals of
our work are (1) to define the validity range of this model
and to (2) assess the information content of the redshift-
space galaxy bispectrum in the tree-level approximation.
Achieving these goals will bring us one step closer to
understanding the information content of the galaxy bis-
pectrum and building a pipeline that can be used to analyze
real data.
The paper is structured as follows. We describe the PT

challenge simulations in Sec. II. Section III describes in
detail our theoretical model. In Sec. IV we discuss our
baseline power spectrum and bispectrum likelihoods. Our
main results are presented in Sec. V, where we analyze the
real space and redshift space monopole bispectrum data in
combination with the baseline redshift space power spec-
trum likelihood. We discuss improvements in cosmological
and bias parameters and give a forecast for a BOSS-like
survey. There we also compare the measured values of
galaxy bias parameters with those expected from dark
matter halo relations. We compare our analysis with

1In what follows we will not distinguish between perturbation
theory and the EFT, as the EFT is the only consistent realization
of large-scale structure perturbation theory.

2The aim of this challenge is to test various methods of
cosmological parameter inference from large-scale structure data
in a blind way. The Reader is welcome to participate. The
challenge details can be found at https://www2.yukawa.kyoto-u
.ac.jp/takahiro.nishimichi/data/PTchallenge/.

3Perturbation theory one-loop bispectra of matter and halos
in real space have been studied in Refs. [11–13,56–63]. While
these calculations have not yet been extended to the realistic
case of galaxy clustering in redshift space, certain relevant
ingredients are already available in the literature, e.g. the red-
shift-space mapping in the EFT [64–66], the perturbative bias
model [67–72], IR resummation to describe the nonlinear
evolution of baryon acoustic oscillations [73,74], and grid-based
calculations for the matter bispectrum [75].
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previous works in Sec. VI and draw conclusions in
Sec. VII. Several appendices contain additional material
and tests. In Appendix A we validate our binning
approach, and in Appendix B we show that “open”
triangles do not carry any significant cosmological infor-
mation. In Appendix C we test our covariance matrix
choices. Our baseline power spectrum likelihood is
described in Appendix D. Appendix E contains an analysis
of the power spectrum and bispectrum purely in real space.
Theoretical calculations of the power spectrum and bispec-
trum covariance matrices in perturbation theory are pre-
sented in Appendix F, while Appendix G contains a
derivation of the Gaussian fingers-of-God damping.

II. DATA

The PT challenge simulation suite consists of 10 boxes,
each with the side length L ¼ 3840 h−1 Mpc. The gravi-
tational evolution was traced by 30723 particles in each
box. In this paper we consider one particular snapshot taken
at z ¼ 0.61, which corresponds to the BOSS CMASS1
sample [47]. The dark matter halos from this snapshot were
populated with mock CMASS-like red luminous galaxies
following the halo occupation distribution (HOD) prescrip-
tion detailed in Ref. [55]. We refer the reader to this
reference for further details on the simulations. The red-
shift-space power spectrum multipoles l ¼ 0, 2, 4 were
estimated as

P̂lðkiÞ ¼
2lþ 1

Ni

X
k̃∈ki

Llðμk̃ÞP̂ðk̃Þ; ð2:1Þ

where we have introduced

P̂ðk̃Þ ¼ Ṽjδk̃j2 − n̄−1

W2
CICðk̃Þ

; Ṽ ¼
�
DðfidÞ

A ðzÞ
DðtrueÞ

A ðzÞ

�2HðtrueÞðzÞ
HðfidÞðzÞ L

3;

ð2:2Þ

and δk̃ is the Fourier space overdensity field, the sum
runs over all modes whose norms belong to a bin
½ði − 1ÞΔk; iΔk�, we use Δk ¼ 0.01 hMpc−1 and Ni is
the number of Fourier modes in the bin. The modes in the
sum in Eq. (2.1) are composed of fundamental modes
kf ¼ 2πL−1, which were rescaled by the Alcock-Paczynski
(AP) effect [76] as

k̃f;x ¼ kf;x
DðtrueÞ

A ðzÞ
DðfidÞ

A ðzÞ
; k̃f;y ¼ kf;y

DðtrueÞ
A ðzÞ

DðfidÞ
A ðzÞ

;

k̃f;z ¼ kf;z
HðfidÞðzÞ
HðtrueÞðzÞ ; ð2:3Þ

where the upper scripts (true) and (fid) denote the comov-
ing angular diameter distance DAðzÞ and the Hubble

parameter HðzÞ calculated in the true and fiducial cosmol-
ogies, respectively. The fiducial cosmological model is the

same as in Ref. [55], flat ΛCDM with ΩðfidÞ
m ¼ 0.3. Note

that we have subtracted the Poissonian shot noise power
spectrum contribution

1

n̄
¼ L3

Ngal
; ð2:4Þ

where Ngal is the total number of galaxies, taking into
account the interlacing technique for the aliasing correction
and the cloud-in-a-cell (CIC) window function. If not stated
otherwise, we will be using the data vector ½P0; P2; P4�with
kmax ¼ 0.14 hMpc−1. In addition, we employ the trans-
verse moment Q0 (equivalent of the real space power
spectrum), which is estimated from the redshift space
multipoles via

Q̂0 ¼ P̂0 −
1

2
P̂2 þ

3

8
P̂4; ð2:5Þ

see Refs. [77] for more detail and also Refs. [78–80] for
earlier works. We use Q0 in the range of scales

0.14 hMpc−1 ≤ k < 0.4 hMpc−1;

so that it is not correlated with the multipoles’ data vector.
The angle-averaged (monopole) bispectrum is computed

using the following estimator:

B̂0ðk1; k2; k3Þ ¼
1

NBðk1; k2; k3Þ
×

X
q̃1∈k1

X
q̃2∈k2

X
q̃3∈k3

δKðq̃123Þδq̃1δq̃2δq̃3 ; ð2:6Þ

where q̃123 ≡ q̃1 þ q̃2 þ q̃3, and δKðq123Þ denotes the
Kronecker delta function,

δKðq123Þ ¼
�
1; if q123 ¼ 0

0; otherwise
; ð2:7Þ

and NBðk1; k2; k3Þ is the number of fundamental triangles
in the bin defined by wave number centers ðk1; k2; k3Þ.
Each bin has width Δk ¼ 0.01 hMpc−1, which is the
same as for the power spectrum estimator. We measure
all nonequivalent bispectrum configurations with k1 ≥
k2 ≥ k3. Note that unlike the power spectrum, we do not
subtract the shot noise contributions from the bispectrum.
As we show shortly, one of the shot noise corrections to
the bispectrum depends on the deterministic power spec-
trum, i.e. it has the form Plinn̄−1. This carries cosmological
information and therefore should not be subtracted. For
consistency, we do not subtract the purely stochastic
correction as well, although this choice is only a matter
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of convenience. The estimator Eq. (2.6) is evaluated with
FFTs using the Scoccimarro method [23].
The real space bispectrum is calculated using the same

formula Eq. (2.6), but with the real space density δrealk and
without the AP effect.

III. THEORY MODEL

Let us describe our theoretical model for the redshift
space bispectrum. We will discuss each relevant component
separately.
In what follows we will work in the plane-parallel

approximation. The galaxy density contrast field in
redshift space at quadratic order in perturbation theory
reads [66,72]

δðzÞðkÞ ¼ Z1ðkÞδð1ÞðkÞ þ ½Z2ðδð1ÞÞ2�k þ d1ϵðkÞ;

þ d2b1½δð1Þϵ�k − ifkzd1

�
ϵ
ẑi∂i

Δ
θð1Þ

�
k
þ � � � ;

ð3:1Þ

where ½…�k denotes a Fourier-space convolution, ẑi is the
line-of-sight direction unit vector, δð1Þ; θð1Þ are linear
matter density and velocity divergence fields (satisfying
θð1Þ ¼ δð1Þ); ϵ is the stochastic galaxy overdensity field, d1,
d2 are free parameters, and the standard perturbation theory
[81] kernels are given by

Z1ðkÞ ¼ b1 þ fμ2; ð3:2aÞ

Z2ðk1;k2Þ ¼
b2
2
þ bG2

�ðk1 · k2Þ2
k21k

2
2

− 1

�

þ b1F2ðk1;k2Þ þ fμ2G2ðk1;k2Þ

þ fμk
2

�
μ1
k1

ðb1 þ fμ22Þ þ
μ2
k2

ðb1 þ fμ21Þ
�
;

ð3:2bÞ

F2ðk1;k2Þ ¼
5

7
þ 1

2

�ðk1 ·k2Þ
k21

þ ðk1 ·k2Þ
k22

�
þ 2

7

ðk1 ·k2Þ2
k21k

2
2

;

ð3:2cÞ

G2ðk1;k2Þ ¼
3

7
þ 1

2

�ðk1 ·k2Þ
k21

þ ðk1 ·k2Þ
k22

�
þ 4

7

ðk1 ·k2Þ2
k21k

2
2

;

ð3:2dÞ

where μi ≡ ðki · ẑÞ=ki, μ≡ ðk · ẑÞ=k, k≡ k1 þ k2, and f
is the logarithmic growth factor, related to the usual linear
growth rate Dþ via

f ¼ d lnDþ
d lna

; ð3:3Þ

with a being the scale factor in the Friedmann metric. The
coefficientsb1,b2, andbG2

capture linear, quadratic, and tidal
bias betweenmatter and galaxies, respectively. The tree-level
bispectrum is obtained by computing the three-point function
of the perturbative density field at second order [71],

Bgggðk1;k2;k3Þ ¼ 2Z2ðk1;k2ÞZ1ðk1ÞZ1ðk2ÞPlinðk1ÞPlinðk2Þ
þ Pϵðk2Þd1ð2d2b1 þ d1fμ21ÞZ1ðk1ÞPlinðk1Þ þ cycl:þ d31Bϵðk1;k2;k3Þ; ð3:4Þ

where we have used the following correlation functions

hδð1ÞðkÞδð1Þðk0Þi¼ð2πÞ3δð3ÞD ðkþk0ÞPlinðkÞ;
hϵðkÞϵðk0Þi¼ð2πÞ3δð3ÞD ðkþk0ÞPϵðkÞ;

hϵðk1Þϵðk2Þϵðk3Þi¼ð2πÞ3δð3ÞD ðk1þk2þk3ÞBϵðk1;k2;k3Þ:
ð3:5Þ

A. Stochastic terms

At quadratic order in perturbation theory the shot-noise
contributions are constants,

Pϵ ¼ const; Bϵ ¼ const: ð3:6Þ

Furthermore, if ϵ is Poisson distributed, both statistics are
fully determined by the galaxy number density n̄ (see e.g.
Ref. [82] and references therein):

Bϵ ¼ P2
ϵ ¼

1

n̄2
: ð3:7Þ

However, due to halo exclusion, deviations from Poissonian
sampling are known to be important [83–86], in which case
we cannot use Eq. (3.7) and the tree-level bispectrum should
be characterized by three free parameters capturing stochas-
ticity. We define them to be Pshot; Bshot, and Ashot:

d21hϵ2i ¼
1þ Pshot

n̄
; d31hϵ3i ¼

Ashot

n̄2
;

Bshot ≡ 2d2d−11 ð1þ PshotÞ; ð3:8Þ
which are expected to be Oð1Þ numbers. Importantly, the
parameter Pshot also enters the power spectrum model.
Furthermore, following [19,49,68] we will assume that the
bispectrum and power spectrumof the stochastic overdensity
component are correlated as in the Poissonian case (3.7), but
their values are different from n̄−1, i.e.
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Bϵ ¼ P2
ϵ ;⇒ Ashot ¼ ð1þ PshotÞ2; ð3:9Þ

which is ultimately motivated by the expectation that
departures from the Poissonian sampling are small. We have
found that the bispectrum data is fully consistent with this
hypothesis. Therefore, we adopt this choice as our baseline
model for the stochastic nuisance parameters, which helps us
reduce their number down to two.

B. Fingers-of-God effect

An important feature of nonlinear redshift-space dis-
tortions is the sensitivity to the stochastic velocity field,
which can have relatively large scale correlations due to
halo virialization [80]. This is called the “fingers-of-God”
(FOG) effect [87]. In the EFT, FOG are captured pertur-
batively through the gradient expansion involving deriva-
tives along the line of sight [46,64–66,88,89]. These
corrections are called “counterterms,” and at leading
one-loop order they are given by [66]

δctr ¼ −c0
�

k
kNL

�
2

− ðc1μ2 þ c2μ4Þ
�

k
krNL

�
2

: ð3:10Þ

The role of μ-dependent counterterm coefficients c1 and c2
is to capture the physical impact of the FOG on large scale
fluctuations.4 In principle, the FOG is a one-loop effect in
the EFT nomenclature, and it needs to be included along
with other, “standard,” one-loop corrections, which we
ignore in this work. The characteristic momentum scale of
these one-loop corrections matches the real space dark
matter cutoff5 kNL. If 2π=krNL is larger than 2πk−1NL (and the
cutoff of the bias expansion 2πk−1M ), then the FOG counter-
term can actually dominate over usual loop corrections. This
is the exact situation that was observed for matter and galaxy
power spectra in redshift space, where FOG corrections were
found to be important even on relatively large scales where
the “standard” loop corrections (i.e. without the counter-
terms) are suppressed [48,54,55,65,90].6

This motivates including the FOG counterterms c1, c2 in
our theory model even though formally they capture one-
loop effects, which we do not explicitly account for in our
work. Another rationale behind this practice is that these

counterterms can be treated as a proxy for the theoretical
error [4,54]. Because of this reason, we do not assume any
relationship between these parameters and those appearing
in the redshift-space bispectrummodel (see Appendix D for
more detail). The additional bispectrum counterterms will
also serve us as a tool to check if the tree-level calculation
can be trusted: if the counterterm contribution dominates
the tree-level bispectrum signal, the one-loop corrections
cannot be ignored anymore.
In practice, we have found that it is sufficient to include

only the k2μ2 counterterm in our theory model. We ignore
the contribution k2μ4 because we have found that it is very
degenerate with the k2μ2 shape at the level of the bispec-
trum monopole, and hence we set c2 ¼ 0 in what follows.
Note that we will have to include both c1 and c2 when we
consider higher order angular multipole moments. The
inclusion of the c1 counterterm amounts to correcting the
kernel Z1 as

Z1 → ZFOG
1 ¼ b1 þ fμ2 − c1μ2

�
k
krNL

�
2

: ð3:11Þ

In what follows we set krNL ¼ 0.3 hMpc−1 in agreement
with the measurement of the cutoff for the red luminous
galaxies from the power spectrum of the PT challenge
mocks [55,90].

C. IR resummation

Naïve attempts to build the EFT as a perturbative
expansion in terms of smoothed (large-scale) density and
velocity fields break down for the BAO part of the linear
power spectrum (sometimes loosely referred to as the
“BAO wiggles”). The procedure of resumming enhanced
perturbative (loop) corrections to this part of the spectrum
is called “IR resummation” [73,91–95] (see Refs. [96,97]
for earlier works). IR resummation effects have to be
included in the theory model even when it is evaluated
at the tree level [73,92]. IR resummation for the bispectrum
in redshift space has been calculated in Ref. [74] (see
Ref. [98] for IR resummation of the bispectrum in the case
of non-Gaussian initial conditions). At leading order this
procedure amounts to the replacement of the linear matter
power spectrum by its resummed version,

PlinðkÞ → PIR−res
tree ðkÞ ¼ PnwðkÞ

þ PwðkÞe−Σ2k2ð1þfμ2ð2þfÞÞ−δΣ2k2f2μ2ðμ2−1Þ; ð3:12Þ

where Pw is the part of the spectrum that contains the BAO
wiggles, Pnw ≡ Plin − Pw,

Σ2 ¼ 1

6π2

Z
kS

0

dqPnwðqÞð1 − j0ðqrBAOÞ þ 2j2ðqrBAOÞÞ;

δΣ2 ¼ 1

2π2

Z
kS

0

dqPnwðqÞj2ðqrBAOÞ; ð3:13Þ

4Strictly speaking, each coefficient ci has “infinite” and
“finite” pieces. The role of the infinite piece is to renormalize
the UV part of one-loop integrals, whilst the “finite” part captures
physical backreaction from short scales.

5The EFT calculations, at least at the one-loop order, can be
interpreted as so-called standard perturbation theory [81] com-
putations corrected with a set of UV “counterterms.” In this
picture the one-loop integrals have the same scaling for all tracers,
while the tracer-specific momentum cutoffs appears only from
the counterterms.

6Note that the form of the finite counterterms in Eq. (3.10) is
quite similar to the large-scale limit of some phenomenological
prescriptions for FOG, e.g. the Gaussian damping model, see
Appendix G for more detail.
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are the BAO damping functions, jlðxÞ are spherical Bessel
functions, rBAO is the comoving sound horizon at the drag
epoch, kS is the separation scale defining IR modes that
need to be resummed. In practice we use kS ¼ 0.05 h=Mpc

following Ref. [73], although other choices, e.g. kS ¼ k=2
[92] give statistically indistinguishable results.
All in all, our final tree-level bispectrum model

reads (cf. [72]):

Bggg ¼ ½2Z2ðk1;k2ÞZFOG
1 ðk1ÞZFOG

1 ðk2ÞPIR−res
tree ðk1ÞPIR−res

tree ðk2Þ

þ 1

n̄
ðBshotb1 þ ð1þ PshotÞfμ2ÞZFOG

1 ðk1ÞPIR−res
tree ðk1Þ þ cycl:� þ ð1þ PshotÞ2

n̄2
; ð3:14Þ

where b1, b2, bG2
, Pshot; Bshot are nuisance parameters to

marginalize over. Note that Bshot is the only new parameter
that is not present in the power spectrum model.

D. Redshift space multipoles

In real space the bispectrum depends on three kinematic
variables (wavelengths) which characterize the shape
of a triangle. In redshift space there appears an additional
dependence due to the orientation of the triangle with
respect to the line-of-sight direction. This orientation is
characterized by two angles, which we choose, following
Ref. [41], to be the polar angle of k1 [its cosine is
cos θ ¼ μ≡ ðk̂1 · ẑÞ] and the azimuthal angle around k1

denoted by ϕ. In this case the angles between wave vectors
ka (a ¼ 1,2,3) and the line of sight are given by

μ1 ¼ μ;

μ2 ¼ μ cos α − ð1 − μ2Þ1=2 sin α cosϕ;

μ3 ¼ −
k1
k3

μ −
k2
k3

μ2; ð3:15Þ

where cos α ¼ x ¼ ðk̂1 · k̂2Þ. It is convenient to describe
this angular dependence by expanding Bggg in spherical
harmonics,

Bgggðk1;k2;k3Þ ¼
X∞
l¼0

Xl
m¼−l

Blmðk1; k2; k3ÞYlmðθ;ϕÞ;

Blmðk1; k2; k3Þ ¼
2lþ 1

2

Z
2π

0

dϕ
Z

1

−1
dðcos θÞ

× Y�
lmðθ;ϕÞBgggðk1;k2;k3Þ: ð3:16Þ

In what follows we will focus on the m ¼ 0 sector [23].
The corresponding momenta Bl are called “bispectrum
multipoles,”

Blðk1; k2; k3Þ ¼
2lþ 1

2

Z
2π

0

dϕ
2π

Z
1

−1
dðcos θÞ

× Llðcos θÞBgggðk1;k2;k3Þ; ð3:17Þ
where Ll denotes a Legendre polynomial of order l. Note
that the integral above can be done analytically at the tree

level in the absence of IR resummation and the AP effect
[41]. However, in what follows we will use the full
formula (3.14) with IR resummation, and evaluate angular
integrals in Eq. (3.17) numerically via Gauss-Legendre
quadrature.

E. Alcock-Paczynski effect

The AP conversion [76] from true wave numbers and
angles (q, ν) to observed wave numbers and angles ðk; μÞ is
given by

q2 ¼ k2½α−2k μ2 þ α−2⊥ ð1 − μ2Þ�;
ν2 ¼ α−2k μ2½α−2k μ2 þ α−2⊥ ð1 − μ2Þ�−1; ð3:18Þ

which depends on the ratios between the true and fiducial
Hubble parameters and angular diameter distances at the
redshift of interest,

αk ¼
HfidðzÞ
HtrueðzÞ

H0;true

H0;fid
; α⊥ ¼ Dtrue;AðzÞ

Dfid;AðzÞ
H0;true

H0;fid
; ð3:19Þ

where additional factors H0;true=H0;fid account for the fact
that wave numbers are measured in hMpc−1 units in our
analysis. The observed power spectrum multipoles are
given by [44]

PlðkÞ ¼
2lþ 1

2α2⊥αk

Z
1

−1
dμLlðμÞPggðq½k; μ�; ν½μ�Þ: ð3:20Þ

In full analogy, the bispectrum multipoles are given
by [99]

Blðk1; k2; k3Þ

¼ 2lþ 1

2α2kα
4⊥

Z
2π

0

dϕ
2π

Z
1

−1
dμ1Llðμ1Þ

× Bgggðq1½k1; μ1�; q2½…�; q3½…�; ν1½μ1�; ν2½μ2ðμ1Þ�Þ;
ð3:21Þ

where the observed angles satisfy Eq. (3.15). In what
follows we will focus on the monopole moment l ¼ 0, and
leave the analysis of other multipoles for future work.
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F. Binning effects

The measured bispectrum is a discrete approximation to
a continuous Fourier-space field. In order to account for
this discreteness we need to bin our theory predictions in
the same way as we bin the data. Binning corrections
are marginally important for the PT challenge power
spectrum and it is straightforward to take them into account
[55]. However, the situation is somewhat different for the
bispectrum, where binning can be a serious source of
systematics [100]. The exact discrete bispectrum that we
extract from simulations is given by7

B̂0;discðk1; k2; k3Þ

¼
P

q1∈k1

P
q2∈k2

P
q3∈k3 Bðq1;q2;q3ÞδKðq123Þ

Ndisc
B ðk1; k2; k3Þ

;

Ndisc
B ðk1; k2; k3Þ
¼

X
q1∈k1

X
q2∈k2

X
q3∈k3

δKðq123Þ: ð3:22Þ

The sum in Eq. (3.22) runs over all discrete wave vectors qi
that belong to the triangle bin defined by its center
ðk1; k2; k3Þ and width Δk. Ndisc

B ðk1; k2; k3Þ is the total
number of these “fundamental triangles” inside the triangle
bin ðk1; k2; k3Þ [11].
Before going into technical details, let us outline our

strategy. As a first step, we take the continuum limit, i.e.
assume a vanishingly small fundamental wave number
kf ¼ ð2πÞL−1 as a leading approximation. In this first

approximation the discreteness effects can be taken into
account by integrating the continuous bispectrum field
within appropriate bins. It is natural to refer to this program
as the “integral approximation.” Because the actual funda-
mental bin is finite, the integral approximation requires
certain corrections. As a second step, we will introduce
these corrections, which will be referred to as “discreteness
weights.”
Note that with our binning scheme there are so-called

open triangle bins. The centers of these bins ðk1; k2; k3Þ do
not satisfy momentum conservation constraints, such as
jk3 − k2j < k1 < k3 þ k2.

8 In what follows we will discard
these triangles because of three reasons:

(i) Their properties (and very existence) crucially de-
pend on the box size, which makes it hard to make
generic statements that would not depend on a
particular survey volume.

(ii) The leading binning effect cannot be well captured
by the integral approximation for these triangles, and
hence it requires a significant modification of our
baseline binning program.

(iii) These triangles do not carry any sizable cosmologi-
cal information (at least at the level of the tree-level
bispectrum likelihood) and with our particular
choice of bins’ width), see Appendix B.

As a first step of our binning procedure we implement
the integral approximation. Other binning schemes were
explored in Refs. [11,12,101]. The integral approximation
amounts to replacing the sum over the modes with the
Fourier integral,

X
q1∈k1

X
q2∈k2

X
q1∈k2

δKðq123ÞBðq1;q2;q3Þ →
V2

ð2πÞ6
Z
k1k2k3

ð2πÞ3δð3ÞD ðq123ÞBðq1;q2;q3Þ;

X
q1∈k1

X
q2∈k2

X
q1∈k2

δKðq123Þ →
V2

ð2πÞ6
Z
k1k2k3

ð2πÞ3δð3ÞD ðq123Þ; ð3:23Þ

where V is the box volume and we introduced
Z
k1k2k3

≡
Z
Vk1k2k3

d3q1
ð2πÞ3

d3q2
ð2πÞ3

d3q3
ð2πÞ3 ; Vk1k2k3 ¼ D1 ×D2 ×D3;

Da ¼
�
ðqx1 ; qx2 ; qx3Þ ∈ R3∶ka −

Δk
2

≤ jqaj ≤ ka þ
Δk
2

�
; a ¼ 1; 2; 3: ð3:24Þ

This way we arrive at

B̂0;int ¼ V2

Z
k1k2k3

Bðq1;q2;q3Þ
NT

123

ð2πÞ3δð3ÞD ðq1 þ q2 þ q3Þ;

N123 ¼ V2

Z
k1k2k3

ð2πÞ3δð3ÞD ðq123Þ ¼ 8πk1k2k3Δk3
V2

ð2πÞ6 : ð3:25Þ

7We omit the subscript “ggg” for clarity in this section, i.e. replace Bggg → B.
8Individual triangles that belong to the bin are, of course, valid triangles that satisfy all relevant constraints.
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The delta function can be integrated explicitly following Ref. [102], yielding

B̂0;int ¼
V2

ð2πÞ6N123

Z
2π

0

dϕ
4π

Z
1

−1
dμ

�Y3
i¼1

Z
kiþΔk=2

ki−Δk=2
dqiqi

�
Bðq1; q2; q3; μ;ϕÞ: ð3:26Þ

In order to estimate the accuracy of the integral approxi-
mation, we compare the continuous (kf → 0 limit) pre-
diction for the number of triangle modes that fall in a given
bin N123 with the actual number of discrete triangles in that
bin Ndisc

B . The result is shown in the upper left panel of
Fig. 1, where we display the ratio Ndisc

B =N123 for the bins
whose centers satisfy the momentum conservation con-
straint, and which we actually use in the analysis. We see
that the integral approximation correctly predicts the
number of fundamental triangles for most of the bins, up
to a few percent precision. However the integral approxi-
mation is not very accurate for folded triangles with
k2 þ k3 ¼ k1 þ Δk=2. For these triangles the typical mis-
match is about ∼15%. This discrepancy also leads to a
mismatch at the level of binned bispectra. To correct for this
discrepancy we introduce “discreteness weights” w,

w ¼ B̂disc

B̂int
; ð3:27Þ

where B̂disc is computed by using a direct discrete ex-
pression Eq. (3.22), while B̂int is calculated from Eq. (3.25).
We compute the weights for a certain fiducial cosmology

and nuisance parameters extracted from a fit to the
simulation data analyzed without the weights. Since the
evaluation of the full discrete expression Eq. (3.22) is too
expensive for an Markov chain Monte Carlo (MCMC)
method, the best strategy would be to iterate the discrete-
ness weights for the best-fit bispectra from a few consecu-
tive MCMC runs. However, quite remarkably, we have
found that this iterative procedure has converged already at
the first step. Our initial fiducial parameters happened to be

FIG. 1. Upper left panel: the ratio between the number of fundamental triangles from the data and from the integral approximation,
Ndisc

B =N123, as a function of the triangle bin. Upper right panel: the ratio between the exact binned bispectrum and the integral
approximation (“discreteness weights” wi), as a function of Ndisc

B =N123 for the same triangle bins. The triangles shown correspond to
kmax ¼ 0.15 h=Mpc. Lower panel: discreteness weights for folded triangles denoted by their bin centers (we use Δk ¼ 0.01 hMpc−1,
and hence kmin ¼ Δk=2 ¼ 5 × 10−3 hMpc−1).

MIKHAIL M. IVANOV et al. PHYS. REV. D 105, 063512 (2022)

063512-8



significantly different from the actual best-fit parameters,
yet both produced almost identical discreteness weights.
This shows that the discreteness weights are nearly cos-
mology independent, hence they can be computed only
once for a given survey specification.
We display the discreteness weights for PT challenge

boxes in the right panel of Fig. 1, along with the ratio
Ndisc

B =N123, which demonstrates that the “problematic”
triangles can be easily identified in the data by comparing
the number of fundamental triangles in the bin with the
prediction of the integral approximation. As we can see
from this figure, these corrections need to be included if
Ndisc

B =N123 deviates from unity by more than 10%. We
show discreteness weights specifically for the problematic
folded triangles in the lower panel of Fig. 1. For all other
triangle configurations the discreteness weights coincide
with unity with Oð0.5Þ% precision, implying that the
integral approximation is very accurate for them.
Additionally, we validate our discreteness weights

approach in Appendix A by comparing it with an approxi-
mate discrete binning scheme similar to Eq. (3.22). These
tests suggest that our treatment of discreteness effects is
accurate enough for the full simulation volume and hence
can be safely adopted for the purposes of our paper and for
any realistic future analysis.
All in all our theory model is given by

Bth ¼ B̂int
0 ðk1; k2; k3Þwðk1; k2; k3Þ; ð3:28Þ

where B̂int
0 is computed from Eq. (3.26) by numerically

performing the five-dimensional integral over the tree-level
IR resummed model (3.14).

IV. LIKELIHOOD

Wewill use a Gaussian likelihood for the bispectrum [3],

lnLB ¼ −
1

2

X
trianglesT 0

ðBth
T − Bdata

T ÞðBth
T 0 − Bdata

T 0 ÞðCBÞ−1TT 0 ;

ð4:1Þ
where we assume without loss of generality that the bin
centers satisfy k1 ≥ k2 ≥ k3 and

X
T

≡ Xkmax

k1¼kmin

Xk1
k2¼kmin

Xk2
k3¼k�

; k� ≡maxðkmin; k1 − k2Þ:

ð4:2Þ
The Gaussian likelihood approximation for the bispectrum
is justified within perturbation theory, which is consistent
with the tree-level approximation for the bispectrum itself.
This approximation must be true on sufficiently large
scales, to which we limit our analysis. In this regime we
can use the Gaussian tree-level approximation for the
covariance matrix CB [3,23,41,99],

CB
TT 0 ¼ ð2πÞ3πs123

k1k2k3Δk3V tot
δTT 0

Z
2π

0

dϕ
4π

Z
1

−1
dμ

×
Y3
i¼1

�
PlinðkiÞðb1 þ fμ2i ðϕ; μÞÞ2 þ

1

n̄

�
; ð4:3Þ

where ðk1; k2; k3Þ denotes the center of the triangle bin T,
V tot is the cumulative volume of the PT challenge simu-
lations (V tot ¼ 566 h−3Gpc3), s123 ¼ 6, 2, or 1 for equi-
lateral, isosceles, and general triangles. To approximately
account for the discreteness binning effects we use the true
number of fundamental triangles in the bin instead of the
prediction of the integral approximation, i.e. we rescale

CB
TT 0 →

N123

Ndisc
B

· CB
TT 0 : ð4:4Þ

We evaluate the covariance for the best-fit cosmology
extracted from the power spectrum likelihood analysis.
We ignore the cross-covariance between the power spectrum
and the bispectrum in our baseline analysis. This and other
likelihood approximations are validated in Appendix C.
There we show that our results are stable if we include the
one-loop theoretical error bispectrum covariance, and the
cross-covariance between the power spectrum and bispec-
trum (computed in perturbation theory), as well as if we
replace the Gaussian bispectrum covariance with the sample
covariance from the available mocks. All these different
options yield statistically indistinguishable results.
Our total likelihood thus consists of a product of the

bispectrum and baseline power spectrum likelihoods,

Ltot ¼ LB × LP: ð4:5Þ

The details of our baseline power spectrum likelihood can be
found in Appendix D and in Ref. [77]. We compute power
spectrum theoretical templates using the CLASS-PT code
[44].9 We run MCMC chains using the MONTEPYTHON code
[103,104].10 Posterior density plots are generated with the
GETDIST package [105]. We will scan over the parameters of
the baseΛCDMmodel andEFTnuisance parameters [53,54]
(see Appendix D for precise definitions),

fωcdm;H0;As; nsg
× fb1; b2; bG2

; bΓ3
;C0;C2;C4; b4; a0; a2;Pshot;Bshot; c1g:

ð4:6Þ

The priors on the power spectrum nuisance parameters are
also given in Appendix D. As for Bshot, we place a Gaussian

9Publicly available at https://github.com/Michalychforever/
CLASS-PT.

10Publicly available at https://github.com/brinckmann/
montepython_public.
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prior on it with unit mean, which corresponds to the
Poissonian sampling prediction, and unit variance,

Bshot ∼N ð1; 12Þ: ð4:7Þ

c1 is varied in our MCMC chains without any priors, unless
otherwise stated.We fix thephysical baryon density to its true
value in order to simulate the big bang nucleosynthesis
(BBN) prior as it was used in Refs. [48,53].11

V. RESULTS

We start our analysis from the simple case of the
real space bispectrum, which is free from redshift space
distortions (RSD) and projection effects. Then, we will
analyze a setup that closely matches an actual spectroscopic
survey: we will study the bispectrum in redshift space and
in the presence of the projection effect.
Since the PT challenge data which we are using is still

ongoing, we report the measurements of all cosmological
parameters normalized to their true injected values. As far
as nonlinear bias parameters are concerned, we will present
their values after the subtraction of the fiducial values
extracted from our best-fit estimates from the most con-
straining baseline likelihood analysis. Specifically, we will
report

Δb2 ≡ b2 − bbf2 ; ΔbG2
≡ bG2

− bbfG2
; ð5:1Þ

where bbf2 ; b
bf
G2
are best-fit values extracted from the fiducial

analysis of the redshift space power spectrum combined
with the real space bispectrum at kmax ¼ 0.08 h=Mpc.
This will be our best guess for the true values of these
parameters.
We emphasize that except for Sec. V D, in all our

analysis the scale cuts of the power spectrum like-
lihood are kept fixed. Only kmax of the bispectrum data
is varied.

A. Redshift space power spectrum+
real space bispectrum

We start with the real space bispectrum, which can be
formally obtained from our model Eq. (3.14) by setting
f ¼ 0, c1 ¼ 0, and ignoring the AP effect. We also note
that the discreteness weights are closer to unity in this case.
This can be attributed to the absence of leakage from higher
angular moments [79], which is present in the redshift-
space case. We perform our analysis for the bispectrum for
five choices of kmax ranging from 0.06 to 0.14 hMpc−1

with a step 0.02 hMpc−1. The resulting corner plot from
our MCMC analyses is shown in Fig. 2, and the 1D
marginalized limit for the case kmax ¼ 0.08 hMpc−1 are
presented in Table I. The best fitting curves for certain
triangle configurations are shown in Fig. 3, while Fig. 4 is a
residual plot over all triangles used in the fit.
We observe that inclusion of the bispectrum sharpens

estimates for all cosmological and bias parameters
and does not lead to any significant biases up to
kmax ¼ 0.08 hMpc−1. We see some small biases, espe-
cially in the b1 − σ8 plane, but our MCMC posteriors
still enclose the true values within 99% C.L., which makes
these shifts compatible with statistical fluctuations.
Besides, these small shifts do not change when switching
the bispectrum data cut from 0.06 to 0.08 hMpc−1. In
contrast, for kmax > 0.08 hMpc−1 we see clear shifts that
push estimated values away from the ground truth. In
particular, we find the bias on σ8 to be ½−1.9;−5.2;−6.7�σ
for kmax=hMpc−1 ¼ ½0.1; 0.12; 0.14�, respectively. This
suggests us to adopt kmax ¼ 0.08 hMpc−1 as a baseline
data cut for the real space bispectrum in what follows.
Similar result is obtained in [12,13] for the joint fit
of the real space power spectrum and the real space
bispectrum.
The tree-level bispectrum likelihood improves con-

straints on cosmological and some nuisance parameters.
This improvement can be estimated by ratios of the 1D
marginalized 68% confidence intervals. For the cosmo-
logical parameters we have

σPþB

σP
fωcdm; h; ns; As;Ωm; σ8g

¼ f0.82; 0.90; 0.81; 0.88; 0.83; 0.93g

indicating a ð10 − 20Þ% improvement in most cases. The
gain is more sizable for the nuisance parameters,

σPþB

σP
fb1; b2; bG2

; Pshotg ¼ f0.75; 0.09; 0.07; 0.61g:

Intuitively, this happens because in the bispectrum one
can probe the galaxy bias parameters from large scales,
and hence their determination is not contaminated by
loop corrections and additional nuisance parameter
marginalization.
The picture that we have observed here is in stark

contrast with the real space only results, presented in
Appendix E. This analysis shows that the real space power
spectrum has much less information than the redshift-space
one. In this case the combination with the bispectrum leads
to a dramatic shrinking of posterior distributions for both
cosmological and nuisance parameters. However, in red-
shift space the power spectrum has much more information
to begin with, and thus the addition of the bispectrum yields
only a moderate improvement.

11Formally, we also use the FIRAS value of the current CMB
temperature T0, which is a required input parameter in the
Boltzmann code CLASS [106]. This parameter is tightly con-
strained by FIRAS and other probes, see e.g. [107] for more
detail.
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B. Bias parameters

Our simulated galaxies are produced with simple HOD
models and therefore one may expect their nonlinear bias
parameters to match those of the host halos and to follow
the same dependence on b1. Let us compare this expect-
ations with reality (similar measurements in real space were
done in [12,13]). For the tidal bias bG2

, as a first guess, we

can use the so-called Lagrangian local in matter density
(LLIMD) bias model prediction bLLIMD

G2
¼ −2ðb1 − 1Þ=7

[71]. Using the fiducial value of b1 we find

ΔbLLIMD
G2

¼ −
2

7
ðbfid1 − 1Þ − bfidG2

¼ 0.23; ð5:2Þ

FIG. 2. Posterior distributions of cosmological and some nuisance parameters from MCMC analyses of the joint redshift-space power
spectrum and real space bispectrum data. We show results for five different choices of the bispectrum data cut kmax. All cosmological
parameters and b1 are normalized to their true values. We have subtracted constant fiducial values from the quadratic bias parameters b2
and bG2

. Results for the power spectrum data only are shown for comparison.
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which is more that 10σ away from the truth. The LLIMD
approximation is known to be in tension with high
precision simulation measurements, which clearly show
the evidence for the tidal Lagrangian bias [108]. A better
fit to this data is a coevolution model with the initial
Lagrangian bias that has the following dependence on the
mean halo mass M

bLG2
¼ −0.5

�
M

4 × 1014 h−1 M⊙

�
0.8
: ð5:3Þ

Reference [108] also presents the function Mðb1Þ, from
which we can express the above equation as bLG2

ðb1Þ.
Inserting there our measurement of b1, we find

ΔbLTCMG2
¼ −

2

7
ðbfid1 − 1Þ þ bLG2

ðbfid1 Þ− bfidG2
¼ 0.072; ð5:4Þ

where “LTCM” stands for “Lagrangian tidal coevolution
model.”We see that our measurement is still in ∼3σ tension
with the prediction of LTCM, although in absolute terms
the discrepancy is quite small. The discrepancy with the
excursion set prediction from Ref. [109] is also quite high,
it exceeds 10σ in terms of the standard deviation of our
measurement.
As far as b2 is concerned, we can compare our

measurement with the fit to halos from Refs. [110,111],
i.e. to consider

TABLE I. One-dimensional marginalized limit for the cosmo-
logical and most important nuisance parameters from various PT
challenge likelihoods: redshift space power spectrum only (upper
left panel), the joint power spectrumþ real space bispectrum
(upper right panel), redshift space bispectrum only (lower left
panel), and the joint redshift space power spectrumþ
redshift space bispectrum (lower right panel). Parameters that
were directly varied in MCMC chains are displayed in the upper
part of the table, the lower groups contain derived parameters.
Most parameters are normalized to their true values. See the main
text for more detail.

Power

Parameter 68% limits

ΔH0=H0 0.0001� 0.0019
Δωcdm=ωcdm 0.010� 0.012
ΔAs=As −0.016� 0.022
Δns=ns −0.0084� 0.0094
Δb1=b1 0.003� 0.010
Δb2 −0.13þ0.44

−0.51
ΔbG2

0.29� 0.30
Pshot −0.24þ0.12

−0.16

Δσ8=σ8 −0.0045� 0.0087
ΔΩm=Ωm 0.0087� 0.0077
b3
1
σ4
8

ðb3
1
σ4
8
Þfid − 1 −0.008� 0.022

Power þ real space bispectrum

Parameter 68% limits

ΔH0=H0 −0.0002� 0.0018
Δωcdm=ωcdm 0.0022� 0.0098
ΔAs=As −0.019� 0.019
Δns=ns 0.0048� 0.0076
Δb1=b1 0.0183� 0.0077
Δb2 0.011� 0.043
ΔbG2

0.006� 0.020
Pshot −0.384� 0.089
Bshot 0.99� 0.12
Δσ8=σ8 −0.0065� 0.0080
ΔΩm=Ωm 0.0022� 0.0064
b3
1
σ4
8

ðb3
1
σ4
8
Þfid − 1 0.028� 0.016

RSD bispectrum

Parameter 68% limits

ΔH0=H0 −0.026� 0.015
Δωcdm=ωcdm −0.026� 0.032
ΔAs=As −0.07þ0.17

−0.35
Δns=ns −0.018� 0.034
Δb1=b1 0.07þ0.20

−0.26
Δb2 0.81þ0.26

−0.33
ΔbG2 0.270þ0.068

−0.091
c1 −2.4� 3.8
Pshot −0.095� 0.93
Bshot 0.89þ0.69

−0.61
Δσ8=σ8 −0.07þ0.11

−0.16

(Table continued)

TABLE I. (Continued)

RSD bispectrum

Parameter 68% limits

ΔΩm=Ωm 0.033þ0.032
−0.039

b3
1
σ4
8

ðb3
1
σ4
8
Þfid − 1 −0.194þ0.082

−0.074

Power þ RSD bispectrum

Parameter 68% limits

ΔH0=H0 −0.0014� 0.0018
Δωcdm=ωcdm −0.005� 0.010
ΔAs=As −0.017� 0.021
Δns=ns 0.0036� 0.0080
Δb1=b1 0.0149� 0.0085
Δb2 −0.054� 0.088
ΔbG2

0.070� 0.026
c1 5.6� 2.7
Pshot −0.249� 0.093
Bshot 1.75� 0.43

Δσ8=σ8 −0.0107� 0.0082
ΔΩm=Ωm −0.0017� 0.0068
b3
1
σ4
8

ðb3
1
σ4
8
Þfid − 1 0.001� 0.016
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Δbhalo2 ¼ bhalo2 ðbfid1 ; bfidG2
Þ − bfid2 ¼ −0.49; ð5:5Þ

where

bhalo2 ðb1; bG2
Þ ¼ 0.412 − 2.143b1 þ 0.929b21

þ 0.008b31 þ
4

3
bG2

: ð5:6Þ

Note that we have accounted for the difference in
our definition of quadratic biases with respect to
Refs. [110,111],

bthis workG2
¼ bpreviousG2

; bthis work2 ¼ bprevious2 þ 4

3
bthis workG2

:

ð5:7Þ

Thus, our analysis confirms significant deviations between
the bias coefficients of galaxies and halos, which have
already been pointed out in the literature [12,13,112]. We
also confirm the trend seen in the literature for the CMASS-
like galaxies [47] (similar to our PT challenge sample): the
tidal bias of galaxies is lower than that of halos, but b2 is
higher. In particular, the results of Ref. [12] for the CMASS
galaxies read

FIG. 3. Bispectrum data points from the PT challenge simulations along with best-fit theoretical predictions extracted from our
MCMC chains. We show the bispectra for squeezed, equilateral, and isosceles triangles (left panels), and the corresponding residuals
(right panels).
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bgal2 ¼ −0.2� 0.1; bgalG2
¼ −0.46� 0.06: ð5:8Þ

These values can be compared with the predictions of the
local Lagrangian approximation and the fit to b2,

Ref: ½12� : Δb2 ¼ bhalo2 ðbgal2 ; bgalG2
Þ − bgal2 ¼ −0.41� 0.1;

ΔbG2
¼ bLLIMD

G2
− bgalG2

¼ 0.17� 0.06: ð5:9Þ
These estimates perfectly agree with our results

Δb2 ¼ −0.49� 0.04; ΔbG2
¼ 0.23� 0.02: ð5:10Þ

Finally, let us discuss the cubic tidal bias parameter bΓ3
.

At the power spectrum level it is almost fully degenerate
with bG2

. However, this degeneracy gets broken by the
bispectrum data, since only bG2

enters the tree-level
bispectrum model. We will compare our measurements
with halo relations obtained in Refs. [108,109],

Ref: ½108� : bhaloΓ3
¼ −bG2

−
1

15
ðb1 − 1Þ;

Ref: ½109� : bhaloΓ3
¼ −

1

6
ðb1 − 1Þ − 3

2
bG2

: ð5:11Þ

This gives us a tension between our results and these halo
predictions at the 2σ level,

Ref: ½108� : bgalΓ3
− bhaloΓ3

ðbgal1 ; bgalG2
Þ ¼ 0.23� 0.11;

Ref: ½109� : bgalΓ3
− bhaloΓ3

ðbgal1 ; bgalG2
Þ ¼ 0.24� 0.11: ð5:12Þ

However, here we see the difference with respect to the
CMASS-like sample of Ref. [12] (bΓ3

¼ −7γ21=4 in their
notation). The relevant measurement from this work is fully
consistent with that of halos,

bCMASS
Γ3

− bhaloΓ3
ðbgal1 ; bgalG2

Þ ¼ −0.02� 0.14: ð5:13Þ

The discrepancy between our bΓ3
and that of Ref. [12] is

marginally below 2σ, and hence our measurements can be
considered consistent.
Overall, we conclude that with the PT challenge simu-

lations we see a ∼3σ discrepancy between the bias
parameters of our HOD galaxies and their host halos.
However, our bias parameter measurements agree well with
those from similar mock CMASS-like galaxies, analyzed
in Ref. [12].

C. Redshift space

We now consider the realistic case of the redshift-space
bispectrum monopole in the presence of the AP effect. We
analyze our joint power spectrum and bispectrum like-
lihoods for three choices of the bispectrum data cut ranging
kmax from 0.08 to 0.12 hMpc−1 with a step 0.02 hMpc−1.
Our triangle plot is displayed in Fig. 5, where for
comparison we also show the results of the baseline real
space bispectrum analysis from the previous section.
Marginalized 1D limits are presented in Table I. Best-fit
curves and the residual plot are shown in Figs. 3 and 4.
We see that at kmax ¼ 0.08 hMpc−1 the addition of the

bispectrum likelihood slightly narrows the power spectrum
contours and does not lead to any significant bias. Both
cosmological and nuisance parameters are recovered within
95% confidence intervals. However, already at kmax ¼
0.08 hMpc−1 we observe some evidence for the nonzero
FOG counterterm c1, which suggests that the one-loop
corrections may not be negligible. Indeed, for more
aggressive data cuts kmax > 0.08 hMpc−1 we find large
biases that signal the breakdown of the tree-level bispec-
trum model. These biases are more significant than those
that we have seen in the real space power spectrum
likelihood, which is an expected consequence of nonlinear
redshift space distortions [41,46,54,65,113,114]. A similar
conclusion that FOGs in the bispectrum are important
even on relatively large scales was made in Ref. [115].

FIG. 4. Residuals between the bispectrum data and best-fitting theory templates for all triangles from the real space (left panel) and the
redshift space (right panel) analyses.
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These results motivate us to choose kmax ¼ 0.08 hMpc−1

as our baseline data cut.
In Fig. 6 and Table I we display the breakdown of

different likelihoods in terms of their parameter constraints,
including the redshift space bispectrum alone. Clearly, the
constraints on cosmological parameters are heavily domi-
nated by the power spectrum data. In part, this is a result of
using only relatively low wave numbers in our bispectrum
analysis.
The bispectrum likelihood adds new information mostly

through the bias parameter measurements. In particular, the
principle component of the b1 − σ8 degeneracy can be well
approximated by a combination b31σ

4
8, which captures the

galaxy bispectrum amplitude in the absence of quadratic
biases and projection effects. Our redshift space bispec-
trum-only analysis yields a measurement quite competitive
with the redshift-space power spectrum result,12 cf. Table I.
Beside b1 − σ8, the bispectrum also adds significant infor-
mation through the quadratic bias parameters b2 and bG2

,
whose measurements from the bispectrum alone are more
precise than from the power spectrum.

FIG. 5. Posterior distributions of cosmological and certain nuisance parameters fromMCMC analyses of the joint redshift space power
spectrum and redshift space bispectrum monopole data. We show results for three different choices of the bispectrum data cut kmax.
All cosmological parameters and b1 are normalized to their true values. We have subtracted constant fiducial values from the
quadratic bias parameters b2 and bG2

. Results for the power spectrum (“P”) and for the power spectrumþ real space bispectrum
[“Pþ Brealðkmax ¼ 0.08 hMpc−1Þ”] datasets are shown for comparison.

12For the power spectrum the principle component is slightly
different, b21σ

4
8. This small difference in the exponent is not

important for our discussion.
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Addition of the bispectrum leads to following improve-
ments on cosmological and nuisance parameters

σPþB

σP
fωcdm; h; ns; As;Ωm; σ8g

¼ f0.88; 0.94; 0.86; 0.95; 0.89; 0.96g;
σPþB

σP
fb1; b2; bG2

; Pshotg

¼ f0.84; 0.18; 0.09; 0.65g: ð5:14Þ

In general, the gain here is more modest compared to what
we have obtained from the real space bispectrum. One
reason for that is the correlation between the additional
FOG counterterm c1 and other parameters. For example,
the degeneracy between c1 and b2; Bshot is quite significant,
which explains why the confidence intervals for these

nuisance parameters are noticeably larger than those of the
real space bispectrum case. Another reason for the rela-
tively small improvement in cosmological parameters is
that the BAO wiggles are more suppressed in redshift
space, cf. Eq. (3.12), and hence there is less available
distance information.
All in all, the upshot of our analysis is that for the full PT

challenge simulation volume the data cut for the tree-level
redshift-space bispectrum model is kmax ¼ 0.08 hMpc−1,
and the addition of the bispectrum likelihood yields ≲10%
improvement on cosmological parameters, but much larger
gains on bias parameters.

D. Forecast for BOSS

It is useful to rerun our analysis for the covariance that
matches the volume of the currently available BOSS data.

FIG. 6. Posterior distributions of cosmological and certain nuisance parameters from MCMC analyses of the redshift space power
spectrum, redshift space bispectrum, and their combination. We use kmax ¼ 0.08 hMpc−1 for the bispectrum here.
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In this case the covariance is larger, and hence we can use
more aggressive data cuts provided that the bias in
cosmological parameters due to higher order loop correc-
tions is smaller than a fraction of the statistical error. In this
case the power spectrum multipole analysis can be pushed
to kmax ¼ 0.20 hMpc−1, which is noticeably larger than
our baseline PT challenge power spectrum multipole data
cut kmax ¼ 0.14 hMpc−1 [53]. Note that this kmax is lower
than kmax ¼ 0.25 hMpc−1 used in Refs. [48,116] because
here we include the hexadecapole moment, see Ref. [53] for
more detail. Consequently, the transverse power spectrum
moment Q0 is taken in the range 0.2 < k=ðhMpc−1Þ < 0.4
[77]. Unfortunately, we cannot push the bispectrum analy-
sis to kmax ¼ 0.1 hMpc−1 because the relative theory
systematic error on σ8 there is around 3%. This is a
significant fraction of the BOSS statistical error,

σσ8=σ8 ≈ 5%. We have explicitly checked that the recov-
ered value of σ8 is biased by 1σ of the BOSS error when the
bispectrum is taken at kmax ¼ 0.1 hMpc−1. Therefore, we
proceed with the same baseline cut as in the PT challenge
analysis of the previous section, kmax ¼ 0.08 hMpc−1.
We analyze the same PT challenge data but with the

covariance rescaled by a factor 100, which is the difference
between the PT challenge volume and the BOSS survey
volume VBOSS ≃ 6 h−3Gpc3. In this particular analysis, we
also impose the following Gaussian prior on c1,

c1 ∼N ð0; 52Þ; ð5:15Þ

which is motivated by the EFT expectation c1 ¼ Oð1Þ. Our
results are shown in Fig. 7 and in Table II.

FIG. 7. Same as Fig. 5 but with the covariance rescaled by 100 to match the BOSS survey volume.
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We observe that the addition of the bispectrum has
roughly the same impact for cosmological parameters are
the full PT challenge case, i.e. there is a ∼10% improve-
ment on the 1D marginalized constraint on As and σ8, and
barely any effect on other parameters. As far as quadratic
bias parameters are concerned, the improvements for them
are less sizable. In contrast to the full PT challenge
simulation, in the BOSS-like power spectrum case the bias
parameters are dominated by priors (given in Appendix D)
and not by the data. Hence, the power spectrum posteriors
are narrower to begin with. Still, the addition of the
bispectrum data sharpens b2 and bG2

posteriors by a factor
of two.

VI. COMPARISON WITH PREVIOUS WORK

Our analysis complements and extends other works on
the galaxy bispectrum. Therefore, it is useful to compare
our study with the most relevant literature.

Reference [11] studied the real space halo galaxy bispec-
trum from simulations with the overall volume similar to that
of the PT challenge suite. This work used the tree-level
bispectrum model to fit the pure bispectrum data (in the
absence of the power spectrum), and has established that this
model works up to kmax ¼ 0.082 hMpc−1, in agreement
with our baseline result kmax ¼ 0.08 hMpc−1. Thiswork did
not find any significant deviations from Poissonian sampling
for the halo bispectrum. Reference [13] used the same data to
perform a joint power spectrum and bispectrum analysis in
real space.When comparison is possible, our results agree. In
particular, we find similar improvements on cosmological
parameters for the real space analysis and find the sub-
Poissonian shot noise for the PT challenge galaxies, both in
real and redshift space. This detection ismainly driven by the
power spectrum data, which yields a≳2σ deviation from the
Poissonian sampling even in the absence of any bispectrum
data. This can be compared with the bispectrum data alone
(see Fig. 6), which is not precise enough to constrain the shot
noise. When the two likelihoods are combined, we obtain
much tighter constraints on the shot noise parameters than the
bispectrum alone. This result is not surprising, given that on
general grounds we do expect halo stochasticity to be
different from that of galaxies, see e.g. [114]. The importance
of beyond-Poissonian sampling for primordial non-
Gaussianity constraints from the bispectrum was also
emphasized in [10].
Reference [12] presented constraints on the galaxy bias

parameters from the combination of the real space power
spectrum and bispectrum data. This work used a one-loop
theoretical error model for the bispectrum, which allowed
one to push the analysis to small scales and achieve
parameter measurement precision similar to ours while
using smaller effective volume Veff ¼ 6 h−3Gpc3. An
important observation is our analysis confirms the result
of Ref. [12] that the quadratic bias parameters of BOSS-like
galaxies do not follow halo-calibrated dependencies on
linear bias b1. The deviations from these dependencies that
we find in our work agree very well with those reported
in Ref. [12].
It is very important to compare conclusions on the

cosmological parameter improvements from the bispec-
trum in real space from Refs. [12,13] and from our redshift
space analysis. References [12,13] showed that constraints
on As typically improve by factors of 4–6 in real space. This
improvement factor stays roughly the same regardless of
whether the tree-level or the one-loop bispectrum model is
used. In contrast to this, our analysis implies that the
bispectrum monopole sharpens the As constraints only by
∼20% in redshift space. This happens because the noto-
rious degeneracy between the linear bias b1 and As, which
plagues real space analyses, is lifted in redshift space
already at the level of power spectrum multipoles.
The bispectrum monopole of BOSS-like mocks and the

actual bispectrum data from the CMASS north galactic cap

TABLE II. 1D marginalized limits from analyses of the redshift
space galaxy power spectrum (left panel) and the joint power and
bispectrum data (right panel) from the PT challenge simulation
with the covariance rescaled to match the volume of the BOSS
survey, as shown in Fig. 7.

Power spectrum (PS), BOSS-like

Parameter 68% limits

ΔH0=H0 0.001þ0.013
−0.015

Δωcdm=ωcdm 0.021þ0.065
−0.080

ΔAs=As −0.01þ0.10
−0.15

Δns=ns −0.009� 0.059
Δb1=b1 0.004� 0.053
Δb2 −0.09þ0.59

−0.80
ΔbG2

0.36� 0.33
Pshot −0.13� 0.51
Δσ8=σ8 0.000þ0.046

−0.055
ΔΩm=Ωm 0.016þ0.046

−0.055

PSþ bispectrum, BOSS-like

Parameter 68% limits

ΔH0=H0 0.006þ0.013
−0.015

Δωcdm=ωcdm 0.029þ0.063
−0.080

ΔAs=As −0.049þ0.093
−0.13

Δns=ns −0.008� 0.057
Δb1=b1 0.028� 0.047
Δb2 0.19þ0.44

−0.50
ΔbG2

0.21� 0.25
Pshot −0.38� 0.40
Bshot 1.23� 0.89
c1 0.1� 4.8
Δσ8=σ8 −0.013þ0.044

−0.052
ΔΩm=Ωm 0.012þ0.045

−0.052
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sample were analyzed in Ref. [49]. This analysis is closest
to ours since it uses essentially a similar EFT theoretical
model for the power spectrum part. However, its bispec-
trum analysis is different from ours by a number of
instances. First, systematic errors in the window function
treatment forced Ref. [49] to discard low wave number
modes, i.e. use kmin ¼ 0.04 hMpc−1.13 Second, similarly to
us, the authors of Ref. [49] used the tree-level EFT model
for the bispectrum monopole. However, they ignored IR
resummation (which is necessary already at the tree level
[4,63,73]) and additional corrections due to FOG and
binning, which was partly justified by the smallness of
the total simulation volume of that work compared to ours.
Nevertheless, the final scale cuts kmax¼ð0.08–0.1Þ hMpc−1

of the bispectrum analysis of Ref. [49] are consistent with
our choice kmax ¼ 0.08 hMpc−1. Finally, Ref. [49] found
that the bispectrum data from one BOSS data chunk
(CMASS north galactic cap) sharpens the constrain on
As by ≲20% and leaves intact other cosmological param-
eters. We have found a quantitatively similar behavior in
our analysis, see Fig. 7. It will be interesting to see how
much the constraints improve in the analysis of the actual
BOSS data with our likelihood. We leave this for future
work [119].
Finally, it is worth comparing our results with those from

theMCMC forecast for the Euclid-like survey from Ref. [6].
This work used a very similar methodology and found that
the additionof the tree-level bispectrummonopole likelihood
leads to∼ð10–50Þ% on all relevant cosmological parameters
of the ΛCDM model with massive neutrinos. Our analysis
is different from Ref. [6] in several aspects. First, unlike
Ref. [6], our baseline power spectrum likelihood contains the
real space power spectrumQ0 [77].Moreover, our likelihood
here includes physical priors on nuisance parameters,
whereas Ref. [6] did not assume any priors on them.
These two factors may diminish relative information content
of the bispectrum in our work. Second, we analyze only one
redshift bin here, whereas Ref. [6] considers a more realistic
data sample spread across eight different bins. Clearly, this
latter case contains more distance information that can be
extracted through the AP effect. Third, we impose the BBN
prior on Ωb here, while Ref. [6] fits this parameter directly
from the large-scale structure data. Despite these significant
differences, one observes a qualitative agreement between
our results: in both cases the tree-level bispectrummonopole
improves cosmological parameter constrains by tens of
percent.

VII. CONCLUSIONS

In this work we have studied the cosmological informa-
tion present in the redshift-space bispectrum monopole of

PT challenge simulation galaxies. We analyze the joint
power spectrum and bispectrum likelihood using the one-
loop EFT model for the power spectrum and the tree-
level model for the bispectrum. This is a fully consistent
approach as for both statistics we use the perturbative
density field expanded to third order in the linear solution.
Our bispectrum theoretical templates include, for the first
time, all the effects that are needed to describe the data at
this order: tree-level IR resummation, corrections due to
discreteness, FOG, and the AP effect. Our main results are

(i) The tree-level bispectrum model is valid up to
kmax ¼ 0.08 hMpc−1 for a BOSS-like luminous
red galaxy sample.

(ii) The addition of the tree-level bispectrum likelihood
to the power spectrum one leads to moderate
improvements of constraints on cosmological
parameters by ≲10%.

(iii) The improvement on bias parameters is very sig-
nificant. The error bars on the quadratic local in
density bias b2 and the tidal bias bG2

shrink by more
than a factor of 10 after adding the bispectrum data.

(iv) We have found that the quadratic galaxy bias
parameters are quite different from biases of host
dark matter halos. This confirms the trend seen in the
literature [12,112].

On the technical side, we have proposed a new efficient
approach to account for binning effects by a combination of
the integral approximation and discreteness weights, and
also studied in detail the dependence of our results on
bispectrum covariance matrix choices.
There are several ways to extend our analysis. First, it

would be important to upgrade our theory model with the
redshift-space one-loop bispectrum calculations. In par-
ticular, we have found that at kmax > 0.08 hMpc−1 the data
shows evidence for FOG, which is a loop effect in the EFT
nomenclature. Given that the one-loop calculation signifi-
cantly extends the regime of validity of the EFT in the
power spectrum case, one may expect that a similar
improvement can take place for the bispectrum. It is
important to notice that for consistency one needs to
compute the power spectrum at two-loop order when
considering the one-loop bispectrum.
Moreover, it is also interesting to consider higher angular

moments of the redshift-space bispectrum. Various fore-
casts suggest that these moments may contain significant
cosmological information, see e.g. [5]. We plan to verify
these results in an actual analysis of simulated or real data.
Importantly, higher order bispectrum multipoles are sensi-
tive to FOG, and hence one-loop corrections are desirable
for their systematic study. This issue can be mitigated with
an analog of the transverse moment Q0 for the bispectrum.
We plan to study this statistics in future.
Another natural step is the analysis of the actual

bispectum data from the BOSS survey [119]. Our work
suggests that the inclusion of the bispectrum may improve

13In principle, this issue can be avoided with the help of
unwinnowed estimators implemented along the lines of
Refs. [117,118].
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constraints on the mass fluctuation amplitude by ∼10%.
This improvement is not very dramatic, but it should be
pointed out that so far we have considered only the minimal
ΛCDM model. The information content of the redshift
space bispectrum can be richer in nonminimal cosmologi-
cal models, which may have some implications for certain
tensions, e.g. the so-called σ8 tension [120].
Finally, it would be interesting to repeat our analysis for

the emission line galaxies, which will be the main targets of
future surveys like DESI [121] and Euclid [122,123].
Emission line galaxies are less biased than the red luminous
galaxies whose mocks we studied in this paper. Moreover,
recent measurements suggest that they are less affected by
FOG [90,124], which implies that the EFT model may
perform better for this sample.
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APPENDIX A: TESTS OF BINNING

In order to account for binning effects, one should ideally
evaluate the full sum over all possible triangle configura-
tions inside the bin. However, this evaluation is computa-
tionally very expensive. In the main text we have used the
integral approximation along with discreteness weights that
correct for the inaccuracy of this approximation for the
folded triangles. In this appendix we present an alternative
to this scheme, which works well for the real space
bispectrum.
The main goal of our binning scheme is to generate many

“fundamental” triangle configurations based on the true kf
and then sum them into appropriate bins. It is computa-
tionally expensive to generate all the fundamental triangles
on the actual 3D Fourier grid. Moreover, it is also not
efficient, because the fundamental grid contains a large
number of identical fundamental triangles. We can avoid
that by organizing a sum over unique fundamental triangle
configurations with q1 ≥ q2 ≥ q3, where qi are wave vector
moduli of fundamental triangles. In this case we need to

sample the bispectra over a relatively small grid of wave
numbers. We will call this method “approximate 1D
binning” in what follows. It is based, essentially, on taking
the integral expression Eq. (3.26) and approximating it with
a sum over appropriate discrete configurations of wave
vector moduli.
Let us start with the integral approximation Eq. (3.26),

obtained after eliminating most of angular variables by
means of the Dirac delta function. In real space the integrals
over μ and ϕ drop out of this expression because the
bispectrum does not depend on angles. Now we can write
down the following discrete approximation to the final
integral,

B̂int
0 ≃

V
P

123q1q2q3Bðq1; q2; q3Þ
V
P

123q1q2q31
; ðA1Þ

where the sum
P

123 is taken over all configurations of
momentum moduli qi that fall in the bin. This sum contains
many indistinguishable modes. Now we replace this sum
with a discrete sum over independent triangle configura-
tions only,

B̂int
0 ≃

V
P

Tq1q2q3Bðq1; q2; q3Þ
V
P

Tq1q2q31
; ðA2Þ

where the sum
P

T runs over all unique triangles that fall in
the bin ðk1; k2; k3Þ and that respect the kf spacing,

X
T

≡ Xk1þΔk=2

q1¼maxðkf;k1−Δk=2Þ

Xminðk2þΔk=2;q1Þ

q2¼maxðkf;k2−Δk=2Þ

Xminðk3þΔk=2;q2Þ

q3¼maxðkf;k3−Δk=2;q1−q2Þ
:

ðA3Þ

To compute the sum in Eq. (A2) in practice, we generate a
grid of tuples (q1, q2, q3) with spacing Δq ¼ kf and select
only those that satisfy the constraints of Eq. (A3) for each
bin (k1, k2, k3). Notice that we have used the isotropy of the
bispectrum in our derivation, which is certainty not true in
redshift space. We apply the approximate 1D binning
scheme in real space only.
Equation (A2) is not exact because it was derived from

the integral expression (3.26), which is approximate on its
own. But we can still use it as an alternative prescription
for the binning effects that will allow us to assess the
systematic error of our baseline discreteness weight
method. The two methods can be compared in Fig. 8,
“Baseline” vs “Approx 1D binning.”We can clearly see that
they yield almost identical results. This validates our
discreteness weight approach adopted in the main analysis.
In this plot, we also show results from the “pure integral
approximation” obtained from the bispectrum model
with the integral approximation but without discreteness
weights or any additional corrections. This prescription
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leads to significant biases in the recovery of quadratic bias
parameter b2 and bG2

.

APPENDIX B: IMPACT OF OPEN TRIANGLES

In principle, we could also include in our analysis
the open triangles, i.e. the triangle bins that do not satisfy
jk3 − k2j < k1 < k3 þ k2 at their centers. We refrained
from doing so because of the reasons listed in the main
text. In this Appendix we explicitly check that neglecting
these triangles does not lead to any appreciable loss of
information. We include these triangles in the analysis by
adopting the approximate 1D binning scheme described
above. We have found that the Gaussian covariance

approximation is very inaccurate for them, and therefore
use a diagonal sample covariance matrix in our likelihood.
The sample covariance matrix approximation for “usual”
closed triangle configurations is validated in the next
section, showing that it leads to essentially the same results
as our baseline Gaussian covariances.
The results of our analysis of the bispectrum likelihood

including open triangles are shown in Fig. 8, which should
be compared with the case “weightsþ sample covariance.”
We see that the posterior distribution in this case is almost
identical to that of the usual sample covariance analysis
without open triangles, which implies that they can safely
neglected for the purposes of this paper.

FIG. 8. Triangle plots and 1D marginalized posteriors of cosmological and nuisance parameters from the following analyses that differ
by the real space bispectrum likelihood treatments: baseline (Gaussian covarianceþ discreteness weights), approximate 1D binning,
integral approximation for binning without additional binning corrections (þGaussian covariance for the last two cases); likelihood
based on the bispectrum sample covariance (discreteness weights), and the likelihood that includes the extra open triangles
(þsample covariance).
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APPENDIX C: COVARIANCE MATRIX TESTS

To test our baseline Gaussian covariance model, in
this section we run our analysis with the bispectrum
likelihood based on sample covariance matrix estimators.
The PT challenge suite consists of 10 boxes only, which
means that the relative error on elements of the sample
covariance in this case is around 10−1=2 ∼ 30%. Since the
sample covariance is not invertible for our baseline bispec-
trum data with 70 triangle bins, we will use only its
diagonal part. This should still be a good approximation
on large scales where the bispectrum covariance is domi-
nated by the Gaussian diagonal contribution. The elements
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FIG. 9. Ratio of diagonal elements of the bispectrum covariance
matrix computed in the Gaussian approximation and the sample
covariance extracted from 10 PT challenge simulation boxes.

FIG. 10. Triangle plots and 1D marginalized posteriors of cosmological and nuisance parameters from the joint redshift-space power
spectrum and bispectrum likelihoods built with different covariance matrices: the Gaussian covariance, the Gaussian covariance
including the theoretical error (TE), the Gaussian covariance including the theoretical error and the cross-covariance between the power
spectrum and bispectrum, and the bispectrum sample covariance. In all cases we have used the discreteness weights and kmax ¼
0.08 hMpc−1 for the bispectrum likelihood.
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of our sample covariance normalized to the predictions of
the Gaussian approximation are shown in Fig. 9. We see
that the ratio is scattered around unity with most of the
points dispersed within ∼50% in accordance with the
expected variance. However, we also observed several
notable outliers. Nevertheless, the posterior distribution
from the likelihood based on the sample covariance is
almost identical to that of the baseline analysis, see Fig. 8
for the real space case and Fig. 10 for the redshift space
case. We see that the main effect of the sample covariance is
to shift the posterior distributions, but these shifts do not
exceed 1σ, which is an expected effect of the sampling
noise in the covariance [30,125].

1. Theoretical error and cross-covariance

We additionally check the stability of our results
with respect to the inclusion of the theoretical error
covariance to the bispectrum and the cross-covariance
between the power spectrum multipoles and the bispectrum
monopole.
The theoretical error covariance accounts for the imper-

fectness of the particular theoretical model that is used to fit
the data. In the EFT approach theoretical calculations are
done up to a fixed order on scales where higher order
corrections are estimated to be negligible. A more system-
atic way to account for these corrections is to marginalize
over their approximate shape dictated by the EFT power
counting [4,54]. This marginalization leads to a simple
change of the covariance matrix by an additive correlated
contribution. We incorporate the theoretical error covari-
ance for the bispectrum following Ref. [4]. We use the
following one-loop bispectrum theoretical error kernel

EBðk1; k2; k3Þ ¼ Btreeðk1; k2; k3; zÞD2þðzÞ

×

�
k1 þ k2 þ k3

3 × 0.23 hMpc−1

�
3.3
; ðC1Þ

whose amplitude is reduced by a factor of 3 compared to
Ref. [4]. We do so because the original envelope
of Ref. [4] was calibrated to one-loop calculations at
k ∼ 0.2 hMpc−1 which is larger than our baseline cut
kmax ¼ 0.08 hMpc−1. We have checked that on these
scales the original theory error kernel of Ref. [4] over-
estimates the actual size of one-loop matter bispectrum
corrections, and therefore have accounted for it by multi-
plying this kernel by a factor 1=3. Using Eq. (C1), the
theoretical error covariance can be written as

CBðTEÞ
TT 0 ¼ EBðk1; k2; k3ÞEBðk01; k02; k03Þ

Y3
i¼1

e−
ðki−k0iÞ
2δk2 ; ðC2Þ

where the coherence scale δk ¼ 0.1 hMpc−1 following
Refs. [6,54]. The full covariance is given by

CB
TT 0 ¼ CBðGaussÞ

TT 0 þ CBðTEÞ
TT 0 : ðC3Þ

The result of our analysis of the bispectrum likelihood
with the theoretical error covariance are presented in
Fig. 10 and in Table III. We see the inclusion of the
theoretical error covariance leads to a moderate infla-
tion of error bars and insignificant shifts of some
posteriors.
Finally, we include the cross-covariance between the

power spectrum multipoles and the bispectrum monopole
in our likelihood. We compute this cross-covariance in
the tree-level approximation along the lines of Ref. [3],
see Appendix F for more detail. The results of this
analysis are displayed in the same Fig. 10 and Table III.
The impact of the cross-covariance is quite marginal—the
posteriors are virtually identical to those of the previous
analysis which treated the bispectrum and the power
spectrum uncorrelated. This is consistent with common

TABLE III. One-dimensional marginalized limits from analy-
ses of the redshift space bispectrum monopole data at kmax ¼
0.08 hMpc−1 with two additional ingredients: the one-loop TE
bispectrum covariance (left table) and the TE bispectrum covari-
ance plus the cross-covariance between the power spectrum
multipoles and the bispectrum (right table).

TE covariance

Parameter 68% limits

ΔH0=H0 −0.0002� 0.0018
Δωcdm=ωcdm 0.004� 0.011
ΔAs=As −0.017� 0.021
Δns=ns 0.0009� 0.0082
Δb1=b1 0.0128� 0.0089
Δb2 −0.11� 0.12
ΔbG2

0.058� 0.038
Pshot −0.32� 0.11
Bshot 2.36� 0.64
c1 11.0� 4.0

Δσ8=σ8 −0.0059� 0.0083
ΔΩm=Ωm 0.0035� 0.0072

TEþ cross covariance

Parameter 68% limits

ΔH0=H0 0.0004� 0.0018
Δωcdm=ωcdm 0.008� 0.011
ΔAs=As −0.021� 0.021
Δns=ns −0.0006� 0.0084
Δb1=b1 0.0140� 0.0088
Δb2 −0.10� 0.11
ΔbG2

0.059� 0.037
Pshot −0.35� 0.10
Bshot 2.15� 0.59
c1 10.4� 3.8

Δσ8=σ8 −0.0056� 0.0084
ΔΩm=Ωm 0.0061� 0.0075
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expectations that the cross-covariance is negligible on
large scales [4,6].
All in all, the analyses that we have carried out suggest

that our baseline results are stable with respect to the choice
of covariance matrices.

APPENDIX D: BASELINE POWER SPECTRUM
LIKELIHOOD

Our baseline power spectrum likelihood consists of two
pieces:
Redshift space multipoles: l ¼ 0, 2, 4 with kmax ¼

0.14 hMpc−1. We build the likelihood using the Gaussian
approximation for the covariance matrix of these multipole
moments. In the previous work [55] we have checked that
the one-loop EFT model provides an accurate and unbiased
fit to the data in this range.
Transverse moment (real space) power spectrum

in the range 0.14 hMpc−1 < k < 0.4 hMpc−1. We use
the Gaussian covariance for real space part of the power
spectrum likelihood.

Below, we present a brief overview of our theory model.
We use the following deterministic part of the bias
expansion (δg and δ are overdensity fields of galaxies
and matter, respectively),

δg ¼ b1δþ
b2
2
δ2 þ bG2

G2 þ bΓ3
Γ3 þ R2�∂2

i δ; ðD1Þ

where we introduce the Galileon operators built from the
gravitational potential Φ and velocity potential Φv

G2ðΦÞ ¼ ð∂i∂jΦÞ2 − ð∂2
iΦÞ2; Γ3 ¼ G2ðΦÞ − G2ðΦvÞ:

ðD2Þ

The higher derivative bias parameter R2� is degenerate with
the dark matter sound speed and the redshift-space counter-
terms. Thus, for convenience, we use the parametrization
where each redshift space multipole has its own higher
derivative counterterm,

Pctr
l ðkÞ ¼ −k2Cl

2lþ 1

2

Z
1

−1
dμðfμ2Þl2PIR−res

tree ðk; μÞLlðμÞ; l ¼ 0; 2; 4: ðD3Þ

The parameters C0, C2, C4 can be easily translated into the coefficients in front of the “fundamental”
line-of-sight dependent higher-derivative counterterms [44]. Note that we conservatively assume that these
parameters are different from c1, which we use in the bispectrum model. A detailed calculation of all relevant
redshift-space bispectrum operators will be presented elsewhere. In addition, we include a single higher-derivative
RSD counterterm

Pðẑ ∇⃗Þ4
l ðkÞ ¼ −k4b4

2lþ 1

2

Z
1

−1
dμLlðμÞf4μ4ðb1 þ fμ2Þ2PIR−res

tree ðk; μÞ; l ¼ 0; 2; 4; ðD4Þ

whose necessity is motivated by the analyses of the redshift-space matter power spectrum [54]. Finally, we use the following
parametrization for the stochastic part of the redshift-space power spectrum,

Pstochðk; μÞ ¼
1þ Pshot

n̄
þ ða0 þ a2μ2Þ

�
k

0.45 hMpc−1

�
2 1

n̄
: ðD5Þ

Overall, our power spectrum likelihood depends on the following nuisance parameters

fb1; b2; bG2
; bΓ3

; C0; C2; C4; b4; a0; a2; Pshotg; ðD6Þ

for which we assume the following physically motivated priors [44,53,54,77]:

b1 ∈ ð1; 4Þ; b2 ∼N ð0; 12Þ; bG2
∼N ð0; 12Þ; bΓ3

∼N
�
23

42
ðbfid1 − 1Þ; 12

�
;

C0

ð h−1MpcÞ2 ∼N ð4; 102Þ; C2

ð h−1 MpcÞ2 ∼N ð20; 202Þ; C4

ð h−1MpcÞ2 ∼N ð−10; 202Þ;
b4

ð h−1MpcÞ4 ∼N ð500; 5002Þ; a0 ∼N ð0; 12Þ; a2 ∼N ð0; 12Þ; Pshot ∼N ð0; 12Þ: ðD7Þ
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APPENDIX E: REAL SPACE POWER
SPECTRUM+BISPECRUM ANALYSIS

In this appendix we study the information content of
clustering statistics purely in real space. Similar analyses
have done before, see for instance [11–13]. We analyze the
real space galaxy power spectrum of PT challenge simu-
lation at kmax ¼ 0.2 hMpc−1 and the real space bispectrum
at kmax ¼ 0.08 hMpc−1. The real space power spectrum
case is very different from the redshift space one. In the
absence of RSD the degeneracy between the linear galaxy
bias b1 and clustering amplitude σ8 is largely unbroken.
Moreover, the real space case does not capture the

distance information, which should result in larger error
bars on H0.
Our results are shown in Fig. 11 and in Table VI. The real

space power spectrum data Pgg;real is much less con-
straining than the dataset ½P0; P2; P4; Q0� that we are using
in our baseline redshift space power spectrum analysis. In
particular, the constraints on ωcdm; ns, and H0 are a few
times weaker, and the limit on σ8 is weaker by an order of
magnitude. We can also see that the cosmological param-
eters’ posteriors from the bispectrum alone are comparable
to the power spectrum ones. When we combine the two
statistics the improvement is quite significant, e.g. the limit
on σ8 improves by a factor of four, the limit on H0 by 30%.

FIG. 11. Triangle plots and 1D marginalized posteriors of cosmological and nuisance parameters from the real space power spectra
and bispectra data of the PT challenge simulation. For compactness, only linear and quadratic bias parameters are shown.
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APPENDIX F: POWER SPECTRUM AND
BISPECTRUM COVARIANCES IN

PERTURBATION THEORY

In this appendix we calculate tree-level covariance
matrices for the power spectrum and bispectrum. Let us
start with the real-space estimators for the density power

spectrum and bispectrum in the narrow bin approximation
Δk ≪ k [23]

P̂ðkiÞ¼
Z
q∈kishell

d3q
ð2πÞ3N k

δð−qÞδðqÞ;

N k¼4πk2Δk
V

ð2πÞ3 :

B̂ðk1;k2;k3Þ¼
Y3
i¼1

Z
ki

d3qi
ð2πÞ3

ð2πÞ3δð3Þðq123Þ
N123

T
δðq1Þδðq2Þδðq3Þ;

N123
T ¼8π2k1k2k3Δk3

V2

ð2πÞ6 ; ðF1Þ

Using the formulas from [102],

Z
r2drj0ðk1rÞj0ðk2rÞj0ðk3rÞ ¼

π

4
;

Z
k1

Z
k2

Z
k3

½dq�3ð2πÞ3δð3Þðq123Þ ¼ k1k2k3Δk3
ð4πÞ4
ð2πÞ9

π

4
;

δð3ÞD ðk1 þ k2 þ k3Þ ¼
1

k1k2k3
δð1ÞD

�
cosðk1;k2Þ

−
k23 − k21 − k21

2k1k2

�
δð2ÞD ðk̂3

− ðk̂1 þ k̂2ÞÞ; ðF2Þ

we can compute the autocovariances of the estimators (F1),

Ckikj ¼
2

N ki

δijP2ðkiÞ;

CTT 0 ¼ ð2πÞ3πs123
k1k2k3Δk3V

δTT 0
Y3
i¼1

PðkiÞ; ðF3Þ

where s123 ¼ 6, 2, or 1 for equilateral, isosceles, and gen-
eral triangles. The cross-covariance hPðk0ÞBðk1; k2; k3Þi is
given by

Ck0iT
¼ 2ð2πÞ3

N k0i

ðδij1Pðk0iÞBðkj1 ; kj2 ; kj3Þ þ cycl:Þ: ðF4Þ

It is straightforward to generalize these calculations to
power spectrum multipole l and the redshift-space bispec-
trum multipole l0,

P̂lðkiÞ ¼
Z
q∈ki shell

d3q
ð2πÞ3N k

δ0ð−qÞδ0ðqÞð2lþ 1Þ

× Llðẑ · q̂Þ;

B̂l0 ðk1; k2; k3Þ ¼ ð2l0 þ 1Þ
Y3
i¼1

Z
ki

d3qi
ð2πÞ3

ð2πÞ3δð3ÞD ðq123Þ
N123

T

× δðq1Þδðq2Þδðq3ÞLl0 ðẑ · q̂1Þ; ðF5Þ

TABLE IV. One-dimensional marginalized limits from analy-
ses of the real space power spectrum at kmax ¼ 0.20 hMpc−1 and
the real space bispectrum at kmax ¼ 0.08 hMpc−1. For compact-
ness, only linear and quadratic bias parameters are shown.

Pgg;real, real space

Parameter 68% limits

ΔH0=H0 −0.0058þ0.0076
−0.0089

Δωcdm=ωcdm −0.023þ0.033
−0.040

ΔAs=As −0.29þ0.13
−0.26

Δns=ns 0.011� 0.033
Δb1=b1 0.22þ0.17

−0.19
Δb2 0.43� 0.91
ΔbG2 0.71þ0.43

−0.55
Pshot 0.38þ0.57

−0.29
Δσ8=σ8 −0.177þ0.097

−0.16
ΔΩm=Ωm −0.008þ0.015

−0.018

Breal, real space

Parameter 68% limits

ΔH0=H0 −0.018� 0.013
Δωcdm=ωcdm −0.047� 0.028
ΔAs=As −0.22þ0.13

−0.31
Δns=ns 0.027� 0.029
Δb1=b1 0.25� 0.24
Δb2 0.29þ0.21

−0.24
ΔbG2 −0.04þ0.15

−0.11
Pshot 0.0� 1.0
Bshot 0.87� 0.32
Δσ8=σ8 −0.148þ0.091

−0.16
ΔΩm=Ωm −0.004þ0.022

−0.025

Pgg;real þ Breal, real space

Parameter 68% limits

ΔH0=H0 −0.0054� 0.0047
Δωcdm=ωcdm −0.026� 0.020
ΔAs=As −0.107þ0.060

−0.068
Δns=ns 0.018� 0.019
Δb1=b1 0.071� 0.036
Δb2 0.30þ0.15

−0.18
ΔbG2 0.046þ0.029

−0.034
Pshot −0.05� 0.14
Bshot 0.96� 0.18
Δσ8=σ8 −0.066� 0.033
ΔΩm=Ωm −0.011� 0.010
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where δ0ðkÞ ¼ δðkÞð1þ βμ2Þ in the linear approximation
[126], β≡ f=b1. In particular, this implies that the
continuous part of the angle-averaged bispectrum auto-
covariance would be modulated in redshift space by
a form factor

Z
dϕ
2π

Z
1

0

dμð1þ βμ2Þ2ð1þ βμ2ðμ;ϕÞ2Þ2ð1þ βμ3ðμ;ϕÞ2Þ2:

ðF6Þ

Similarly, the cross-correlation between Pl and B0 is
given by

hPlðkÞB0ðk1; k2; k3Þi ¼
2ð2πÞ3ð2lþ 1Þ

N k
ðδkk1PðkÞ

Z
dϕ
2π

×
Z

1

0

dμð1þ βμ2Þ2LlðμÞ

× Bðk;k2;k3Þ þ cycl:Þ: ðF7Þ

APPENDIX G: GAUSSIAN FINGERS-OF-GOD
EXPONENT DERIVATION

In this section we revisit the derivation of the Gaussian
FOG exponent that is often used in the literature to motivate
some phenomenological models for FOG, see e.g. [19].
Reference [54] has explicitly shown that this model com-
pletely fails to capture the behavior seen in high quality dark
matter redshift space simulations. Nevertheless, it would be
of some interest to seewhen theGaussian FOGmodel breaks
down at the mathematical level. Let us consider the redshift
space mapping,

δðzÞðkÞ ¼
Z

d3xeikxþiH−1kzvzðxÞðδðxÞ þ 1Þ − ð2πÞ3δð3ÞD ðkÞ:

ðG1Þ
Now we split the velocity field into the long and short
wavelength components,

vi ¼ vLi þ vSi ; ðG2Þ
where vL is correlated with the density field on large scales
and vS is the short-scale contribution generated by the
nonperturbative effects such as virialization. A common
assumption is that this part is fully uncorrelated with the
perturbative long wavelength density field. Taylor-expand-
ing the exponent over its perturbative part we have

δðzÞðkÞ ¼
Z

d3xeikxþiH−1kzvSz ðxÞðδðxÞ þ iH−1kzvLz ðxÞÞ;

ðG3Þ

where we have neglected terms which have support only
around k ¼ 0. In what follows we restrict ourselves to the
tree-level order for the perturbative part, in which case the
velocity field can be expressed as

vLi ¼ −fH
∂iδ

L
m

Δ
⇒ iH−1kzvLi ðkÞ ¼ fμ2δLmðkÞ: ðG4Þ

In order to reproduce the Gaussian FOG exponent, we need
to assume the short scale velocity field is Gaussian distrib-
uted, and its two point correlation function has a finite
support on short scales,

hviðxÞvjðx0Þi ¼ δijH2σ2v for x ¼ x0 and 0 otherwise:

ðG5Þ

Clearly, this assumption cannot be justified within the EFT
approach,which requires that the short-scale averages should
depend on all possible operators involving low-energy
degrees of freedom compatible with IR symmetries of
large-scale structure [42]. Nevertheless, if we proceed using
the cumulant expansion theorem

hexpfiXgi ¼ exp

�X∞
N¼1

iN

N!
hXNic

�
; ðG6Þ

we find the power spectrum in redshift space given by

hδðzÞðkÞδðzÞðk0Þi ¼ ð2πÞ3δð3ÞD ðkþ k0Þe−σ2vμ2k2PKaiserðkÞ;
ðG7Þ

where

PKaiserðkÞ ¼ ðb1 þ fμ2Þ2PðkÞ þ 1

n̄
: ðG8Þ

For the redshift space bispectrum we have

hδðzÞðk1ÞδðzÞðk2ÞδðzÞðk3Þi

¼ ð2πÞ3δð3ÞD ðk123Þe−
σ2v
2

P
3

a¼1
μ2ak2aBtreeðk1;k2;k3Þ; ðG9Þ

which would formally coincide with the leading order EFT
expression used in this work if we Taylor expand the
damping exponent and identify

c1 ¼
ðkrNLÞ2

2
σ2vb1; c2 ¼

ðkrNLÞ2
2

σ2vf: ðG10Þ

PRECISION ANALYSIS OF THE REDSHIFT-SPACE GALAXY … PHYS. REV. D 105, 063512 (2022)

063512-27



[1] P. J. E. Peebles, The Large-Scale Structure of the Universe
(Princeton University Press, 1980), ISBN: 978-0-691-
08240-0, https://ui.adsabs.harvard.edu/abs/1980lssu.book.
....P/abstract.

[2] R. Scoccimarro, The bispectrum: From theory to obser-
vations, Astrophys. J. 544, 597 (2000).

[3] E. Sefusatti, M. Crocce, S. Pueblas, and R. Scoccimarro,
Cosmology and the Bispectrum, Phys. Rev. D 74, 023522
(2006).

[4] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, LSS constraints with controlled theoretical
uncertainties, arXiv:1602.00674.

[5] V. Yankelevich and C. Porciani, Cosmological information
in the redshift-space bispectrum, Mon. Not. R. Astron.
Soc. 483, 2078 (2019).

[6] A. Chudaykin and M.M. Ivanov, Measuring neutrino
masses with large-scale structure: Euclid forecast with
controlled theoretical error, J. Cosmol. Astropart. Phys. 11
(2019) 034.

[7] C. Hahn, F. Villaescusa-Navarro, E. Castorina, and R.
Scoccimarro, Constraining Mν with the bispectrum. Part I.
Breaking parameter degeneracies, J. Cosmol. Astropart.
Phys. 03 (2020) 040.

[8] C. Hahn and F. Villaescusa-Navarro, ConstrainingMν with
the bispectrum. Part II. The information content of the
galaxy bispectrum monopole, J. Cosmol. Astropart. Phys.
04 (2021) 029.

[9] Y. Welling, D. van der Woude, and E. Pajer, Lifting
primordial non-gaussianity above the noise, J. Cosmol.
Astropart. Phys. 08 (2016) 044.

[10] A. Moradinezhad Dizgah, M. Biagetti, E. Sefusatti, V.
Desjacques, and J. Noreña, Primordial non-gaussianity
from biased tracers: Likelihood analysis of real-space
power spectrum and bispectrum, J. Cosmol. Astropart.
Phys. 05 (2021) 015.

[11] A. Oddo, E. Sefusatti, C. Porciani, P. Monaco, and A. G.
Sánchez, Toward a robust inference method for the galaxy
bispectrum: Likelihood function and model selection,
J. Cosmol. Astropart. Phys. 03 (2020) 056.

[12] A. Eggemeier, R. Scoccimarro, R. E. Smith, M. Crocce, A.
Pezzotta, and A. G. Sánchez, Testing one-loop galaxy bias:
Joint analysis of power spectrum and bispectrum, Phys.
Rev. D 103, 123550 (2021).

[13] A. Oddo, F. Rizzo, E. Sefusatti, C. Porciani, and P.
Monaco, Cosmological parameters from the likelihood
analysis of the galaxy power spectrum and bispectrum in
real space, J. Cosmol. Astropart. Phys. 11 (2021) 038.

[14] P. J. E. Peebles and E. J. Groth, Statistical analysis of
catalogs of extragalactic objects. V. Three-point correlation
function for the galaxy distribution in the Zwicky catalog,
Astrophys. J. 196, 1 (1975).

[15] E. J. Groth and P. J. E. Peebles, Statistical analysis of
catalogs of extragalactic objects. VII. Two- and three-
point correlation functions for the high-resolution Shane-
Wirtanen catalog of galaxies, Astrophys. J. 217, 385
(1977).

[16] R. Scoccimarro, H. A. Feldman, J. N. Fry, and J. A.
Frieman, The bispectrum of IRAS redshift catalogs, As-
trophys. J. 546, 652 (2001).

[17] H. A. Feldman, J. A. Frieman, J. N. Fry, andR. Scoccimarro,
Constraints on Galaxy Bias, Matter Density, and Primordial
Non-Gausianity from the PSCz Galaxy Redshift Survey,
Phys. Rev. Lett. 86, 1434 (2001).

[18] F. A. Marin et al. (WiggleZ Collaboration), The WiggleZ
Dark Energy Survey: Constraining galaxy bias and cosmic
growth with 3-point correlation functions, Mon. Not. R.
Astron. Soc. 432, 2654 (2013).

[19] H. Gil-Marn, J. Norea, L. Verde, W. J. Percival, C. Wagner,
M. Manera, and D. P. Schneider, The power spectrum and
bispectrum of SDSS DR11 BOSS galaxies I. Bias and
gravity, Mon. Not. R. Astron. Soc. 451, 539 (2015).

[20] H. Gil-Marn, L. Verde, J. Norea, A. J. Cuesta, L. Samushia,
W. J. Percival, C. Wagner, M. Manera, and D. P. Schneider,
The power spectrum and bispectrum of SDSS DR11 BOSS
galaxies II. Cosmological interpretation, Mon. Not. R.
Astron. Soc. 452, 1914 (2015).

[21] H. Gil-Marn, W. J. Percival, L. Verde, J. R. Brownstein,
C.-H. Chuang, F.-S. Kitaura, S. A. Rodríguez-Torres, and
M. D. Olmstead, The clustering of galaxies in the SDSS-III
Baryon Oscillation Spectroscopic Survey: RSD measure-
ment from the power spectrum and bispectrum of the
DR12 BOSS galaxies, Mon. Not. R. Astron. Soc. 465,
1757 (2017).

[22] Z. Slepian et al., The large-scale three-point correlation
function of the SDSS BOSS DR12 CMASS galaxies, Mon.
Not. R. Astron. Soc. 468, 1070 (2017).

[23] R. Scoccimarro, Fast estimators for redshift-space cluster-
ing, Phys. Rev. D 92, 083532 (2015).

[24] O. H. E. Philcox and D. J. Eisenstein, Computing the
small-scale galaxy power spectrum and bispectrum in
configuration-space, Mon. Not. R. Astron. Soc. 492,
1214 (2020).

[25] O. H. E. Philcox and D. J. Eisenstein, Estimating covari-
ance matrices for two- and three-point correlation function
moments in arbitrary survey geometries, Mon. Not. R.
Astron. Soc. 490, 5931 (2019).

[26] O. H. E. Philcox, A faster Fourier transform? Computing
small-scale power spectra and bispectra for cosmological
simulations inOðN2Þ time, Mon. Not. R. Astron. Soc. 501,
4004 (2021).

[27] O. H. E. Philcox, Z. Slepian, J. Hou, C. Warner, R. N.
Cahn, and D. J. Eisenstein, ENCORE: Estimating galaxy
N-point correlation functions inOðN2

gÞ time, Mon. Not. R.
Astron. Soc. 509, 2457 (2022).

[28] E. Gaztanaga and R. Scoccimarro, The 3-point function in
large scale structure: Redshift distortions and galaxy bias,
Mon. Not. R. Astron. Soc. 361, 824 (2005).

[29] D. Gualdi, H. Gil-Marín, R. L. Schuhmann, M. Manera, B.
Joachimi, and O. Lahav, Enhancing BOSS bispectrum
cosmological constraints with maximal compression, Mon.
Not. R. Astron. Soc. 484, 3713 (2019).

[30] O. H. E. Philcox, M.M. Ivanov, M. Zaldarriaga, M.
Simonovic, and M. Schmittfull, Fewer mocks and less
noise: Reducing the dimensionality of cosmological ob-
servables with subspace projections, Phys. Rev. D 103,
043508 (2021).

[31] F.-S. Kitaura et al., The clustering of galaxies in the SDSS-
III baryon oscillation spectroscopic survey: Mock galaxy

MIKHAIL M. IVANOV et al. PHYS. REV. D 105, 063512 (2022)

063512-28

https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://ui.adsabs.harvard.edu/abs/1980lssu.book.....P/abstract
https://doi.org/10.1086/317248
https://doi.org/10.1103/PhysRevD.74.023522
https://doi.org/10.1103/PhysRevD.74.023522
https://arXiv.org/abs/1602.00674
https://doi.org/10.1093/mnras/sty3143
https://doi.org/10.1093/mnras/sty3143
https://doi.org/10.1088/1475-7516/2019/11/034
https://doi.org/10.1088/1475-7516/2019/11/034
https://doi.org/10.1088/1475-7516/2020/03/040
https://doi.org/10.1088/1475-7516/2020/03/040
https://doi.org/10.1088/1475-7516/2021/04/029
https://doi.org/10.1088/1475-7516/2021/04/029
https://doi.org/10.1088/1475-7516/2016/08/044
https://doi.org/10.1088/1475-7516/2016/08/044
https://doi.org/10.1088/1475-7516/2021/05/015
https://doi.org/10.1088/1475-7516/2021/05/015
https://doi.org/10.1088/1475-7516/2020/03/056
https://doi.org/10.1103/PhysRevD.103.123550
https://doi.org/10.1103/PhysRevD.103.123550
https://doi.org/10.1088/1475-7516/2021/11/038
https://doi.org/10.1086/153390
https://doi.org/10.1086/155588
https://doi.org/10.1086/155588
https://doi.org/10.1086/318284
https://doi.org/10.1086/318284
https://doi.org/10.1103/PhysRevLett.86.1434
https://doi.org/10.1093/mnras/stt520
https://doi.org/10.1093/mnras/stt520
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stv1359
https://doi.org/10.1093/mnras/stv1359
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1103/PhysRevD.92.083532
https://doi.org/10.1093/mnras/stz3335
https://doi.org/10.1093/mnras/stz3335
https://doi.org/10.1093/mnras/stz2896
https://doi.org/10.1093/mnras/stz2896
https://doi.org/10.1093/mnras/staa3882
https://doi.org/10.1093/mnras/staa3882
https://doi.org/10.1093/mnras/stab3025
https://doi.org/10.1093/mnras/stab3025
https://doi.org/10.1111/j.1365-2966.2005.09234.x
https://doi.org/10.1093/mnras/stz051
https://doi.org/10.1093/mnras/stz051
https://doi.org/10.1103/PhysRevD.103.043508
https://doi.org/10.1103/PhysRevD.103.043508


catalogues for the BOSS final data release, Mon. Not. R.
Astron. Soc. 456, 4156 (2016).

[32] F.-S. Kitaura, H. Gil-Marn, C. Scoccola, C.-H. Chuang, V.
Mller, G. Yepes, and F. Prada, Constraining the halo
bispectrum in real and redshift space from perturbation
theory and non-linear stochastic bias, Mon. Not. R. Astron.
Soc. 450, 1836 (2015).

[33] R. Takahashi, T. Nishimichi, T. Namikawa, A. Taruya, I.
Kayo, K. Osato, Y. Kobayashi, and M. Shirasaki, Fitting
the nonlinear matter bispectrum by the halofit approach,
Astrophys. J. 895, 113 (2020).

[34] K. Heitmann, D. Higdon, M. White, S. Habib, B. J.
Williams, and C. Wagner, The coyote universe II:
Cosmological models and precision emulation of the
nonlinear matter power spectrum, Astrophys. J. 705,
156 (2009).

[35] T. Nishimichi, M. Takada, R. Takahashi, K. Osato, M.
Shirasaki, T. Oogi et al., Dark quest. I. Fast and accurate
emulation of halo clustering statistics and its application to
galaxy clustering, Astrophys. J. 884, 29 (2019).

[36] Y. Kobayashi, T. Nishimichi, M. Takada, R. Takahashi, and
K. Osato, Accurate emulator for the redshift-space power
spectrum of dark matter halos and its application to galaxy
power spectrum, Phys. Rev. D 102, 063504 (2020).

[37] A. Schneider, R. Teyssier, D. Potter, J. Stadel, J. Onions,
D. S. Reed, R. E. Smith, V. Springel, F. R. Pearce, and R.
Scoccimarro, Matter power spectrum and the challenge of
percent accuracy, J. Cosmol. Astropart. Phys. 04 (2016)
047.

[38] J. N. Fry, The Galaxy correlation hierarchy in perturbation
theory, Astrophys. J. 279, 499 (1984).

[39] R. Scoccimarro and J. Frieman, Loop corrections in
nonlinear cosmological perturbation theory, Astrophys.
J. Suppl. Ser. 105, 37 (1996).

[40] R. Scoccimarro, S. Colombi, J. N. Fry, J. A. Frieman, E.
Hivon, and A. Melott, Nonlinear evolution of the bispec-
trum of cosmological perturbations, Astrophys. J. 496, 586
(1998).

[41] R. Scoccimarro, H. M. P. Couchman, and J. A. Frieman,
The bispectrum as a signature of gravitational instability in
redshift-space, Astrophys. J. 517, 531 (1999).

[42] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga,
Cosmological non-linearities as an effective fluid, J.
Cosmol. Astropart. Phys. 07 (2012) 051.

[43] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore, The
effective field theory of cosmological large scale struc-
tures, J. High Energy Phys. 09 (2012) 082.

[44] A. Chudaykin, M. M. Ivanov, O. H. E. Philcox, and M.
Simonović, Nonlinear perturbation theory extension of the
Boltzmann code CLASS, Phys. Rev. D 102, 063533
(2020).

[45] G. D’Amico, L. Senatore, and P. Zhang, Limits on wCDM
from the EFTofLSS with the PyBird code, J. Cosmol.
Astropart. Phys. 01 (2021) 006.

[46] S.-F. Chen, Z. Vlah, E. Castorina, and M. White, Redshift-
space distortions in lagrangian perturbation theory,
J. Cosmol. Astropart. Phys. 03 (2021) 100.

[47] S. Alam et al. (BOSS Collaboration), The clustering of
galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological analysis of the DR12

galaxy sample, Mon. Not. R. Astron. Soc. 470, 2617
(2017).

[48] M. M. Ivanov, M. Simonović, and M. Zaldarriaga, Cos-
mological parameters from the BOSS galaxy power
spectrum, J. Cosmol. Astropart. Phys. 05 (2020) 042.

[49] G. D’Amico, J. Gleyzes, N. Kokron, D. Markovic, L.
Senatore, P. Zhang, F. Beutler, and H. Gil-Marín, The
cosmological analysis of the SDSS/BOSS data from the
effective field theory of large-scale structure, J. Cosmol.
Astropart. Phys. 05 (2020) 005.

[50] M. M. Ivanov, M. Simonović, and M. Zaldarriaga,
Cosmological parameters and neutrino masses from the
final Planck and full-shape BOSS data, Phys. Rev. D 101,
083504 (2020).

[51] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović,
M.W. Toomey, S. Alexander, and M. Zaldarriaga,
Constraining early dark energy with large-scale structure,
Phys. Rev. D 102, 103502 (2020).

[52] G. D’Amico, L. Senatore, P. Zhang, and H. Zheng, The
Hubble tension in light of the full-shape analysis of large-
scale structure data, J. Cosmol. Astropart. Phys. 05 (2021)
072.

[53] A. Chudaykin, K. Dolgikh, and M.M. Ivanov, Constraints
on the curvature of the Universe and dynamical dark
energy from the full-shape and BAO data, Phys. Rev. D
103, 023507 (2021).

[54] A. Chudaykin, M. M. Ivanov, and M. Simonović, Opti-
mizing large-scale structure data analysis with the theo-
retical error likelihood, Phys. Rev. D 103, 043525 (2021).

[55] T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M.
Simonović, M. Takada, M. Zaldarriaga, and P. Zhang,
Blinded challenge for precision cosmology with large-
scale structure: Results from effective field theory for the
redshift-space galaxy power spectrum, Phys. Rev. D 102,
123541 (2020).

[56] P. Valageas and T. Nishimichi, Combining perturbation
theories with halo models for the matter bispectrum,
Astron. Astrophys. 532, A4 (2011).

[57] R. E. Angulo, S. Foreman, M. Schmittfull, and L.
Senatore, The one-loop matter bispectrum in the effective
field theory of large scale structures, J. Cosmol. Astropart.
Phys. 10 (2015) 039.

[58] T. Baldauf, L. Mercolli, M. Mirbabayi, and E. Pajer, The
bispectrum in the effective field theory of large scale
structure, J. Cosmol. Astropart. Phys. 05 (2015) 007.

[59] D. Bertolini, K. Schutz, M. P. Solon, and K. M. Zurek, The
trispectrum in the effective field theory of large scale
structure, J. Cosmol. Astropart. Phys. 06 (2016) 052.

[60] A. Eggemeier, R. Scoccimarro, and R. E. Smith, Bias loop
corrections to the galaxy bispectrum, Phys. Rev. D 99,
123514 (2019).

[61] A. Taruya, T. Nishimichi, and D. Jeong, Grid-based
calculation for perturbation theory of large-scale structure,
Phys. Rev. D 98, 103532 (2018).

[62] K. Osato, T. Nishimichi, A. Taruya, and F. Bernardeau,
Implementing spectra response function approaches for
fast calculation of power spectra and bispectra, Phys. Rev.
D 104, 103501 (2021).

[63] D. Alkhanishvili, C. Porciani, E. Sefusatti, M. Biagetti, A.
Lazanu, A. Oddo et al., The reach of next-to-leading-order

PRECISION ANALYSIS OF THE REDSHIFT-SPACE GALAXY … PHYS. REV. D 105, 063512 (2022)

063512-29

https://doi.org/10.1093/mnras/stv2826
https://doi.org/10.1093/mnras/stv2826
https://doi.org/10.1093/mnras/stv645
https://doi.org/10.1093/mnras/stv645
https://doi.org/10.3847/1538-4357/ab908d
https://doi.org/10.1088/0004-637X/705/1/156
https://doi.org/10.1088/0004-637X/705/1/156
https://doi.org/10.3847/1538-4357/ab3719
https://doi.org/10.1103/PhysRevD.102.063504
https://doi.org/10.1088/1475-7516/2016/04/047
https://doi.org/10.1088/1475-7516/2016/04/047
https://doi.org/10.1086/161913
https://doi.org/10.1086/192306
https://doi.org/10.1086/192306
https://doi.org/10.1086/305399
https://doi.org/10.1086/305399
https://doi.org/10.1086/307220
https://doi.org/10.1088/1475-7516/2012/07/051
https://doi.org/10.1088/1475-7516/2012/07/051
https://doi.org/10.1007/JHEP09(2012)082
https://doi.org/10.1103/PhysRevD.102.063533
https://doi.org/10.1103/PhysRevD.102.063533
https://doi.org/10.1088/1475-7516/2021/01/006
https://doi.org/10.1088/1475-7516/2021/01/006
https://doi.org/10.1088/1475-7516/2021/03/100
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1088/1475-7516/2020/05/042
https://doi.org/10.1088/1475-7516/2020/05/005
https://doi.org/10.1088/1475-7516/2020/05/005
https://doi.org/10.1103/PhysRevD.101.083504
https://doi.org/10.1103/PhysRevD.101.083504
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1103/PhysRevD.103.023507
https://doi.org/10.1103/PhysRevD.103.023507
https://doi.org/10.1103/PhysRevD.103.043525
https://doi.org/10.1103/PhysRevD.102.123541
https://doi.org/10.1103/PhysRevD.102.123541
https://doi.org/10.1051/0004-6361/201116638
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1088/1475-7516/2015/05/007
https://doi.org/10.1088/1475-7516/2016/06/052
https://doi.org/10.1103/PhysRevD.99.123514
https://doi.org/10.1103/PhysRevD.99.123514
https://doi.org/10.1103/PhysRevD.98.103532
https://doi.org/10.1103/PhysRevD.104.103501
https://doi.org/10.1103/PhysRevD.104.103501


perturbation theory for the matter bispectrum, arXiv:2107
.08054.

[64] L. Senatore and M. Zaldarriaga, Redshift space distortions
in the effective field theory of large scale structures,
arXiv:1409.1225.

[65] M. Lewandowski, L. Senatore, F. Prada, C. Zhao, and
C.-H. Chuang, EFT of large scale structures in redshift
space, Phys. Rev. D 97, 063526 (2018).

[66] A. Perko, L. Senatore, E. Jennings, and R. H. Wechsler,
Biased tracers in redshift space in the EFT of large-scale
structure, arXiv:1610.09321.

[67] L. Senatore, Bias in the effective field theory of large scale
structures, J. Cosmol. Astropart. Phys. 11 (2015) 007.

[68] R. Angulo, M. Fasiello, L. Senatore, and Z. Vlah, On the
statistics of biased tracers in the effective field theory of
large scale structures, J. Cosmol. Astropart. Phys. 09
(2015) 029.

[69] V. Assassi, D. Baumann, D. Green, and M. Zaldarriaga,
Renormalized halo bias, J. Cosmol. Astropart. Phys. 08
(2014) 056.

[70] M. Mirbabayi, F. Schmidt, and M. Zaldarriaga, Biased
tracers and time evolution, J. Cosmol. Astropart. Phys. 07
(2015) 030.

[71] V. Desjacques, D. Jeong, and F. Schmidt, Large-scale
galaxy bias, Phys. Rep. 733, 1 (2018).

[72] V. Desjacques, D. Jeong, and F. Schmidt, The galaxy
power spectrum and bispectrum in redshift space,
J. Cosmol. Astropart. Phys. 12 (2018) 035.

[73] D. Blas, M. Garny, M. M. Ivanov, and S. Sibiryakov, Time-
sliced perturbation theory II: Baryon acoustic oscillations
and infrared resummation, J. Cosmol. Astropart. Phys. 07
(2016) 028.

[74] M.M. Ivanov and S. Sibiryakov, Infrared resummation for
biased tracers in redshift space, J. Cosmol. Astropart. Phys.
07 (2018) 053.

[75] A. Taruya, T. Nishimichi, and D. Jeong, Grid-based
calculations of redshift-space matter fluctuations from
perturbation theory: UV sensitivity and convergence at
the field level, arXiv:2109.06734.

[76] C. Alcock and B. Paczynski, An evolution free test for
non-zero cosmological constant, Nature (London) 281,
358 (1979).

[77] M.M. Ivanov, O. H. E. Philcox, M. Simonović, M.
Zaldarriaga, T. Nishimichi, and M. Takada, Cosmological
constraints without fingers of God, arXiv:2110.00006.

[78] A. J. S. Hamilton and M. Tegmark, The Real space power
spectrum of the PSCz survey from 0.01 to 300 hMpc−1,
Mon. Not. R. Astron. Soc. 330, 506 (2002).

[79] M. Tegmark et al. (SDSS Collaboration), The 3-D power
spectrum of galaxies from the SDSS, Astrophys. J. 606,
702 (2004).

[80] R. Scoccimarro, Redshift-space distortions, pairwise
velocities and nonlinearities, Phys. Rev. D 70, 083007
(2004).

[81] F. Bernardeau, S. Colombi, E. Gaztanaga, and R.
Scoccimarro, Large scale structure of the universe and
cosmological perturbation theory, Phys. Rep. 367, 1
(2002).

[82] M. Schmittfull, T. Baldauf, and U. Seljak, Near optimal
bispectrum estimators for large-scale structure, Phys. Rev.
D 91, 043530 (2015).

[83] R. Casas-Miranda, H. J. Mo, R. K. Sheth, and G. Boerner,
On the distribution of haloes, galaxies and mass, Mon. Not.
R. Astron. Soc. 333, 730 (2002).

[84] T. Baldauf, U. Seljak, R. E. Smith, N. Hamaus, and V.
Desjacques, Halo stochasticity from exclusion and non-
linear clustering, Phys. Rev. D 88, 083507 (2013).

[85] T. Baldauf, S. Codis, V. Desjacques, and C. Pichon, Peak
exclusion, stochasticity and convergence of perturbative
bias expansions in 1þ 1 gravity, Mon. Not. R. Astron.
Soc. 456, 3985 (2016).

[86] M. Schmittfull, M. Simonović, V. Assassi, and M.
Zaldarriaga, Modeling biased tracers at the field level,
Phys. Rev. D 100, 043514 (2019).

[87] J. C. Jackson, Fingers of God: A critique of Rees’ theory of
primoridal gravitational radiation, Mon. Not. R. Astron.
Soc. 156, 1P (1972).

[88] Z. Vlah and M. White, Exploring redshift-space distortions
in large-scale structure, J. Cosmol. Astropart. Phys. 03
(2019) 007.

[89] S.-F. Chen, Z. Vlah, and M. White, Consistent modeling of
velocity statistics and redshift-space distortions in one-
loop perturbation theory, J. Cosmol. Astropart. Phys. 07
(2020) 062.

[90] M. M. Ivanov, Cosmological constraints from the power
spectrum of eBOSS emission line galaxies, Phys. Rev. D
104, 103514 (2021).

[91] L. Senatore and M. Zaldarriaga, The IR-resummed effec-
tive field theory of large scale structures, J. Cosmol.
Astropart. Phys. 02 (2015) 013.

[92] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, Equivalence principle and the baryon acoustic
peak, Phys. Rev. D 92, 043514 (2015).

[93] D. Blas, M. Garny, M. M. Ivanov, and S. Sibiryakov,
Time-sliced perturbation theory for large scale structure I:
General formalism, J. Cosmol. Astropart. Phys. 07 (2016)
052.

[94] Z. Vlah, M. White, and A. Aviles, A lagrangian effective
field theory, J. Cosmol. Astropart. Phys. 09 (2015) 014.

[95] Z. Vlah, U. Seljak, M. Y. Chu, and Y. Feng, Perturbation
theory, effective field theory, and oscillations in the power
spectrum, J. Cosmol. Astropart. Phys. 03 (2016) 057.

[96] M. Crocce and R. Scoccimarro, Renormalized cosmologi-
cal perturbation theory, Phys. Rev. D 73, 063519 (2006).

[97] M. Crocce and R. Scoccimarro, Nonlinear evolution of
baryon acoustic oscillations, Phys. Rev. D 77, 023533
(2008).

[98] A. Vasudevan, M. M. Ivanov, S. Sibiryakov, and J.
Lesgourgues, Time-sliced perturbation theory with pri-
mordial non-Gaussianity and effects of large bulk flows on
inflationary oscillating features, J. Cosmol. Astropart.
Phys. 09 (2019) 037.

[99] Y.-S. Song, A. Taruya, and A. Oka, Cosmology with
anisotropic galaxy clustering from the combination of
power spectrum and bispectrum, J. Cosmol. Astropart.
Phys. 08 (2015) 007.

MIKHAIL M. IVANOV et al. PHYS. REV. D 105, 063512 (2022)

063512-30

https://arXiv.org/abs/2107.08054
https://arXiv.org/abs/2107.08054
https://arXiv.org/abs/1409.1225
https://doi.org/10.1103/PhysRevD.97.063526
https://arXiv.org/abs/1610.09321
https://doi.org/10.1088/1475-7516/2015/11/007
https://doi.org/10.1088/1475-7516/2015/09/029
https://doi.org/10.1088/1475-7516/2015/09/029
https://doi.org/10.1088/1475-7516/2014/08/056
https://doi.org/10.1088/1475-7516/2014/08/056
https://doi.org/10.1088/1475-7516/2015/07/030
https://doi.org/10.1088/1475-7516/2015/07/030
https://doi.org/10.1016/j.physrep.2017.12.002
https://doi.org/10.1088/1475-7516/2018/12/035
https://doi.org/10.1088/1475-7516/2016/07/028
https://doi.org/10.1088/1475-7516/2016/07/028
https://doi.org/10.1088/1475-7516/2018/07/053
https://doi.org/10.1088/1475-7516/2018/07/053
https://arXiv.org/abs/2109.06734
https://doi.org/10.1038/281358a0
https://doi.org/10.1038/281358a0
https://arXiv.org/abs/2110.00006
https://doi.org/10.1046/j.1365-8711.2002.05033.x
https://doi.org/10.1086/382125
https://doi.org/10.1086/382125
https://doi.org/10.1103/PhysRevD.70.083007
https://doi.org/10.1103/PhysRevD.70.083007
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.1103/PhysRevD.91.043530
https://doi.org/10.1103/PhysRevD.91.043530
https://doi.org/10.1046/j.1365-8711.2002.05378.x
https://doi.org/10.1046/j.1365-8711.2002.05378.x
https://doi.org/10.1103/PhysRevD.88.083507
https://doi.org/10.1093/mnras/stv2973
https://doi.org/10.1093/mnras/stv2973
https://doi.org/10.1103/PhysRevD.100.043514
https://doi.org/10.1093/mnras/156.1.1P
https://doi.org/10.1093/mnras/156.1.1P
https://doi.org/10.1088/1475-7516/2019/03/007
https://doi.org/10.1088/1475-7516/2019/03/007
https://doi.org/10.1088/1475-7516/2020/07/062
https://doi.org/10.1088/1475-7516/2020/07/062
https://doi.org/10.1103/PhysRevD.104.103514
https://doi.org/10.1103/PhysRevD.104.103514
https://doi.org/10.1088/1475-7516/2015/02/013
https://doi.org/10.1088/1475-7516/2015/02/013
https://doi.org/10.1103/PhysRevD.92.043514
https://doi.org/10.1088/1475-7516/2016/07/052
https://doi.org/10.1088/1475-7516/2016/07/052
https://doi.org/10.1088/1475-7516/2015/09/014
https://doi.org/10.1088/1475-7516/2016/03/057
https://doi.org/10.1103/PhysRevD.73.063519
https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1088/1475-7516/2019/09/037
https://doi.org/10.1088/1475-7516/2019/09/037
https://doi.org/10.1088/1475-7516/2015/08/007
https://doi.org/10.1088/1475-7516/2015/08/007


[100] F. Bernardeau, M. Crocce, and R. Scoccimarro, Construct-
ing regularized cosmic propagators, Phys. Rev. D 85,
123519 (2012).

[101] E. Sefusatti, M. Crocce, and V. Desjacques, The matter
bispectrum in N-body simulations with non-Gaussian
initial conditions, Mon. Not. R. Astron. Soc. 406, 1014
(2010).

[102] R. Mehrem, J. T. Londergan, and M. H. Macfarlane,
Analytic expressions for integrals of products of spherical
Bessel functions, J. Phys. A 24, 1435 (1991).

[103] T. Brinckmann and J. Lesgourgues, MontePython 3:
Boosted MCMC sampler and other features, Phys. Dark
Universe 24, 100260 (2019).

[104] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet,
Conservative constraints on early cosmology: An illustra-
tion of the Monte Python cosmological parameter infer-
ence code, J. Cosmol. Astropart. Phys. 02 (2013) 001.

[105] A. Lewis, GetDist: A Python package for analysing
Monte Carlo samples, arXiv:1910.13970.

[106] D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear
anisotropy solving system (CLASS) II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

[107] M.M. Ivanov, Y. Ali-Haïmoud, and J. Lesgourgues, H0
tension or T0 tension?, Phys. Rev. D 102, 063515 (2020).

[108] M.M. Abidi and T. Baldauf, Cubic halo bias in Eulerian
and Lagrangian space, J. Cosmol. Astropart. Phys. 07
(2018) 029.

[109] A. Eggemeier, R. Scoccimarro, M. Crocce, A. Pezzotta,
and A. G. Sánchez, Testing one-loop galaxy bias: Power
spectrum, Phys. Rev. D 102, 103530 (2020).

[110] T. Lazeyras, C. Wagner, T. Baldauf, and F. Schmidt,
Precision measurement of the local bias of dark matter
halos, J. Cosmol. Astropart. Phys. 02 (2016) 018.

[111] T. Lazeyras and F. Schmidt, Beyond LIMD bias: A
measurement of the complete set of third-order halo bias
parameters, J. Cosmol. Astropart. Phys. 09 (2018) 008.

[112] A. Barreira, T. Lazeyras, and F. Schmidt, Galaxy bias from
forward models: Linear and second-order bias of Illus-
trisTNG galaxies, J. Cosmol. Astropart. Phys. 08 (2021)
029.

[113] S. Pueblas and R. Scoccimarro, Generation of vorticity and
velocity dispersion by orbit crossing, Phys. Rev. D 80,
043504 (2009).

[114] M. Schmittfull, M. Simonović, M. M. Ivanov, O. H. E.
Philcox, and M. Zaldarriaga, Modeling galaxies in redshift
space at the field level, J. Cosmol. Astropart. Phys. 05
(2021) 059.

[115] R. E. Smith, R. K. Sheth, and R. Scoccimarro, An analytic
model for the bispectrum of galaxies in redshift space,
Phys. Rev. D 78, 023523 (2008).

[116] O. H. E. Philcox, M. M. Ivanov, M. Simonović, and
M. Zaldarriaga, Combining full-shape and BAO analyses
of galaxy power spectra: A 1.6% CMB-independent
constraint on H0, J. Cosmol. Astropart. Phys. 05 (2020)
032.

[117] O. H. E. Philcox, Cosmology without window functions:
Quadratic estimators for the galaxy power spectrum, Phys.
Rev. D 103, 103504 (2021).

[118] O. H. E. Philcox, Cosmology without window functions:
Cubic estimators for the galaxy bispectrum, Phys. Rev. D
104, 123529 (2021).

[119] O. H. E. Philcox and M.M. Ivanov, BOSS DR12 full-
shape cosmology: ΛCDM constraints from the large-scale
galaxy power spectrum and bispectrum monopole, Phys.
Rev. D 105, 043517 (2022).

[120] E. Di Valentino et al., Cosmology intertwined III: fσ8 and
S8, Astropart. Phys. 131, 102604 (2021).

[121] A. Aghamousa et al. (DESI Collaboration), The DESI
experiment part I: Science, targeting, and survey design,
arXiv:1611.00036.

[122] R. Laureijs et al. (EUCLID Collaboration), Euclid defi-
nition study report, arXiv:1110.3193.

[123] L. Amendola et al., Cosmology and fundamental physics
with the Euclid satellite, Living Rev. Relativity 21, 2
(2018).

[124] A. de Mattia et al., The completed SDSS-IV extended
baryon oscillation spectroscopic survey: Measurement of
the BAO and growth rate of structure of the emission line
galaxy sample from the anisotropic power spectrum
between redshift 0.6 and 1.1, Mon. Not. R. Astron. Soc.
501, 5616 (2021).

[125] D. Wadekar, M. M. Ivanov, and R. Scoccimarro, Cosmo-
logical constraints from BOSS with analytic covariance
matrices, Phys. Rev. D 102, 123521 (2020).

[126] N. Kaiser, Clustering in real space and in redshift space,
Mon. Not. R. Astron. Soc. 227, 1 (1987).

PRECISION ANALYSIS OF THE REDSHIFT-SPACE GALAXY … PHYS. REV. D 105, 063512 (2022)

063512-31

https://doi.org/10.1103/PhysRevD.85.123519
https://doi.org/10.1103/PhysRevD.85.123519
https://doi.org/10.1111/j.1365-2966.2010.16723.x
https://doi.org/10.1111/j.1365-2966.2010.16723.x
https://doi.org/10.1088/0305-4470/24/7/018
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1088/1475-7516/2013/02/001
https://arXiv.org/abs/1910.13970
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1103/PhysRevD.102.063515
https://doi.org/10.1088/1475-7516/2018/07/029
https://doi.org/10.1088/1475-7516/2018/07/029
https://doi.org/10.1103/PhysRevD.102.103530
https://doi.org/10.1088/1475-7516/2016/02/018
https://doi.org/10.1088/1475-7516/2018/09/008
https://doi.org/10.1088/1475-7516/2021/08/029
https://doi.org/10.1088/1475-7516/2021/08/029
https://doi.org/10.1103/PhysRevD.80.043504
https://doi.org/10.1103/PhysRevD.80.043504
https://doi.org/10.1088/1475-7516/2021/05/059
https://doi.org/10.1088/1475-7516/2021/05/059
https://doi.org/10.1103/PhysRevD.78.023523
https://doi.org/10.1088/1475-7516/2020/05/032
https://doi.org/10.1088/1475-7516/2020/05/032
https://doi.org/10.1103/PhysRevD.103.103504
https://doi.org/10.1103/PhysRevD.103.103504
https://doi.org/10.1103/PhysRevD.104.123529
https://doi.org/10.1103/PhysRevD.104.123529
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1016/j.astropartphys.2021.102604
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1110.3193
https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1093/mnras/staa3891
https://doi.org/10.1093/mnras/staa3891
https://doi.org/10.1103/PhysRevD.102.123521
https://doi.org/10.1093/mnras/227.1.1

