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Abstract: We study the information content of the angle-averaged (monopole)

redshift space galaxy bispectrum. The main novelty of our approach is the use

of a systematic tree-level perturbation theory model that includes galaxy bias, IR

resummation, and also accounts for nonlinear redshift space distortions, binning,

and projection effects. We analyze data from the PT challenge simulations, whose

cumulative volume of 566 h−3Gpc3 allows for a precise comparison to theoretical

predictions. Fitting the power spectrum and bispectrum of our simulated data, and

varying all necessary cosmological and nuisance parameters in a consistent Markov

chain Monte Carlo analysis, we find that our tree-level bispectrum model is valid up

to kmax = 0.08 hMpc−1 (at z = 0.61). We also find that inclusion of the bispectrum

monopole improves constraints on cosmological parameters by (5− 15)% relative to

the power spectrum. The improvement is more significant for the quadratic bias

parameters of our simulated galaxies, which we also show to deviate from biases of

the host dark matter halos at the ∼ 3σ level. Finally, we adjust the covariance and

scale cuts to match the volume of the BOSS survey, and estimate that within the

minimal ΛCDM model the bispectrum data can tighten the constraint on the mass

fluctuation amplitude σ8 by roughly 10%.
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1 Introduction

The three-point function, or its Fourier transform the bispectrum [1], is the simplest

statistic beyond the power spectrum that captures information about the large-scale
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spatial distribution of galaxies. The shape dependence of the bispectrum is sensi-

tive to cosmological initial conditions, gravitational instability, and galaxy forma-

tion physics. For this reason the bispectrum is an important observational probe

which can improve our understanding of both galaxy formation and fundamental

cosmology [2, 3]. It has been argued that it may help sharpen the limits on con-

ventional cosmological parameters [3–6], neutrino masses [6–8], and primordial non-

Gaussianity [4, 9, 10]. While these results are encouraging, they are often based on

idealized Fisher forecasts and overoptimistic assumptions about the validity of theo-

retical models needed to describe the data. Therefore, it is still not clear whether the

inclusion of the bispectrum will be worth the effort, whether it will really make a dif-

ference in a realistic analysis where all relevant cosmological and nuisance parameters

are varied.

A quantitative answer to this question cannot be given without performing a

consistent data analysis. While the three-point functions and bispectra of the galaxy

density field have been measured both in simulations and in a number of past and

current datasets (e.g. Zwicky and Lick catalogs [11, 12], IRAS [13, 14], WiggleZ [15],

Baryon Oscillation Spectroscopic Survey (BOSS) [16–19]), the proper cosmological

analyses of the bispectrum are still lacking. This is clearly in sharp contrast with the

galaxy power spectrum analyses, which have been routinely used as an important

source of information on cosmological parameters. There are multiple factors that

make the bispectrum analysis much more challenging.

From the computational side, the main challenge is a large number of data points,

which correspond to triangle configurations formed by three wavevectors k1,k2,k3.

Typical bispectra datasets consist of hundreds of triangles, which makes it hard to

estimate the bispectrum from catalogs, compute the covariance matrix, and per-

form likelihood analysis. This stimulated the development of fast estimators [20–24],

various compression techniques [2, 25–27] and efficient mock catalog pipelines [28].

From the theory side, the main challenge is modeling non-linear effects of matter

clustering, galaxy bias, and redshift space distortions. Recent analyses described

these effects by means of N-body simulations, which were used to calibrate phe-

nomenological bispectrum models [16–18, 29, 30]. This simulation-based approach

naturally extends to ‘emulation’, in which the data is fitted directly to the simu-

lation output [7, 8, 31–33]. Despite significant progress in numerical modeling of

galaxy clustering over last years, it is not yet clear if emulators can meet precision

requirements of future surveys, see e.g. [34]. The main issue is persistent uncertainty

in galaxy formation physics, which has to be marginalized over in order to obtain

robust cosmological constraints. This motivates the development of more conserva-

tive perturbative techniques [35–38], which have recently taken non-linear large-scale

structure modeling to a new precision level by virtue of the progress in the effective
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field theory (EFT) of large-scale structure [39, 40].1

Unlike simulation-based approaches, EFT is fundamentally restricted to scales

larger than 2πk−1
NL ∼ 10 Mpc. However, in the regime where it is applicable, EFT

allows calculations to arbitrary order, and hence it provides a program of system-

atic successive approximations to the true answer. Moreover, by construction, EFT

covers all possible galaxy formation scenarios by means of “nuisance parameters,”

which fully capture the impact of galaxy evolution on large scale clustering. Thus,

this framework is naturally designed for the marginalization over galaxy formation

physics, which boils down to a literal marginalization over nuisance parameters. Fi-

nally, EFT-based theoretical templates for a given cosmological model can be quickly

generated with modifications of Boltzmann codes, e.g. [41–43], which allow one to

efficiently explore the cosmology-dependence of large-scale structure data.

The full utility of the EFT approach has been shown recently in the analysis

of the galaxy power spectrum data from BOSS [44]. This has resulted in first-ever

measurements of fundamental cosmological parameters, such as the Hubble constant

and the amplitude of the primordial scalar fluctuations, from the full shape of the

galaxy power spectrum [45, 46]. Moreover, the EFT-based full shape analyses have

opened up a new opportunity to testing beyond-ΛCDM scenarios in a rigorous and

self-consistent fashion [42, 47–50].

An important step in applying the EFT calculations to the real data was the

validation of the EFT-based power spectrum likelihoods on high-fidelity simula-

tions [45, 46, 50, 51]. In particular, the EFT-based pipelines have passed a blind

test on galaxy mock catalogs called “PT challenge” [52].2 The PT challenge simula-

tion suite covers a cumulative volume of 566 h−3Gpc3, which is significantly larger

than the volume of current and planned surveys. This large volume is chosen with the

purpose of dramatically reducing statistical error and thereby identifying systematic

uncertainties in theoretical modeling at the unprecedented sub-percent level.

Inspired by the success of the EFT approach in the power spectrum analysis, in

this work we extend the study of the PT challenge simulation data from Ref. [52] to

the galaxy bispectrum. We analyze this data with the currently available tree-level

EFT model.3 The two main goals of our work are (a) to define the validity range

1In what follows we will not distinguish between perturbation theory and the EFT, as the EFT

is the only consistent realization of large-scale structure perturbation theory.
2The aim of this challenge is to test various methods of cosmological parameter inference from

large-scale structure data in a blind way. The Reader is welcome to participate. The challenge

details can be found at https://www2.yukawa.kyoto-u.ac.jp/~takahiro.nishimichi/data/

PTchallenge/
3Perturbation theory one-loop bispectra of matter and halos in real space have been studied in

Refs. [53–59]. While these calculations have not yet been extended to the realistic case of galaxy

clustering in redshift space, certain relevant ingredients are already available in the literature,

e.g. the redshift-space mapping in the EFT [60–62], the perturbative bias model [63–68], IR resum-

mation to describe the non-linear evolution of baryon acoustic oscillations [69, 70], and grid-based
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of this model and to (b) assess the information content of the redshift-space galaxy

bispectrum in the tree-level approximation. Achieving these goals will bring us one

step closer to understanding the information content of the galaxy bispectrum and

building a pipeline that can be used to analyze real data.

The paper is structured as follows. We describe the PT challenge simulations

in Section 2. Section 3 describes in detail our theoretical model. In Section 4 we

discuss our baseline power spectrum and bispectrum likelihoods. Our main results are

presented in Section 5, where we analyze the real space and redshift space monopole

bispectrum data in combination with the baseline redshift space power spectrum

likelihood. We discuss improvements in cosmological and bias parameters and give a

forecast for a BOSS-like survey. There we also compare the measured values of galaxy

bias parameters with those expected from dark matter halo relations. We compare

our analysis with previous works in Section 6 and draw conclusions in Section 7.

Several appendices contain additional material and tests. In Appendix A we validate

our binning approach, and in Appendix B we show that “open” triangles do not carry

any significant cosmological information. In Appendix C we test our covariance

matrix choices. Our baseline power spectrum likelihood is described in Appendix D.

Appendix E contains an analysis of the power spectrum and bispectrum purely in real

space. Theoretical calculations of the power spectrum and bispectrum covariance

matrices in perturbation theory are presented in Appendix F, while Appendix G

contains a derivation of the Gaussian fingers-of-God damping.

2 Data

The PT challenge simulation suite consists of 10 boxes, each with the side length

L = 3840 h−1Mpc. The gravitational evolution was traced by 30723 particles in each

box. In this paper we consider one particular snapshot taken at z = 0.61, which

corresponds to the BOSS CMASS1 sample [44]. The dark matter halos from this

snapshot were populated with mock CMASS-like red luminous galaxies following the

halo occupation distribution (HOD) prescription detailed in Ref. [52]. We refer the

reader to this reference for further details on the simulations. The redshift-space

power spectrum multipoles ` = 0, 2, 4 were estimated as

P̂`(ki) =
2`+ 1

Ni

∑
k̃∈ki

L`(µk̃)P̂ (k̃) , (2.1)

where we have introduced

P̂ (k̃) =
Ṽ |δk̃|2 − n̄−1

W 2
CIC(k̃)

, Ṽ =

(
D

(fid)
A (z)

D
(true)
A (z)

)2
H(true)(z)

H(fid)(z)
L3 , (2.2)

calculations for the matter bispectrum [71].
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and δk̃ is the Fourier space overdensity field, the sum runs over all modes whose norms

belong to a bin [(i − 1)∆k, i∆k], we use ∆k = 0.01 hMpc−1 and Ni is the number

of Fourier modes in the bin. The modes in the sum in Eq. (2.1) are composed of

fundamental modes kf = 2πL−1, which were rescaled by the Alcock-Paczynski (AP)

effect [72] as,

k̃f,x = kf,x
D

(true)
A (z)

D
(fid)
A (z)

, k̃f,y = kf,y
D

(true)
A (z)

D
(fid)
A (z)

, k̃f,z = kf,z
H(fid)(z)

H(true)(z)
, (2.3)

where the upper scripts (true) and (fid) denote the comoving angular diameter dis-

tance DA(z) and the Hubble parameter H(z) calculated in the true and fiducial cos-

mologies, respectively. The fiducial cosmological model is the same as in Ref. [52],

flat ΛCDM with Ω
(fid)
m = 0.3. Note that we have subtracted the Poissonian shot noise

power spectrum contribution
1

n̄
=

L3

Ngal

, (2.4)

where Ngal is the total number of galaxies, taking into account the interlacing tech-

nique for the aliasing correction and the CIC window function. If not stated oth-

erwise, we will be using the datavector [P0, P2, P4] with kmax = 0.14 hMpc−1. In

addition, we employ the transverse moment Q0 (equivalent of the real space power

spectrum), which is estimated from the redshift space multipoles via

Q̂0 = P̂0 −
1

2
P̂2 +

3

8
P̂4 , (2.5)

see Refs. [73] for more detail and also Refs. [74–76] for earlier works. We use Q0 in

the range of scales

0.14 hMpc−1 ≤ k < 0.4 hMpc−1 ,

so that it is not correlated with the multipoles’ datavector.

The angle-averaged (monopole) bispectrum is computed using the following es-

timator:

B̂0(k1, k2, k3) =
1

NB(k1, k2, k3)

∑
q̃1∈k1

∑
q̃2∈k2

∑
q̃3∈k3

δK(q̃123)δq̃1δq̃2δq̃3 , (2.6)

where q̃123 ≡ q̃1 + q̃2 + q̃3, and δK(q123) denotes the Kronecker delta function,

δK(q123) =

{
1, if q123 = 0.

0, otherwise,
(2.7)

and NB(k1, k2, k3) is the number of fundamental triangles in the bin defined by

wavenumber centers (k1, k2, k3). Each bin has width ∆k = 0.01 hMpc−1, which

is the same as for the power spectrum estimator. Note that unlike the power spec-

trum, we do not subtract the shot noise contributions from the bispectrum. The

estimator Eq. (2.6) is evaluated with FFTs using the Scoccimarro method [20].

The real space bispectrum is calculated using the same formula Eq. (2.6), but

with the real space density δreal
k and without the AP effect.
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3 Theory Model

Let us describe our theoretical model for the redshift space bispectrum. We will

discuss each relevant component separately.

In what follows we will work in the plane-parallel approximation. The galaxy

density contrast field in redshift space at quadratic order in perturbation theory

reads [62, 68]

δ(z)(k) =Z1(k)δ(1)(k) + [Z2(δ(1))2]k + d1ε(k) ,

+ d2b1δ
(1)(k)ε(k) + (d1ε(k))fµ2θ(1)(k) + ... ,

(3.1)

where δ(1), θ(1) are linear matter density and velocity divergence fields (satisfying

θ(1) = δ(1)); ε is the stochastic galaxy overdensity field, d1, d2 are free parameters,

and the standard perturbation theory [77] kernels are given by:

Z1(k) = b1 + fµ2 , (3.2a)

Z2(k1,k2) =
b2

2
+ bG2

(
(k1 · k2)2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2)

+
fµk

2

(
µ1

k1

(b1 + fµ2
2) +

µ2

k2

(b1 + fµ2
1)

)
, (3.2b)

F2(k1,k2) =
5

7
+

1

2

(
(k1 · k2)

k2
1

+
(k1 · k2)

k2
2

)
+

2

7

(k1 · k2)2

k2
1k

2
2

, (3.2c)

G2(k1,k2) =
3

7
+

1

2

(
(k1 · k2)

k2
1

+
(k1 · k2)

k2
2

)
+

4

7

(k1 · k2)2

k2
1k

2
2

, (3.2d)

where µi ≡ (ki · ẑ)/ki, µ ≡ (k · ẑ)/k, k ≡ k1 + k2, and f is the logarithmic growth

factor, related to the usual linear growth rate D+ via

f =
d lnD+

d ln a
, (3.3)

with a being the scale factor in the Friedmann metric. The coefficients b1, b2, and bG2

capture linear, quadratic, and tidal bias between matter and galaxies, respectively.

The tree-level bispectrum is obtained by computing the three-point function of the

perturbative density field at second order [67],

Bggg(k1,k2,k3) = 2Z2(k1,k2)Z1(k1)Z1(k2)Plin(k1)Plin(k2)

+ Pε(k2)2d1

(
d2b1 + d1fµ

2
1

)
Z1(k1)Plin(k1) + cycl. + d3

1Bε(k1,k2,k3) ,
(3.4)

where we have used the following correlation functions

〈δ(1)(k)δ(1)(k′)〉 = (2π)3δ
(3)
D (k + k′)Plin(k) ,

〈ε(k)ε(k′)〉 = (2π)3δ
(3)
D (k + k′)Pε(k)

〈ε(k1)ε(k2)ε(k3)〉 = (2π)3δ
(3)
D (k1 + k2 + k3)Bε(k1,k2,k3) .

(3.5)
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Stochastic terms. At quadratic order in perturbation theory the shot-noise con-

tributions are constants,

Pε = const , Bε = const . (3.6)

Furthermore, if ε is Poisson-distributed, both statistics are fully determined by the

galaxy number density n̄ (see e.g. Ref. [78] and references therein):

Bε = P 2
ε =

1

n̄2
. (3.7)

However, due to halo exclusion, deviations from Poissonian sampling are known

to be important [79–82], in which case we cannot use Eq. (3.7) and the tree-level

bispectrum should be characterized by three free parameters capturing stochasticity.

We define them to be Pshot, Bshot and Ashot;

d2
1〈ε2〉 =

1 + Pshot

n̄
, d3

1〈ε3〉 =
Ashot

n̄2
, Bshot ≡ 2d2d

−1
1 (1 + Pshot) , (3.8)

which are expected to be O(1) numbers. Importantly, the parameter Pshot also enters

the power spectrum model. Furthermore, following [16, 46, 64] we will assume that

the bispectrum and power spectrum of the stochastic overdensity component are

correlated as in the Poissonian case (3.7), but their values are different from n̄−1, i.e.

Bε = P 2
ε , ⇒ Ashot = (1 + Pshot)

2 , (3.9)

which is ultimately motivated by the expectation that departures from the Poissonian

sampling are small. We have found that the bispectrum data is fully consistent

with this hypothesis. Therefore, we adopt this choice as our baseline model for the

stochastic nuisance parameters, which helps us reduce their number down to two.

Fingers-of-God. An important feature of non-linear redshift-space distortions is

the sensitivity to the stochastic velocity field, which can have relatively large scale

correlations due to halo virialization [76]. This effect is called “fingers-of-God”

(FoG) [83]. In the EFT, FoG are captured perturbatively through the gradient

expansion involving derivatives along the line-of-sight [43, 60–62, 84, 85]. These

corrections are called “counterterms,” and at leading one-loop order they are given

by [62]

δctr. = −c0

(
k

kNL

)2

− (c1µ
2 + c2µ

4)

(
k

krNL

)2

. (3.10)

The role of µ-dependent counterterm coefficients c1 and c2 is to capture the physical

impact of the FoG on large scale fluctuations.4 In principle, the FoG is a one-

loop effect in the EFT nomenclature, and it needs to be included along with other,

4Strictly speaking, each coefficient ci has “infinite” and “finite” pieces. The role of the infinite

piece is to renormalize the UV part of one-loop integrals, whilst the “finite” part captures physical

backreaction from short scales.
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“standard,” one-loop corrections, which we ignore in this work. The characteristic

momentum scale of these one-loop corrections matches the real space dark matter

cutoff5 kNL. If 2π/krNL is larger than 2πk−1
NL (and the cutoff of the bias expansion

2πk−1
M ), the FoG counterterm can actually dominate over usual loop corrections.

This is the exact situation that was observed for matter and galaxy power spectra in

redshift space, where FoG corrections were found to be important even on relatively

large scales where the “standard” loop corrections (i.e. without the counterterms)

are suppressed [45, 51, 52, 61, 86].6

This motivates including the FoG counterterms c1, c2 in our theory model even

though formally they capture one-loop effects. Another rationale behind this practice

is that these counterterms can be treated as a proxy for the theoretical error [4, 51].

This will also serve us as a tool to check if the tree-level calculation can be trusted:

if the counterterm contribution dominates the tree-level bispectrum signal, the one-

loop corrections cannot be ignored anymore.

In practice, we have found that it is sufficient to include only the k2µ2 countert-

erm in our theory model. We ignore the contribution k2µ4 because we have found that

it is very degenerate with the k2µ2 shape at the level of the bispectrum monopole,

and hence we set c2 = 0 in what follows. Note that we will have to include both c1

and c2 when we consider higher order angular multipole moments. The inclusion of

the c1 counterterm amounts to correcting the kernel Z1 as

Z1 → ZFoG
1 = b1 + fµ2 − c1µ

2

(
k

krNL

)2

. (3.11)

In what follows we set krNL = 0.3 hMpc−1 in agreement with the measurement of the

cutoff for the Red Luminous Galaxies from the power spectrum of the PT challenge

mocks [52, 86].

IR resummation. Naive attempts to build the EFT as a perturbative expansion

in terms of smoothed (large-scale) density and velocity fields break down for the

BAO part of the linear power spectrum (sometimes loosely referred to as the “BAO

wiggles”). The procedure of resumming enhanced perturbative (loop) corrections to

this part of the spectrum is called “IR resummation” [69, 87–91] (see Refs. [92, 92] for

earlier works). IR resummation effects have to be included in the theory model even

when it is evaluated at the tree level [69, 88]. IR-resummation for the bispectrum

in redshift space has been calculated in Ref. [70] (see Ref. [93] for IR resummation

5The EFT calculations, at least at the one loop order, can be interpreted as so-called “standard

perturbation theory” [77] computations corrected with a set of UV “counterterms.” In this picture

the one-loop integrals have the same scaling for all tracers, while the tracer-specific momentum

cutoffs appears only from the counterterms.
6Note that the form of the finite counterterms in Eq. (3.10) is quite similar to the large-scale limit

of some phenomenological prescriptions for FoG, e.g. the Gaussian damping model, see Appendix G

for more detail.
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of the bispectrum in the case of non-Gaussian initial conditions). At leading order

this procedure amounts to the replacement of the linear matter power spectrum by

its resummed version,

Plin(k)→ P IR−res
tree (k) = Pnw(k) + Pw(k)e−Σ2k2(1+fµ2(2+f))−δΣ2k2f2µ2(µ2−1) , (3.12)

where Pw is the part of the spectrum that contains the BAO wiggles, Pnw ≡ Plin−Pw,

Σ2 =
1

6π2

∫ kS

0

dq Pnw(q)(1− j0(qrBAO) + 2j2(qrBAO)) ,

δΣ2 =
1

2π2

∫ kS

0

dq Pnw(q)j2(qrBAO) ,

(3.13)

are the BAO damping functions, j`(x) are spherical Bessel functions, rBAO is the

comoving sound horizon at the drag epoch, kS is the separation scale defining IR

modes that need to be resummed. In practice we use kS = 0.05 h/Mpc following

Ref. [69], although other choices, e.g. kS = k/2 [88] give statistically indistinguishable

results.

All in all, our final tree-level bispectrum model reads (c.f. [68]):

Bggg =
[

2Z2(k1,k2)ZFoG
1 (k1)ZFoG

1 (k2)P IR−res
tree (k1)P IR−res

tree (k2)

+
Bshot

n̄

(
b1 + 2

1 + Pshot

Bshot

fµ2

)
ZFoG

1 (k1)P IR−res
tree (k1) + cycl.

]
+

(1 + Pshot)
2

n̄2
,

(3.14)

where b1, b2, bG2 , Pshot, Bshot are nuisance parameters to marginalize over. Note that

Bshot is the only new parameter that is not present in the power spectrum model.

Redshift space multipoles. In real space the bispectrum depends on three kine-

matic variables (wavelengths) which characterize the shape of a triangle. In red-

shift space there appears an additional dependence due to the orientation of the

triangle w.r.t. the line-of-sight direction. This orientation is characterized by two

angles, which we choose, following Ref. [38], to be the polar angle of k1 (its cosine is

cos θ = µ ≡ (k̂1 · ẑ)) and the azimuthal angle around k1 denoted by φ. In this case

the angles between wavevectors ka (a=1,2,3) and the line-of-sight are given by

µ1 = µ ,

µ2 = µ cosα− (1− µ2)1/2 sinα cosφ ,

µ3 = −k1

k3

µ− k2

k3

µ2 ,

(3.15)
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where cosα = x = (k̂1 · k̂2). It is convenient to describe this angular dependence by

expanding Bggg in spherical harmonics,

Bggg(k1,k2,k3) =
∞∑
`=0

∑̀
m=−`

B`m(k1, k2, k3)Y`m(θ, φ) ,

B`m(k1, k2, k3) =
2`+ 1

2

∫ 2π

0

dφ

∫ 1

−1

d(cos θ) Y ∗`m(θ, φ) Bggg(k1,k2,k3) .

(3.16)

In what follows we will focus on the m = 0 sector [20]. The corresponding momenta

B` are called “bispectrum multipoles,”

B`(k1, k2, k3) =
2`+ 1

2

∫ 2π

0

dφ

2π

∫ 1

−1

d(cos θ) L`(cos θ) Bggg(k1,k2,k3) , (3.17)

where L` denotes a Legendre polynomial of order `. Note that the integral above

can be done analytically at the tree level in the absence of IR resummation and

the AP effect [38]. However, in what follows we will use the full formula (3.14)

with IR resummation, and evaluate angular integrals in Eq. (3.17) numerically via

Gauss-Legendre quadrature.

Alcock-Paczynski effect. The AP conversion [72] from true wavenumbers and

angles (q, ν) to observed wavenumbers and angles (k, µ) is given by

q2 = k2
[
α−2
‖ µ

2 + α−2
⊥ (1− µ2)

]
,

ν2 = α−2
‖ µ

2
[
α−2
‖ µ

2 + α−2
⊥ (1− µ2)

]−1

,
(3.18)

which depends on the ratios between the true and fiducial Hubble parameters and

angular diameter distances at the redshift of interest,

α‖ =
Hfid(z)

Htrue(z)

H0,true

H0,fid

, α⊥ =
Dtrue,A(z)

Dfid,A(z)

H0,true

H0,fid

, (3.19)

where additional factors H0,true/H0,fid account for the fact that wavenumbers are

measured in hMpc−1 units in our analysis. The observed power spectrum multipoles

are given by [41]

P`(k) =
2`+ 1

2α2
⊥α‖

∫ 1

−1

dµ L`(µ)Pgg(q[k, µ], ν[µ]) . (3.20)

In full analogy, the bispectrum multipoles are given by [94]

B`(k1, k2, k3)

=
2`+ 1

2α2
‖α

4
⊥

∫ 2π

0

dφ

2π

∫ 1

−1

dµ1 L`(µ1) Bggg(q1[k1, µ1], q2[...], q3[...], ν1[µ1], ν2[µ2(µ1)]) ,

(3.21)

where the observed angles satisfy Eq. (3.15). In what follows we will focus on the

monopole moment ` = 0, and leave the analysis of other multipoles for future work.
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Binning effects. The measured bispectrum is a discrete approximation to a con-

tinuous Fourier-space field. In order to account for this discreteness we need to bin

our theory predictions in the same way as we bin the data. Binning corrections are

marginally important for the PT challenge power spectrum and it is straightforward

to take them into account [52]. However, the situation is somewhat different for the

bispectrum, where binning can be a serious source of systematics [95]. The exact

discrete bispectrum that we extract from simulations is given by7

B̂0,disc(k1, k2, k3) =

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

B(q1,q2,q3)δK(q123)

Ndisc
B (k1, k2, k3)

,

Ndisc
B (k1, k2, k3) =

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) .
(3.22)

The sum in Eq. (3.22) runs over all discrete wavevectors qi that belong to the triangle

bin defined by its center (k1, k2, k3) and width ∆k. Ndisc
B (k1, k2, k3) is the total number

of these “fundamental triangles” inside the triangle bin (k1, k2, k3) [96].

Before going into technical details, let us outline our strategy. As a first step, we

take the continuum limit, i.e. assume a vanishingly small fundamental wavenumber

kf = (2π)L−1 as a leading approximation. In this first approximation the discreet-

ness effects can be taken into account by integrating the continuous bispectrum field

within appropriate bins. It is natural to refer to this program as the “integral approx-

imation.” Because the actual fundamental bin is finite, the integral approximation

requires certain corrections. As a second step, we will introduce these corrections,

which will be referred to as “discreetness weights.”

Note that with our binning scheme there are so-called “open” triangle bins. The

centers of these bins (k1, k2, k3) do not satisfy momentum conservation constraints,

such as |k3 − k2| < k1 < k3 + k2.8 In what follows we will discard these triangles

because of three reasons:

• their properties (and very existence) crucially depend on the box size, which

makes it hard to make generic statements that would not depend on a particular

survey volume;

• the leading binning effect cannot be well captured by the integral approxima-

tion for these triangles, and hence it requires a significant modification of our

baseline binning program;

• these triangles do not carry any sizable cosmological information (at least at

the level of the tree-level bispectrum likelihood) and with our particular choice

of bins’ width), see Appendix B.

7We omit the subscript ‘ggg’ for clarity in this section, i.e. replace Bggg → B.
8Individual triangles that belong to the bin are, of course, valid triangles that satisfy all relevant

constraints.
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As a first step of our binning procedure we implement the integral approximation.

Other binning schemes were explored in Refs. [96–98]. The integral approximation

amounts to replacing the sum over the modes with the Fourier integral,∑
q1∈k1

∑
q2∈k2

∑
q1∈k2

δK(q123)B(q1,q2,q3)→ V 2

(2π)6

∫
k1k2k3

(2π)3δ
(3)
D (q123)B(q1,q2,q3) ,

∑
q1∈k1

∑
q2∈k2

∑
q1∈k2

δK(q123)→ V 2

(2π)6

∫
k1k2k3

(2π)3δ
(3)
D (q123)

(3.23)

where V is the box volume and we introduced∫
k1k2k3

≡
∫
Vk1k2k3

d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
, Vk1k2k3 = D1 ×D2 ×D3 ,

Da =

{
(qx1 , qx2 , qx3) ∈ R3 : ka −

∆k

2
≤ |qa| ≤ ka +

∆k

2

}
, a = 1, 2, 3 .

(3.24)

This way we arrive at

B̂0,int = V 2

∫
k1k2k3

B(q1,q2,q3)

NT
123

(2π)3δ
(3)
D (q1 + q2 + q3) ,

N123 = V 2

∫
k1k2k3

(2π)3δ
(3)
D (q123) = 8πk1k2k3∆k3 V 2

(2π)6
.

(3.25)

The delta-function can be integrated explicitly following Ref. [99], yielding

B̂0,int =
V 2

(2π)6N123

∫ 2π

0

dφ

4π

∫ 1

−1

dµ

(
3∏
i=1

∫ ki+∆k/2

ki−∆k/2

dqi qi

)
B(q1, q2, q3, µ, φ) . (3.26)

In order to estimate the accuracy of the integral approximation, we compare the

continuous (kf → 0 limit) prediction for the number of triangle modes that fall

in a given bin N123 with the actual number of discrete triangles in that bin Ndisc.
B .

The result is shown in the upper left panel of Fig. 1, where we display the ratio

Ndisc.
B /N123 for the bins whose centers satisfy the momentum conservation constraint,

and which we actually use in the analysis. We see that the integral approximation

correctly predicts the number of fundamental triangles for most of the bins, up to a

few percent precision. However the integral approximation is not very accurate for

folded triangles with k2 + k3 = k1 + ∆k/2. For these triangles the typical mismatch

is about ∼ 15%. This discrepancy also leads to a mismatch at the level of binned

bispectra. To correct for this discrepancy we introduce “discreteness weights” w,

w =
B̂disc

B̂int

, (3.27)
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Figure 1. Upper left panel: the ratio between the number of fundamental triangles from

the data and from the integral approximation, Ndisc.
B /N123, as a function of the triangle

bin. Upper right panel: the ratio between the exact binned bispectrum and the integral

approximation (“discreteness weights” wi), as a function ofNdisc.
B /N123 for the same triangle

bins. The triangles shown correspond to kmax = 0.15 h/Mpc. Lower panel: discreteness

weights for folded triangles denoted by their bin centers (we use ∆k = 0.01 hMpc−1, and

hence kmin = ∆k/2 = 5 · 10−3 hMpc−1).

where B̂disc is computed by using a direct discrete expression Eq. (3.22), while B̂int

is calculated from Eq. (3.25).

We compute the weights for a certain fiducial cosmology and nuisance parameters

extracted from a fit to the simulation data analyzed without the weights. Since the

evaluation of the full discrete expression Eq. (3.22) is too expensive for an Markov

chain Monte Carlo (MCMC), the best strategy would be to iterate the discreetness

weights for the best-fit bispectra from a few consecutive MCMC runs. However,

quite remarkably, we have found that this iterative procedure has converged already

at the first step. Our initial fiducial parameters happened to be significantly different

from the actual best-fit parameters, yet both produced almost identical discreteness

weights. This shows that the discreetness weights are nearly cosmology-independent,

hence they can be computed only once for a given survey specification.

We display the discreteness weights for PT challenge boxes in the right panel of
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Fig. 1, along with the ratio Ndisc.
B /N123, which demonstrates that the “problematic”

triangles can be easily identified in the data by comparing the number of fundamental

triangles in the bin with the prediction of the integral approximation. As we can

see from this figure, these corrections need to be included if Ndisc.
B /N123 deviates

from unity by more than 10%. We show discreteness weights specifically for the

problematic folded triangles in the lower panel of Fig. 1. For all other triangle

configurations the discreteness weights coincide with unity with O(0.5)% precision,

implying that the integral approximation is very accurate for them.

Additionally, we validate our discreteness weights approach in Appendix A by

comparing it with an approximate discrete binning scheme similar to Eq. (3.22).

These tests suggest that our treatment of discreteness effects is accurate enough for

the full simulation volume and hence can be safely adopted for the purposes of our

paper and for any realistic future analysis.

All in all our theory model is given by

Bth = B̂int
0 (k1, k2, k3)w(k1, k2, k3) , (3.28)

where B̂int
0 is computed from Eq. (3.26) by numerically performing the five-dimensional

integral over the tree-level IR resummed model (3.14).

4 Likelihood

We will use a Gaussian likelihood for the bispectrum [3],

lnLB = −1

2

∑
triangles T ′

(Bth
T −Bdata

T )(Bth
T ′ −Bdata

T ′ )(CB)−1
TT ′ , (4.1)

where we assume without loss of generality that the bin centers satisfy k1 ≥ k2 ≥ k3

and

∑
T

≡
kmax∑

k1=kmin

k1∑
k2=kmin

k2∑
k3=k∗

, k∗ ≡ max(kmin, k1 − k2) . (4.2)

The Gaussian likelihood approximation for the bispectrum is justified within pertur-

bation theory, which is consistent with the tree-level approximation for the bispec-

trum itself. This approximation must be true on sufficiently large scales, to which we

limit our analysis. In this regime we can use the Gaussian tree-level approximation

for the covariance matrix CB [3, 20, 38, 94],

CB
TT ′ =

(2π)3πs123

k1k2k3∆k3Vtot

δTT ′

∫ 2π

0

dφ

4π

∫ 1

−1

dµ
3∏
i=1

[
Plin(ki)(b1 + fµ2

i (φ, µ))2 +
1

n̄

]
,

(4.3)
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where (k1, k2, k3) denotes the center of the triangle bin T , Vtot is the cumulative

volume of the PT challenge simulations (Vtot = 566 h−3Gpc3), s123 = 6, 2 or 1

for equilateral, isosceles and general triangles. To approximately account for the

discreteness binning effects we use the true number of fundamental triangles in the

bin instead of the prediction of the integral approximation, i.e. we rescale

CB
TT ′ →

N123

Ndisc
B

· CB
TT ′ . (4.4)

We evaluate the covariance for the best-fit cosmology extracted from the power spec-

trum likelihood analysis. We ignore the cross-covariance between the power spectrum

and the bispectrum in our baseline analysis. This and other likelihood approxima-

tions are validated in Appendix C. There we show that our results are stable if we

include the one-loop theoretical error bispectrum covariance, and the cross-covariance

between the power spectrum and bispectrum (computed in perturbation theory), as

well as if we replace the Gaussian bispectrum covariance with the sample covariance

from the available mocks. All these different options yield statistically indistinguish-

able results.

Our total likelihood thus consists of a product of the bispectrum and baseline

power spectrum likelihoods,

Ltot = LB × LP . (4.5)

The details of our baseline power spectrum likelihood can be found in Appendix D

and in Ref. [73]. We compute power spectrum theoretical templates using the

CLASS-PT code [41].9 We run MCMC chains using the Montepython code [100,

101].10 Posterior density plots are generated with the getdist package [102]. We

will scan over the parameters of the base ΛCDM model and EFT nuisance parame-

ters [50, 51],

{ωcdm, H0, As, ns} × {b1, b2, bG2 , bΓ3 , c0, c2, b4, a0, a2, Pshot, Bshot, c1} . (4.6)

The priors on the power spectrum nuisance parameters are given in Appendix D. As

for Bshot, we place a Gaussian prior on it with unit mean, which corresponds to the

Poissonian sampling prediction, and unit variance,

Bshot ∼ N (1, 12) . (4.7)

c1 is varied in our MCMC chains without any priors, unless otherwise stated. We fix

the physical baryon density to its true value in order to simulate the BBN prior as

it was used in Refs. [45, 50].11

9Publicly available at https://github.com/Michalychforever/CLASS-PT
10Publicly available at https://github.com/brinckmann/montepython public
11Formally, we also use the FIRAS value of the current CMB temperature T0, which is a required

input parameter in the Boltzmann code CLASS [103]. This parameter is tightly constrained by

FIRAS and other probes, see e.g. [104] for more detail.
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5 Results

We start our analysis from the simple case of the real space bispectrum, which is free

from RSD and projection effects. Then, we will analyze a setup that closely matches

an actual spectroscopic survey: we will study the bispectrum in redshift space and

in the presence of the projection effect. Since the PT challenge data which we are

using is still ongoing, we report the measurements of all cosmological parameters

normalized to their true injected values. As far as nonlinear bias parameters are

concerned, we will present their values after the subtraction of the fiducial values

extracted from our best-fit estimates from the most constraining baseline likelihood

analysis. Specifically, we will report

∆b2 ≡ b2 − bbf
2 , ∆bG2 ≡ bG2 − bbf

G2
, (5.1)

where bbf
2 , b

bf
G2

are best-fit values extracted from the fiducial analysis of the red-

shift space power spectrum combined with the real space bispectrum at kmax =

0.08 h/Mpc. This will be our best guess for the true values of these parameters.

We emphasize that expect for Section 5.4, in all our analysis the scale cuts of

the power spectrum likelihood are kept fixed. Only kmax of the bispectrum data is

varied.

5.1 Redshift space power spectrum + real space bispectrum

We start with the real space bispectrum, which can be formally obtained from our

model Eq. (3.14) by setting f = 0, c1 = 0, and ignoring the AP effect. We also note

that the discreteness weights are closer to unity in this case. This can be attributed

to the absence of leakage from higher angular moments [75], which is present in the

redshift-space case. We perform our analysis for the bispectrum for five choices of

kmax ranging from 0.06 to 0.14 hMpc−1 with a step 0.02 hMpc−1. The resulting corner

plot from our MCMC analyses is shown in Fig. 2, and the 1d marginalized limit for

the case kmax = 0.08hMpc−1 are presented in Table 1. The best fitting curves for

certain triangle configurations are shown in Fig. 3, while Fig. 4 is a residual plot over

all triangles used in the fit.

We observe that inclusion of the bispectrum sharpens estimates for all cos-

mological and bias parameters and does not lead to any significant biases up to

kmax = 0.08hMpc−1. We see some small biases, especially in the b1 − σ8 plane,

but our MCMC posteriors still enclose the true values within 99% CL, which makes

these shifts compatible with statistical fluctuations. Besides, these small shifts do not

change when switching the bispectrum data cut from 0.06hMpc−1 to 0.08hMpc−1.

In contrast, for kmax > 0.08hMpc−1 we see clear shifts that push estimated val-

ues away from the ground truth. In particular, we find the bias on σ8 to be

[−1.9,−5.2,−6.7]σ for kmax/hMpc−1 = [0.1, 0.12, 0.14], respectively. This suggests
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Figure 2. Posterior distributions of cosmological and some nuisance parameters from

MCMC analyses of the joint redshift-space power spectrum and real space bispectrum

data. We show results for five different choices of the bispectrum data cut kmax. All

cosmological parameters and b1 are normalized to their true values. We have subtracted

constant fiducial values from the quadratic bias parameters b2 and bG2 . Results for the

power spectrum data only are shown for comparison.

us to adopt kmax = 0.08hMpc−1 as a baseline data cut for the real space bispectrum

in what follows.

The tree-level bispectrum likelihood improves constraints on cosmological and

some nuisance parameters. This improvement can be estimated by ratios of the 1d

marginalized 68% confidence intervals. For the cosmological parameters we have

σP+B

σP

{ωcdm, h, ns, As,Ωm, σ8} = {0.82, 0.90, 0.81, 0.88, 0.83, 0.93}
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Figure 3. Bispectrum data points from the PT challenge simulations along with best-

fit theoretical predictions extracted from our MCMC chains. We show the bispectra for

squeezed, equilateral and isosceles triangles (left panels), and the corresponding residuals

(right panels).

indicating a (10− 20)% improvement in most cases. The gain is more sizable for the

nuisance parameters,

σP+B

σP

{b1, b2, bG2 , Pshot} = {0.75, 0.09, 0.07, 0.61} .

Intuitively, this happens because in the bispectrum one can probe the galaxy bias

parameters from large scales, and hence their determination is not contaminated by

loop corrections and additional nuisance parameter marginalization.
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Figure 4. Residuals between the bispectrum data and best-fitting theory templates for

all triangles from the real space (left panel), and the redshift space (right panel) analyses.

The picture that we have observed here is in stark contrast with the real space

only results, presented in Appendix E. This analysis shows that the real space power

spectrum has much less information than the redshift-space one. In this case the

combination with the bispectrum leads to a dramatic shrinking of posterior distribu-

tions for both cosmological and nuisance parameters. However, in redshift space the

power spectrum has much more information to begin with, and thus the addition of

the bispectrum yields only a moderate improvement.

5.2 Bias parameters

Our simulated galaxies are produced with simple HOD models and therefore one

may expect their nonlinear bias parameters to match those of the host halos and to

follow the same dependence on b1. Let us compare this expectations with reality.

For the tidal bias bG2 , as a first guess, we can use the so-called Lagrangian Local In

Matter Density (LLIMD) bias model prediction bLLIMD
G2

= −2(b1 − 1)/7 [67]. Using

the fiducial value of b1 we find

∆bLLIMD
G2

= −2

7
(bfid

1 − 1)− bfid
G2

= 0.23 , (5.2)

which is more that 10σ away from the truth. The LLIMD approximation is known to

be in tension with high precision simulation measurements, which clearly show the

evidence for the tidal Lagrangian bias [105]. A better fit to this data is a coevolution

model with the initial Lagrangian bias that has the following dependence on the

mean halo mass M

bLG2
= −0.5

(
M

4× 1014h−1M�

)0.8

. (5.3)

Ref. [105] also presents the function M(b1), from which we can express the above

equation as bLG2
(b1). Inserting there our measurement of b1, we find

∆bLTCM
G2

= −2

7
(bfid

1 − 1) + bLG2
(bfid

1 )− bfid
G2

= 0.072 , (5.4)
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Power

Parameter 68% limits

∆H0/H0 0.0001± 0.0019

∆ωcdm/ωcdm 0.010± 0.012

∆As/As −0.016± 0.022

∆ns/ns −0.0084± 0.0094

∆b1/b1 0.003± 0.010

∆b2 −0.13+0.44
−0.51

∆bG2 0.29± 0.30

Pshot −0.24+0.12
−0.16

∆σ8/σ8 −0.0045± 0.0087

∆Ωm/Ωm 0.0087± 0.0077
b31σ

4
8

(b31σ
4
8)fid.
− 1 −0.008± 0.022

Power+real space bispectrum

Parameter 68% limits

∆H0/H0 −0.0002± 0.0018

∆ωcdm/ωcdm 0.0022± 0.0098

∆As/As −0.019± 0.019

∆ns/ns 0.0048± 0.0076

∆b1/b1 0.0183± 0.0077

∆b2 0.011± 0.043

∆bG2 0.006± 0.020

Pshot −0.384± 0.089

Bshot 0.99± 0.12

∆σ8/σ8 −0.0065± 0.0080

∆Ωm/Ωm 0.0022± 0.0064
b31σ

4
8

(b31σ
4
8)fid.
− 1 0.028± 0.016

RSD bispectrum

Parameter 68% limits

∆H0/H0 −0.026± 0.015

∆ωcdm/ωcdm −0.026± 0.032

∆As/As −0.07+0.17
−0.35

∆ns/ns −0.018± 0.034

∆b1/b1 0.07+0.20
−0.26

∆b2 0.81+0.26
−0.33

∆bG2 0.270+0.068
−0.091

c1 −2.4± 3.8

Pshot −0.095± 0.93

Bshot 0.89+0.69
−0.61

∆σ8/σ8 −0.07+0.11
−0.16

∆Ωm/Ωm 0.033+0.032
−0.039

b31σ
4
8

(b31σ
4
8)fid.
− 1 −0.194+0.082

−0.074

Power+RSD bispectrum

Parameter 68% limits

∆H0/H0 −0.0014± 0.0018

∆ωcdm/ωcdm −0.005± 0.010

∆As/As −0.017± 0.021

∆ns/ns 0.0036± 0.0080

∆b1/b1 0.0149± 0.0085

∆b2 −0.054± 0.088

∆bG2 0.070± 0.026

c1 5.6± 2.7

Pshot −0.249± 0.093

Bshot 1.75± 0.43

∆σ8/σ8 −0.0107± 0.0082

∆Ωm/Ωm −0.0017± 0.0068
b31σ

4
8

(b31σ
4
8)fid.
− 1 0.001± 0.016

Table 1. 1d marginalized limit for the cosmological and most important nuisance param-

eters from various PT challenge likelihoods: redshift space power spectrum only (upper

left panel), the joint power spectrum + real space bispectrum (upper right panel), red-

shift space bispectrum only (lower left panel), and the joint redshift space power spectrum

+ redshift space bispectrum (lower right panel). Parameters that were directly varied in

MCMC chains are displayed in the upper part of the table, the lower groups contain derived

parameters. Most parameters are normalized to their true values. See the main text for

more detail.

where ‘LTCM’ stands for ‘Lagrangian tidal coevolution model’. We see that our

measurement is still in ∼ 3σ tension with the prediction of LTCM, although in
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absolute terms the discrepancy is quite small. The discrepancy with the excursion

set prediction from Ref. [106] is also quite high, it exceeds 10σ in terms of the

standard deviation of our measurement.

As far as b2 is concerned, we can compare our measurement with the fit to halos

from Refs. [107, 108], i.e. to consider

∆bhalo
2 = bhalo

2 (bfid
1 , b

fid
G2

)− bfid
2 = −0.49 , (5.5)

where

bhalo
2 (b1, bG2) = 0.412− 2.143b1 + 0.929b2

1 + 0.008b3
1 +

4

3
bG2 . (5.6)

Note that we have accounted for the difference in our definition of quadratic biases

w.r.t. Refs. [107, 108],

bthis work
G2

= bprevious
G2

, bthis work
2 = bprevious

2 +
4

3
bthis work
G2

. (5.7)

Thus, our analysis confirms significant deviations between the bias coefficients of

galaxies and halos, which have already been pointed out in the literature [98, 109]. We

also confirm the trend seen in the literature for the CMASS-like galaxies [44](similar

to our PT challenge sample): the tidal bias of galaxies is lower than that of halos,

but b2 is higher. In particular, the results of Ref. [98] for the CMASS galaxies read

bgal
2 = −0.2± 0.1 , bgal

G2
= −0.46± 0.06 . (5.8)

These values can be compared with the predictions of the local Lagrangian approxi-

mation and the fit to b2,

Ref. [98]: ∆b2 = bhalo
2 (bgal

2 , bgal
G2

)− bgal
2 = −0.41± 0.1 ,

∆bG2 = bLLIMD
G2

− bgal
G2

= 0.17± 0.06 .
(5.9)

These estimates perfectly agree with our results

∆b2 = −0.49± 0.04 , ∆bG2 = 0.23± 0.02 . (5.10)

Finally, let us discuss the cubic tidal bias parameter bΓ3 . At the power spectrum

level it is almost fully degenerate with bG2 . However, this degeneracy gets broken by

the bispectrum data, since only bG2 enters the tree-level bispectrum model. We will

compare our measurements with halo relations obtained in Refs. [105, 106],

Ref. [105]: bhalo
Γ3

= −bG2 −
1

15
(b1 − 1) ,

Ref. [106]: bhalo
Γ3

= −1

6
(b1 − 1)− 3

2
bG2 .

(5.11)

This gives us a tension between our results and these halo predictions at the 2σ level,

Ref. [105]: bgal
Γ3
− bhalo

Γ3
(bgal

1 , bgal
G2

) = 0.23± 0.11 ,

Ref. [106]: bgal
Γ3
− bhalo

Γ3
(bgal

1 , bgal
G2

) = 0.24± 0.11 .
(5.12)
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However, here we see the difference w.r.t. the CMASS-like sample of Ref. [98] (bΓ3 =

−7γ21/4 in their notation). The relevant measurement from this work is fully con-

sistent with that of halos,

bCMASS
Γ3

− bhalo
Γ3

(bgal
1 , bgal

G2
) = −0.02± 0.14 . (5.13)

The discrepancy between our bΓ3 and that of Ref. [98] is marginally below 2σ, and

hence our measurements can be considered consistent.

Overall, we conclude that with the PT challenge simulations we see a ∼ 3σ

discrepancy between the bias parameters of our HOD galaxies and their host halos.

On the one hand, our bias parameter measurements agree well with those from similar

mock CMASS-like galaxies, analyzed in Ref. [98].

5.3 Redshift space

We now consider the realistic case of the redshift-space bispectrum monopole in the

presence of the AP effect. We analyze our joint power spectrum and bispectrum like-

lihoods for three choices of the bispectrum data cut ranging kmax from 0.08 hMpc−1

to 0.12 hMpc−1 with a step 0.02 hMpc−1. Our triangle plot is displayed in Fig. 5,

where for comparison we also show the results of the baseline real space bispectrum

analysis from the previous section. Marginalized 1d limits are presented in Table 1.

Best-fit curves and the residual plot are shown in Fig. 3 and in Fig. 4.

We see that at kmax = 0.08 hMpc−1 the addition of the bispectrum likelihood

slightly narrows the power spectrum contours and does not lead to any significant

bias. Both cosmological and nuisance parameters are recovered within 95% confi-

dence intervals. However, already at kmax = 0.08 hMpc−1 we observe some evidence

for the non-zero FoG counterterm c1, which suggests that the one-loop corrections

may not be negligible. Indeed, for more aggressive data cuts kmax > 0.08 hMpc−1

we find large biases that signal the breakdown of the tree-level bispectrum model.

These biases are more significant than those that we have seen in the real space

power spectrum likelihood, which is an expected consequence of non-linear redshift

space distortions [38, 43, 51, 61, 110, 111]. A similar conclusion that FoGs in the bis-

pectrum are important even on relatively large scales was made in Ref. [112]. These

results motivate us to choose kmax = 0.08 hMpc−1 as our baseline data cut.

In Fig. 6 and table 1 we display the breakdown of different likelihoods in terms of

their parameter constraints, including the redshift space bispectrum alone. Clearly,

the constraints on cosmological parameters are heavily dominated by the power spec-

trum data. In part, this is a result of using only relatively low wavenumbers in our

bispectrum analysis.

The bispectrum likelihood adds new information mostly through the bias param-

eter measurements. In particular, the principle component of the b1−σ8 degeneracy

can be well approximated by a combination b3
1σ

4
8, which captures the galaxy bis-

pectrum amplitude in the absence of quadratic biases and projection effects. Our
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Figure 5. Posterior distributions of cosmological and certain nuisance parameters from

MCMC analyses of the joint redshift space power spectrum and redshift space bispectrum

monopole data. We show results for three different choices of the bispectrum data cut

kmax. All cosmological parameters and b1 are normalized to their true values. We have

subtracted constant fiducial values from the quadratic bias parameters b2 and bG2 . Results

for the power spectrum (“P”) and for the power spectrum+real space bispectrum (“P +

Breal (kmax = 0.08 hMpc−1)”) datasets are shown for comparison.

redshift space bispectrum-only analysis yields a measurement quite competitive with

the redshift-space power spectrum result12, c.f. table 1. Beside b1 − σ8, the bispec-

trum also adds significant information through the quadratic bias parameters b2 and

12For the power spectrum the principle component is slightly different, b21σ
4
8 . This small difference

in the exponent is not important for our discussion.
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Figure 6. Posterior distributions of cosmological and certain nuisance parameters from

MCMC analyses of the redshift space power spectrum, redshift space bispectrum and their

combination. We use kmax = 0.08 hMpc−1 for the bispectrum here.

bG2 , whose measurements from the bispectrum alone are more precise than from the

power spectrum.

Addition of the bispectrum leads to following improvements on cosmological and

nuisance parameters

σP+B

σP

{ωcdm, h, ns, As,Ωm, σ8} = {0.88, 0.94, 0.86, 0.95, 0.89, 0.96} ,
σP+B

σP

{b1, b2, bG2 , Pshot} = {0.84, 0.18, 0.09, 0.65} .
(5.14)

In general, the gain here is more modest compared to what we have obtained from the

– 24 –



real space bispectrum. One reason for that is the correlation between the additional

FoG counterterm c1 and other parameters. For example, the degeneracy between c1

and b2, Bshot is quite significant, which explains why the confidence intervals for these

nuisance parameters are noticeably larger than those of the real space bispectrum

case. Another reason for the relatively small improvement in cosmological parameters

is that the BAO wiggles are more suppressed in redshift space, c.f. Eq. (3.12), and

hence there is less available distance information.

All in all, the upshot of our analysis is that for the full PT challenge sim-

ulation volume the data cut for the tree-level redshift-space bispectrum model is

kmax = 0.08 hMpc−1, and the addition of the bispectrum likelihood yields . 10%

improvement on cosmological parameters, but much larger gains on bias parameters.

5.4 Forecast for BOSS

It is useful to re-run our analysis for the covariance that matches the volume of

the currently available BOSS data. In this case the covariance is larger, and hence

we can use more aggressive data cuts provided that the bias in cosmological pa-

rameters due to higher order loop corrections is smaller than a fraction of the sta-

tistical error. In this case the power spectrum multipole analysis can be pushed

to kmax = 0.20 hMpc−1, which is noticeably larger than our baseline PT challenge

power spectrum multipole data cut kmax = 0.14 hMpc−1 [50]. Note that this kmax is

lower than kmax = 0.25 hMpc−1 used in Refs. [45, 113] because here we include the

hexadecapole moment, see Ref. [50] for more detail. Consequently, the transverse

power spectrum moment Q0 is taken in the range 0.2 < k/(hMpc−1) < 0.4 [73]. Un-

fortunately, we cannot push the bispectrum analysis to kmax = 0.1 hMpc−1 because

the relative theory systematic error on σ8 there is around 3%. This is a significant

fraction of the BOSS statistical error, σσ8/σ8 ≈ 5%. We have explicitly checked that

the recovered value of σ8 is biased by 1σ of the BOSS error when the bispectrum is

taken at kmax = 0.1 hMpc−1. Therefore, we proceed with the same baseline cut as

in the PT challenge analysis of the previous section, kmax = 0.08 hMpc−1.

We analyze the same PT challenge data but with the covariance rescaled by a

factor 100, which is the difference between the PT challenge volume and the BOSS

survey volume VBOSS ' 6 h−3Gpc3. In this particular analysis, we also impose the

following Gaussian prior on c1,

c1 ∼ N (0, 52) , (5.15)

which is motivated by the EFT expectation c1 = O(1). Our results are shown in

Fig. 7 and in Table 2.

We observe that the addition of the bispectrum has roughly the same impact

for cosmological parameters are the full PT challenge case, i.e. there is a ∼ 10%

improvement on the 1d marginalized constraint on As and σ8, and barely any effect
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Figure 7. Same as Fig. 5 but with the covariance rescaled by 100 to match the BOSS

survey volume.

on other parameters. As far as quadratic bias parameters are concerned, the im-

provements for them are less sizable. In contrast to the full PT challenge simulation,

in the BOSS-like power spectrum case the bias parameters are dominated by priors

(given in Appendix D) and not by the data. Hence, the power spectrum posteriors

are narrower to begin with. Still, the addition of the bispectrum data sharpens b2

and bG2 posteriors by a factor of two.
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Power spectrum (PS), BOSS-like

Parameter 68% limits

∆H0/H0 0.001+0.013
−0.015

∆ωcdm/ωcdm 0.021+0.065
−0.080

∆As/As −0.01+0.10
−0.15

∆ns/ns −0.009± 0.059

∆b1/b1 0.004± 0.053

∆b2 −0.09+0.59
−0.80

∆bG2 0.36± 0.33

Pshot −0.13± 0.51

∆σ8/σ8 0.000+0.046
−0.055

∆Ωm/Ωm 0.016+0.046
−0.055

PS + bispectrum, BOSS-like

Parameter 68% limits

∆H0/H0 0.006+0.013
−0.015

∆ωcdm/ωcdm 0.029+0.063
−0.080

∆As/As −0.049+0.093
−0.13

∆ns/ns −0.008± 0.057

∆b1/b1 0.028± 0.047

∆b2 0.19+0.44
−0.50

∆bG2 0.21± 0.25

Pshot −0.38± 0.40

Bshot 1.23± 0.89

c1 0.1± 4.8

∆σ8/σ8 −0.013+0.044
−0.052

∆Ωm/Ωm 0.012+0.045
−0.052

Table 2. 1d marginalized limits from analyses of the redshift space galaxy power spectrum

(left panel) and the joint power and bispectrum data (right panel) from the PT challenge

simulation with the covariance rescaled to match the volume of the BOSS survey, as shown

in Fig. 7.

6 Comparison with Previous Work

Our analysis complements and extends other works on the galaxy bispectrum. There-

fore, it is useful to compare our study with the most relevant literature.

Ref. [96] studied the real space halo galaxy bispectrum from simulations with

the overall volume similar to that of the PT challenge suite. This work used the tree-

level bispectrum model to fit the pure bispectrum data (in the absence of the power

spectrum), and has established that this model works up to kmax = 0.082 hMpc−1,

in agreement with our baseline result kmax = 0.08 hMpc−1. This work did not find

any significant deviations from Poissonian sampling for the halo bispectrum. In

contrast, we did find the sub-Poissonian shot noise for the PT challenge galaxies.

Importantly, this detection is driven by the power spectrum data, which yields a

& 2σ deviation from the Poissonian sampling even in the absence of any bispectrum

data. This can be compared with the bispectrum data alone (see Fig. 6), which

is not precise enough to constrain the shot noise. When the two likelihood are

combined, we obtain much tighter constraints on the shot noise parameters than the

bispectrum alone, which explains why our analysis is more sensitive to shot noise

corrections than that of Ref. [96]. Nevertheless, our result is not surprising, given

that on general grounds we do expect halo stochasticity to be different from that of

galaxies, see e.g. [111]. The importance of beyond-Poissonian sampling for primordial

non-Gaussianity constraints from the bispectrum was also emphasized in [10].
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Ref. [98] presented constraints on the galaxy bias parameters from the combi-

nation of the real space power spectrum and bispectrum data. This work used a

one-loop theoretical error model for the bispectrum, which allowed one to push the

analysis to small scales and achieve parameter measurement precision similar to ours

while using smaller effective volume Veff = 6 h−3 Gpc3. An important observation

is our analysis confirms the result of Ref. [98] that the quadratic bias parameters of

BOSS-like galaxies do not follow halo-calibrated dependencies on linear bias b1. The

deviations from these dependencies that we find in our work agree very well with

those reported in Ref. [98].

It is also worth comparing conclusions on the cosmological parameter improve-

ments from the bispectrum in real space from Ref. [98] and from our redshift space

analysis. Ref. [98] showed that constraints on As typically improve by factors of

4 − 6 in real space. This improvement factor stays roughly the same regardless of

whether the tree-level or the one-loop bispectrum model is used. In contrast to this,

our analysis implies that the bispectrum monopole sharpens the As constraints only

by ∼ 20% in redshift space. This happens because the notorious degeneracy between

the linear bias b1 and As, which plagues real space analyses, is lifted in redshift space

already at the level of power spectrum multipoles.

The bispectrum monopole of BOSS-like mocks and the actual bispectrum data

from the CMASS north galactic cap (NGC) sample were analyzed in Ref. [46]. This

analysis is closest to ours since it uses essentially a similar EFT theoretical model

for the power spectrum part. However, its bispectrum analysis is different from ours

by a number of instances. First, systematic errors in the window function treatment

forced Ref. [46] to discard low wavenumber modes, i.e. use kmin = 0.04 hMpc−1.13

Second, similarly to us, the authors of Ref. [46] used the tree-level EFT model for the

bispectrum monopole. However, they ignored IR resummation (which is necessary

already at the tree level [4, 69]) and additional corrections due to FoG and binning,

which was partly justified by the smallness of the total simulation volume of that work

compared to ours. Nevertheless, the final scale cuts kmax = (0.08−0.1) hMpc−1 of the

bispectrum analysis of Ref. [46] are consistent with our choice kmax = 0.08 hMpc−1.

Finally, Ref. [46] found that the bispectrum data from one BOSS data chunk (CMASS

NGC) sharpens the constrain on As by . 20% and leaves intact other cosmological

parameters. We have found a quantitatively similar behavior in our analysis, see

Fig. 7. It will be interesting to see how much the constraints improve in the analysis

of the actual BOSS data with our likelihood. We leave this for future work [116].

Finally, it is worth comparing our results with those from the MCMC forecast

for the Euclid-like survey from Ref. [6]. This work used a very similar methodology

and found that the addition of the tree-level bispectrum monopole likelihood leads

13In principle, this issue can be avoided with the help of unwinowed estimators implemented

along the lines of Refs. [114, 115].
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to ∼ (10 − 50)% on all relevant cosmological parameters of the ΛCDM model with

massive neutrinos. Our analysis is different from Ref. [6] in several aspects. First,

unlike Ref. [6], our baseline power spectrum likelihood contains the real space power

spectrum Q0 [73]. Moreover, our likelihood here includes physical priors on nuisance

parameters, whereas Ref. [6] did not assume any priors on them. These two factors

may diminish relative information content of the bispectrum in our work. Second,

we analyze only one redshift bin here, whereas Ref. [6] considers a more realistic

data sample spread across 8 different bins. Clearly, this latter case contains more

distance information that can be extracted through the AP effect. Third, we impose

the BBN prior on Ωb here, while Ref. [6] fits this parameter directly from the large-

scale structure data. Despite these significant differences, one observes a qualitative

agreement between our results: in both cases the tree-level bispectrum monopole

improves cosmological parameter constrains by tens of percent.

7 Conclusions

In this work we have studied the cosmological information present in the redshift-

space bispectrum monopole of PT challenge simulation galaxies. We analyze the joint

power spectrum and bispectrum likelihood using the one-loop EFT model for the

power spectrum and the tree-level model for the bispectrum. This is a fully consistent

approach as for both statistics we use the perturbative density field expanded to third

order in the linear solution. Our bispectrum theoretical templates include, for the

first time, all the effects that are needed to describe the data at this order: tree-level

IR resummation, corrections due to discreteness, FoG, and the AP effect. Our main

results are

• The tree-level bispectrum model is valid up to kmax = 0.08 hMpc−1 for a

BOSS-like luminous red galaxy sample.

• The addition of the tree-level bispectrum likelihood to the power spectrum one

leads to moderate improvements of constraints on cosmological parameters by

. 10%.

• The improvement on bias parameters is very significant. The errorbars on the

quadratic local in density bias b2 and the tidal bias bG2 shrink by more than a

factor of 10 after adding the bispectrum data.

• We have found that the quadratic galaxy bias parameters are quite different

from biases of host dark matter halos. This confirms the trend seen in the

literature [98, 109].

On the technical side, we have proposed a new efficient approach to account

for binning effects by a combination of the integral approximation and discreteness
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weights, and also studied in detail the dependence of our results on bispectrum

covariance matrix choices.

There are several ways to extend our analysis. First, it would be important to

upgrade our theory model with the redshift-space one-loop bispectrum calculations.

In particular, we have found that at kmax > 0.08 hMpc−1 the data shows evidence

for FoG, which is a loop effect in the EFT nomenclature. Given that the one-loop

calculation significantly extends the regime of validity of the EFT in the power

spectrum case, one may expect that a similar improvement can take place for the

bispectrum. It is important to notice that for consistency one needs to compute the

power spectrum at two loop order when considering the one-loop bispectrum.

Moreover, it is also interesting to consider higher angular moments of the redshift-

space bispectrum. Various forecasts suggest that these moments may contain signifi-

cant cosmological information, see e.g. [5]. We plan to verify these results in an actual

analysis of simulated or real data. Importantly, higher order bispectrum multipoles

are sensitive to FoG, and hence one-loop corrections are desirable for their systematic

study. This issue can be mitigated with an analog of the transverse moment Q0 for

the bispectrum. We plan to study this statistics in future.

Another natural step is the analysis of the actual bispectum data from the BOSS

survey [116]. Our work suggests that the inclusion of the bispectrum may improve

constraints on the mass fluctuation amplitude by ∼ 10%. This improvement is not

very dramatic, but it should be pointed out that so far we have considered only the

minimal ΛCDM model. The information content of the redshift space bispectrum

can be richer in nonminimal cosmological models, which may have some implications

for certain tensions, e.g. the so-called σ8 tension [117].

Finally, it would be interesting to repeat our analysis for the emission line

galaxies, which will be the main targets of future surveys like DESI [118] and Eu-

clid [119, 120]. Emission line galaxies are less biased than the red luminous galaxies

whose mocks we studied in this paper. Moreover, recent measurements suggest that

they are less affected by FoG [86, 121], which implies that the EFT model may

perform better for this sample.

Note added. While this paper was being prepared, a new work [122] studying the

information content of the real space bispectrum appeared. When results overlap,

they are in agreement.
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A Tests of Binning

In order to account for binning effects, one should ideally evaluate the full sum over

all possible triangle configurations inside the bin. However, this evaluation is compu-

tationally very expensive. In the main text we have used the integral approximation

along with discreteness weights that correct for the inaccuracy of this approximation

for the folded triangles. In this appendix we present an alternative to this scheme,

which works well for the real space bispectrum.

The main goal of our binning scheme is to generate many “fundamental” triangle

configurations based on the true kf and then sum them into appropriate bins. It is

computationally expensive to generate all the fundamental triangles on the actual

3d Fourier grid. Moreover, it is also not efficient, because the fundamental grid

contains a large number of identical fundamental triangles. We can avoid that by

organizing a sum over unique fundamental triangle configurations with q1 ≥ q2 ≥ q3,

where qi are wavevector moduli of fundamental triangles. In this case we need to

sample the bispectra over a relatively small grid of wavenumbers. We will call this

method “approximate 1d binning” in what follows. It is based, essentially, on taking

the integral expression Eq. (3.26) and approximating it with a sum over appropriate

discrete configurations of wavevector moduli.

Let us start with the integral approximation Eq. (3.26), obtained after eliminat-

ing most of angular variables by means of the Dirac delta-function. In real space the

integrals over µ and φ drop out of this expression because the bispectrum does not

depend on angles. Now we can write down the following discrete approximation to

the final integral,

B̂int
0 '

V
∑

123 q1q2q3B(q1, q2, q3)

V
∑

123 q1q2q3 1
, (A.1)

where the sum
∑

123 is taken over all configurations of momentum moduli qi that fall

in the bin. This sum contains many indistinguishable modes. Now we replace this

sum with a discrete sum over independent triangle configurations only,

B̂int
0 '

V
∑

T q1q2q3B(q1, q2, q3)

V
∑

T q1q2q3 1
, (A.2)
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where the sum
∑

T runs over all unique triangles that fall in the bin (k1, k2, k3) and

that respect the kf spacing,

∑
T

≡
k1+∆k/2∑

q1=max(kf ,k1−∆k/2)

min(k2+∆k/2,q1)∑
q2=max(kf ,k2−∆k/2)

min(k3+∆k/2,q2)∑
q3=max(kf ,k3−∆k/2,q1−q2)

. (A.3)

To compute the sum in Eq. (A.2) in practice, we generate a grid of tuples (q1, q2, q3)

with spacing ∆q = kf and select only those that satisfy the constraints of Eq. (A.3)

for each bin (k1, k2, k3). Notice that we have used the isotropy of the bispectrum in

our derivation, which is certainty not true in redshift space. We apply the approxi-

mate 1d binning scheme in real space only.

Eq. (A.2) is not exact because it was derived from the integral expression (3.26),

which is approximate on its own. But we can still use it as an alternative prescription

for the binning effects that will allow us to assess the systematic error of our baseline

discreteness weight method. The two methods can be compared in Fig. 8, “Baseline”

vs. “Approx 1d binning.” We can clearly see that they yield almost identical results.

This validates our discreteness weight approach adopted in the main analysis. In this

plot, we also show results from the “Pure integral approximation” obtained from the

bispectrum model with the integral approximation but without discreteness weights

or any additional corrections. This prescription leads to significant biases in the

recovery of quadratic bias parameter b2 and bG2 .

B Impact of Open Triangles

In principle, we could also include in our analysis the open triangles, i.e. the triangle

bins that do not satisfy |k3 − k2| < k1 < k3 + k2 at their centers. We refrained

from doing so because of the reasons listed in the main text. In this Appendix we

explicitly check that neglecting these triangles does not lead to any appreciable loss of

information. We include these triangles in the analysis by adopting the approximate

1d binning scheme described above. We have found that the Gaussian covariance

approximation is very inaccurate for them, and therefore use a diagonal sample

covariance matrix in our likelihood. The sample covariance matrix approximation

for “usual” closed triangle configurations is validated in the next section, showing

that it leads to essentially the same results as our baseline Gaussian covariances.

The results of our analysis of the bispectrum likelihood including open triangles

are shown in Fig. 8, which should be compared with the case “Weights + sample

covariance.” We see that the posterior distribution in this case is almost identical to

that of the usual sample covariance analysis without open triangles, which implies

that they can safely neglected for the purposes of this paper.
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Figure 8. Triangle plots and 1d marginalized posteriors of cosmological and nuisance

parameters from the following analyses that differ by the real space bispectrum likelihood

treatments: baseline (Gaussian covariance + discretness weights), approximate 1d binning,

integral approximation for binning without additional binning corrections (+ Gaussian

covariance for the last two cases); likelihood based on the bispectrum sample covariance

(discreteness weights), and the likelihood that includes the extra open triangles (+ sample

covariance).

C Covariance Matrix Tests

To test our baseline Gaussian covariance model, in this section we run our analy-

sis with bispectrum likelihood based on sample covariance matrix estimators. The

PT challenge suite consists of 10 boxes only, which means that the relative error on

elements of the sample covariance in this case is around 10−1/2 ∼ 30%. Since the
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Figure 9. Ratio of diagonal elements of the bispectrum covariance matrix computed in

the Gaussian approximation and the sample covariance extracted from 10 PT challenge

simulation boxes.

sample covariance is not invertible for our baseline bispectrum data with 70 triangle

bins, we will use only its diagonal part. This should still be a good approximation on

large scales where the bispectrum covariance is dominated by the Gaussian diagonal

contribution. The elements of our sample covariance normalized to the predictions

of the Gaussian approximation are shown in Fig. 9. We see that the ratio is scattered

around unity with most of the points dispersed within ∼ 50% in accordance with

the expected variance. However, we also observed several notable outliers. Never-

theless, the posterior distribution from the likelihood based on the sample covariance

is almost identical to that of the baseline analysis, see Fig. 8 for the real space case

and Fig. 10 for the redshift space case. We see that the main effect of the sample

covariance is to shift the posterior distributions, but these shifts do not exceed 1σ,

which is an expected effect of the sampling noise in the covariance [27, 123].

C.1 Theoretical error and cross-covariance

We additionally check the stability of our results w.r.t. the inclusion of the theoret-

ical error covariance to the bispectrum and the cross-covariance between the power

spectrum multipoles and the bispectrum monopole.

The theoretical error covariance accounts for the imperfectness of the particular

theoretical model that is used to fit the data. In the EFT approach theoretical

calculations are done up to a fixed order on scales where higher order corrections are

estimated to be negligible. A more systematic way to account for these corrections is

to marginalize over their approximate shape dictated by the EFT power counting [4,

51]. This marginalization leads to a simple change of the covariance matrix by an
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Figure 10. Triangle plots and 1d marginalized posteriors of cosmological and nuisance

parameters from the joint redshift-space power spectrum and bispectrum likelihoods built

with different covariance matrices: the Gaussian covariance, the Gaussian covariance

including the theoretical error (TE), the Gaussian covariance including the theoretical

error and the cross-covariance between the power spectrum and bispectrum, and the

bispectrum sample covariance. In all cases we have used the discreteness weights and

kmax = 0.08 hMpc−1 for the bispectrum likelihood.

additive correlated contribution. We incorporate the theoretical error covariance

for the bispectrum following Ref. [4]. We use the following one-loop bispectrum

theoretical error kernel

EB(k1, k2, k3) = Btree(k1, k2, k3, z)D
2
+(z)

(
k1 + k2 + k3

3× 0.23 hMpc−1

)3.3

, (C.1)
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TE covariance

Parameter 68% limits

∆H0/H0 −0.0002± 0.0018

∆ωcdm/ωcdm 0.004± 0.011

∆As/As −0.017± 0.021

∆ns/ns 0.0009± 0.0082

∆b1/b1 0.0128± 0.0089

∆b2 −0.11± 0.12

∆bG2 0.058± 0.038

Pshot −0.32± 0.11

Bshot 2.36± 0.64

c1 11.0± 4.0

∆σ8/σ8 −0.0059± 0.0083

∆Ωm/Ωm 0.0035± 0.0072

TE + cross covariance

Parameter 68% limits

∆H0/H0 0.0004± 0.0018

∆ωcdm/ωcdm 0.008± 0.011

∆As/As −0.021± 0.021

∆ns/ns −0.0006± 0.0084

∆b1/b1 0.0140± 0.0088

∆b2 −0.10± 0.11

∆bG2 0.059± 0.037

Pshot −0.35± 0.10

Bshot 2.15± 0.59

c1 10.4± 3.8

∆σ8/σ8 −0.0056± 0.0084

∆Ωm/Ωm 0.0061± 0.0075

Table 3. 1d marginalized limits from analyses of the redshift space bispectrum monopole

data at kmax = 0.08 hMpc−1 with two additional ingredients: the one-loop theoretical

error (TE) bispectrum covariance (left table) and the TE bispectrum covariance plus the

cross-covariance between the power spectrum multipoles and the bispectrum (right table).

whose amplitude is reduced by a factor of 3 compared to Ref. [4]. We do so be-

cause the original envelope of Ref. [4] was calibrated to one-loop calculations at

k ∼ 0.2 hMpc−1 which is larger than our baseline cut kmax = 0.08 hMpc−1. We

have checked that on these scales the original theory error kernel of Ref. [4] over-

estimates the actual size of one-loop matter bispectrum corrections, and therefore

have accounted for it by multiplying this kernel by a factor 1/3. Using Eq. (C.1),

the theoretical error covariance can be written as

C
B (TE)
TT ′ = EB(k1, k2, k3)EB(k′1, k

′
2, k
′
3)

3∏
i=1

e−
(ki−k

′
i)

2δk2 , (C.2)

where the coherence scale δk = 0.1 hMpc−1 following Refs. [6, 51]. The full covariance

is given by

CB
TT ′ = C

B (Gauss)
TT ′ + C

B (TE)
TT ′ . (C.3)

The result of our analysis of the bispectrum likelihood with the theoretical error

covariance are presented in Fig. 10 and in Table 3. We see the inclusion of the

theoretical error covariance leads to a moderate inflation of errorbars and insignificant

shifts of some posteriors.

Finally, we include the cross-covariance between the power spectrum multipoles

and the bispectrum monopole in our likelihood. We compute this cross-covariance

in the tree-level approximation along the lines of Ref. [3], see Appendix F for more
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detail. The results of this analysis are displayed in the same Fig. 10 and Table 3.

The impact of the cross-covariance is quite marginal – the posteriors are virtually

identical to those of the previous analysis which treated the bispectrum and the

power spectrum uncorrelated. This is consistent with common expectations that the

cross-covariance is negligible on large scales [4, 6].

All in all, the analyses that we have carried out suggest that our baseline results

are stable w.r.t. the choice of covariance matrices.

D Baseline power spectrum likelihood

Our baseline power spectrum likelihood consists of two pieces:

Redshift space multipoles ` = 0, 2, 4 with kmax = 0.14 hMpc−1. We build

the likelihood using the Gaussian approximation for the covariance matrix of these

multipole moments. In the previous work [52] we have checked that the one-loop

EFT model provides an accurate and unbiased fit to the data in this range.

Transverse moment (real space) power spectrum in the range 0.14 hMpc−1 <

k < 0.4 hMpc−1. We use the Gaussian covariance for real space part of the power

spectrum likelihood.

Our power spectrum likelihood depends on the following nuisance parameters

{b1, b2, bG2 , bΓ3 , c0, c2, b4, a0, a2, Pshot} , (D.1)

for which we assume following physically-motivated priors [41, 50, 51, 73]:

b1 ∈ (1, 4) , b2 ∼ N (0, 12) , bG2 ∼ N (0, 12) , bΓ3 ∼ N
(

23

42
(bfid

1 − 1), 12

)
,

c0

(h−1Mpc)2
∼ N (4, 102) ,

c0

(h−1Mpc)2
∼ N (20, 202) ,

c4

(h−1Mpc)2
∼ N (−10, 202) ,

b4

(h−1Mpc)4
∼ N (500, 5002) , a0 ∼ N (0, 12) , a2 ∼ N (0, 12) , Pshot ∼ N (0, 12) .

(D.2)

Note that we use the following parametrization for the stochastic part of the redshift-

space power spectrum,

Pstoch(k, µ) =
1 + Pshot

n̄
+ (a0 + a2µ

2)

(
k

0.45 hMpc−1

)2
1

n̄
. (D.3)

E Real space power spectrum + bispectrum analysis

In this appendix we study the information content of clustering statistics purely in

real space. We analyze the real space galaxy power spectrum of PT challenge simu-

lation at kmax = 0.2 hMpc−1 and the real space bispectrum at kmax = 0.08 hMpc−1.
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The real space power spectrum case is very different from the redshift space one. In

the absence of RSD the degeneracy between the linear galaxy bias b1 and clustering

amplitude σ8 is largely unbroken. Moreover, the real space case does not capture the

distance information, which should result in larger errorbars on H0.

Our results are shown in Fig.11 and in table 4. The real space power spectrum

data Pgg, real is much less constraining than the dataset [P0, P2, P4, Q0] that we are

using in our baseline redshift space power spectrum analysis. In particular, the

constraints on ωcdm, ns and H0 few times weaker, the limit on σ8 is weaker by an

order of magnitude. We can also see that the cosmological parameters’ posteriors

from the bispectrum alone are comparable to the power spectrum ones. When we

combine the two statistics the improvement is quite significant, e.g. the limit on σ8

improves by a factor of four, the limit on H0 by 30%.

F Power spectrum and bispectrum covariances in perturba-

tion theory

In this Appendix we calculate tree-level covariance matrices for the power spectrum

and bispectrum. Let us start with the real-space estimators for the density power

spectrum and bispectrum in the narrow bin approximation ∆k � k [20]

P̂ (ki) =

∫
q∈ki shell

d3q

(2π)3Nk
δ(−q)δ(q) , Nk = 4πk2∆k

V

(2π)3
.

B̂(k1, k2, k3) =
3∏
i=1

∫
ki

d3qi
(2π)3

(2π)3δ(3)(q123)

N123
T

δ(q1)δ(q2)δ(q3) , N123
T = 8π2k1k2k3∆k3 V 2

(2π)6
,

(F.1)

Using the formulas from [99],∫
r2dr j0(k1r)j0(k2r)j0(k3r) =

π

4
,∫

k1

∫
k2

∫
k3

[dq]3 (2π)3δ(3)(q123) = k1k2k3∆k3 (4π)4

(2π)9

π

4
,

δ
(3)
D (k1 + k2 + k3) =

1

k1k2k3

δ
(1)
D

(
cos(k1,k2)− k2

3 − k2
1 − k2

1

2k1k2

)
δ

(2)
D

(
k̂3 − (k̂1 + k̂2)

)
,

(F.2)

we can compute the auto-covariances of the estimators (F.1),

Ckikj =
2

Nki
δijP

2(ki) , CTT ′ =
(2π)3πs123

k1k2k3∆k3V
δTT ′

3∏
i=1

P (ki) , (F.3)
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Figure 11. Triangle plots and 1d marginalized posteriors of cosmological and nuisance

parameters from the real space power spectra and bispectra data of the PT challenge

simulation. For compactness, only linear and quadratic bias parameters are shown.

where s123 = 6, 2 or 1 for equilateral, isosceles and general triangles. The cross-

covariance 〈P (k′)B(k1, k2, k3)〉 is given by,

Ck′iT =
2(2π)3

Nk′i
(δij1P (k′i)B(kj1 , kj2 , kj3) + cycl.) (F.4)
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Pgg, real, real space

Parameter 68% limits

∆H0/H0 −0.0058+0.0076
−0.0089

∆ωcdm/ωcdm −0.023+0.033
−0.040

∆As/As −0.29+0.13
−0.26

∆ns/ns 0.011± 0.033

∆b1/b1 0.22+0.17
−0.19

∆b2 0.43± 0.91

∆bG2 0.71+0.43
−0.55

Pshot 0.38+0.57
−0.29

∆σ8/σ8 −0.177+0.097
−0.16

∆Ωm/Ωm −0.008+0.015
−0.018

Breal, real space

Parameter 68% limits

∆H0/H0 −0.018± 0.013

∆ωcdm/ωcdm −0.047± 0.028

∆As/As −0.22+0.13
−0.31

∆ns/ns 0.027± 0.029

∆b1/b1 0.25± 0.24

∆b2 0.29+0.21
−0.24

∆bG2 −0.04+0.15
−0.11

Pshot 0.0± 1.0

Bshot 0.87± 0.32

∆σ8/σ8 −0.148+0.091
−0.16

∆Ωm/Ωm −0.004+0.022
−0.025

Pgg, real +Breal, real space

Parameter 68% limits

∆H0/H0 −0.0054± 0.0047

∆ωcdm/ωcdm −0.026± 0.020

∆As/As −0.107+0.060
−0.068

∆ns/ns 0.018± 0.019

∆b1/b1 0.071± 0.036

∆b2 0.30+0.15
−0.18

∆bG2 0.046+0.029
−0.034

Pshot −0.05± 0.14

Bshot 0.96± 0.18

∆σ8/σ8 −0.066± 0.033

∆Ωm/Ωm −0.011± 0.010

Table 4. 1d marginalized limits from analyses of the real space power spectrum at kmax =

0.20 hMpc−1 and the real space bispectrum at kmax = 0.08 hMpc−1. For compactness,

only linear and quadratic bias parameters are shown.

It is straightforward to generalize these calculations to power spectrum multipole `

and the redshift-space bispectrum multipole `′,

P̂`(ki) =

∫
q∈ki shell

d3q

(2π)3Nk
δ0(−q)δ0(q)(2`+ 1)L`(ẑ · q̂) ,

B̂`′(k1, k2, k3) = (2`′ + 1)
3∏
i=1

∫
ki

d3qi
(2π)3

(2π)3δ
(3)
D (q123)

N123
T

δ(q1)δ(q2)δ(q3)L`′(ẑ · q̂1) ,

(F.5)
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where δ0(k) = δ(k)(1 + βµ2) in the linear approximation [124], β ≡ f/b1. In par-

ticular, this implies that the continuous part of the angle-averaged bispectrum auto-

covariance would be modulated in redshift space by a form-factor∫
dφ

2π

∫ 1

0

dµ (1 + βµ2)2(1 + βµ2(µ, φ)2)2(1 + βµ3(µ, φ)2)2 . (F.6)

Similarly, the cross-correlation between P` and B0 is given by

〈P`(k)B0(k1, k2, k3)〉

=
2(2π)3(2`+ 1)

Nk

(
δkk1P (k)

∫
dφ

2π

∫ 1

0

dµ (1 + βµ2)2L`(µ)B(k,k2,k3) + cycl.

)
.

(F.7)

G Gaussian fingers-of-God exponent derivation

In this section we revisit the derivation of the Gaussian FoG exponent that is of-

ten used in the literature to motivate some phenomenological models for FoG, see

e.g. [16]. Ref. [51] has explicitly shown that this model completely fails to capture the

behaviour seen in high quality dark matter redshift space simulations. Nevertheless,

it would be of some interest to see when the Gaussian FoG model breaks down at

the mathematical level. Let us consider the redshift space mapping,

δ(z)(k) =

∫
d3x eikx+iH−1kzvz(x)(δ(x) + 1)− (2π)3δ

(3)
D (k) (G.1)

Now we split the velocity field into the long and short wavelength components,

vi = vLi + vSi , (G.2)

where vL is correlated with the density field on large scales and vS is the short-

scale contribution generated by the non-perturbative effects such as virialization. A

common assumption is that this part is fully uncorrelated with the perturbative long

wavelength density field. Taylor-expanding the exponent over its perturbative part

we have

δ(z)(k) =

∫
d3x eikx+iH−1kzvSz (x)(δ(x) + iH−1kzv

L
z (x)) , (G.3)

where we have neglected terms which have support only around k = 0. In what

follows we restrict ourselves to the tree-level order for the perturbative part, in which

case the velocity field can be expressed as

vLi = −fH∂iδ
L
m

∆
⇒ iH−1kzv

L
i (k) = fµ2δLm(k) . (G.4)
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In order to reproduce the Gaussian FoG exponent, we need to assume the short scale

velocity field is Gaussian distributed, and its two point correlation function has a

finite support on short scales,

〈vi(x)vj(x
′)〉 = δijH2σ2

v for x = x′ and 0 otherwise. (G.5)

Clearly, this assumption cannot be justified within the EFT approach, which requires

that the short-scale averages should depend on all possible operators involving low-

energy degrees of freedom compatible with IR symmetries of large-scale structure [39].

Nevertheless, if we proceed using the cumulant expansion theorem

〈exp{iX}〉 = exp

{
∞∑
N=1

iN

N !
〈XN〉c

}
, (G.6)

we find the power spectrum in redshift space given by

〈δ(z)(k)δ(z)(k′)〉 = (2π)3δ
(3)
D (k + k′) e−σ

2
vµ

2k2

PKaiser(k) , (G.7)

where

PKaiser(k) = (b1 + fµ2)2P (k) +
1

n̄
. (G.8)

For the redshift space bispectrum we have

〈δ(z)(k1)δ(z)(k2)δ(z)(k3)〉 = (2π)3δ
(3)
D (k123) e−

σ2
v
2

∑3
a=1 µ

2
ak

2
aBtree(k1,k2,k3) , (G.9)

which would formally coincide with the leading order EFT expression used in this

work if we Taylor expand the damping exponent and identify

c1 =
(krNL)2

2
σ2
vb1 , c2 =

(krNL)2

2
σ2
vf . (G.10)
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et al., Blinded challenge for precision cosmology with large-scale structure: results

from effective field theory for the redshift-space galaxy power spectrum, Phys. Rev.

D 102 (2020) 123541 [2003.08277].

[53] P. Valageas and T. Nishimichi, Combining perturbation theories with halo models

for the matter bispectrum, Astronomy & Astrophysics 532 (2011) A4 [1102.0641].

[54] R. E. Angulo, S. Foreman, M. Schmittfull and L. Senatore, The One-Loop Matter

Bispectrum in the Effective Field Theory of Large Scale Structures, JCAP 1510

(2015) 039 [1406.4143].

[55] T. Baldauf, L. Mercolli, M. Mirbabayi and E. Pajer, The Bispectrum in the

Effective Field Theory of Large Scale Structure, JCAP 1505 (2015) 007

[1406.4135].

[56] D. Bertolini, K. Schutz, M. P. Solon and K. M. Zurek, The Trispectrum in the

Effective Field Theory of Large Scale Structure, JCAP 06 (2016) 052 [1604.01770].

[57] A. Eggemeier, R. Scoccimarro and R. E. Smith, Bias Loop Corrections to the

Galaxy Bispectrum, 1812.03208.

[58] A. Taruya, T. Nishimichi and D. Jeong, Grid-based calculation for perturbation

theory of large-scale structure, Phys. Rev. D 98 (2018) 103532 [1807.04215].

[59] K. Osato, T. Nishimichi, A. Taruya and F. Bernardeau, Implementing spectra

response function approaches for fast calculation of power spectra and bispectra,

– 46 –

https://doi.org/10.1088/1475-7516/2020/05/042
https://arxiv.org/abs/1909.05277
https://arxiv.org/abs/1909.05271
https://doi.org/10.1103/PhysRevD.101.083504
https://doi.org/10.1103/PhysRevD.101.083504
https://arxiv.org/abs/1912.08208
https://doi.org/10.1103/PhysRevD.102.103502
https://arxiv.org/abs/2006.11235
https://arxiv.org/abs/2006.12420
https://doi.org/10.1103/PhysRevD.103.023507
https://doi.org/10.1103/PhysRevD.103.023507
https://arxiv.org/abs/2009.10106
https://doi.org/10.1103/PhysRevD.103.043525
https://arxiv.org/abs/2009.10724
https://doi.org/10.1103/PhysRevD.102.123541
https://doi.org/10.1103/PhysRevD.102.123541
https://arxiv.org/abs/2003.08277
https://doi.org/10.1051/0004-6361/201116638
https://arxiv.org/abs/1102.0641
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1088/1475-7516/2015/10/039
https://arxiv.org/abs/1406.4143
https://doi.org/10.1088/1475-7516/2015/05/007
https://arxiv.org/abs/1406.4135
https://doi.org/10.1088/1475-7516/2016/06/052
https://arxiv.org/abs/1604.01770
https://arxiv.org/abs/1812.03208
https://doi.org/10.1103/PhysRevD.98.103532
https://arxiv.org/abs/1807.04215


arXiv e-prints (2021) arXiv:2107.04275 [2107.04275].

[60] L. Senatore and M. Zaldarriaga, Redshift Space Distortions in the Effective Field

Theory of Large Scale Structures, 1409.1225.

[61] M. Lewandowski, L. Senatore, F. Prada, C. Zhao and C.-H. Chuang, EFT of large

scale structures in redshift space, Phys. Rev. D 97 (2018) 063526 [1512.06831].

[62] A. Perko, L. Senatore, E. Jennings and R. H. Wechsler, Biased Tracers in Redshift

Space in the EFT of Large-Scale Structure, 1610.09321.

[63] L. Senatore, Bias in the Effective Field Theory of Large Scale Structures, JCAP

1511 (2015) 007 [1406.7843].

[64] R. Angulo, M. Fasiello, L. Senatore and Z. Vlah, On the Statistics of Biased

Tracers in the Effective Field Theory of Large Scale Structures, JCAP 1509 (2015)

029 [1503.08826].

[65] V. Assassi, D. Baumann, D. Green and M. Zaldarriaga, Renormalized Halo Bias,

JCAP 1408 (2014) 056 [1402.5916].

[66] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, Biased Tracers and Time Evolution,

JCAP 1507 (2015) 030 [1412.5169].

[67] V. Desjacques, D. Jeong and F. Schmidt, Large-Scale Galaxy Bias, Phys. Rept. 733

(2018) 1 [1611.09787].

[68] V. Desjacques, D. Jeong and F. Schmidt, The Galaxy Power Spectrum and

Bispectrum in Redshift Space, JCAP 1812 (2018) 035 [1806.04015].

[69] D. Blas, M. Garny, M. M. Ivanov and S. Sibiryakov, Time-Sliced Perturbation

Theory II: Baryon Acoustic Oscillations and Infrared Resummation, JCAP 1607

(2016) 028 [1605.02149].

[70] M. M. Ivanov and S. Sibiryakov, Infrared Resummation for Biased Tracers in

Redshift Space, JCAP 1807 (2018) 053 [1804.05080].

[71] A. Taruya, T. Nishimichi and D. Jeong, Grid-based calculations of redshift-space

matter fluctuations from perturbation theory: UV sensitivity and convergence at the

field level, arXiv e-prints (2021) arXiv:2109.06734 [2109.06734].

[72] C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological

constant, Nature 281 (1979) 358.

[73] M. M. Ivanov, O. H. E. Philcox, M. Simonović, M. Zaldarriaga, T. Nishimichi and

M. Takada, Cosmological constraints without fingers of God, 2110.00006.

[74] A. J. S. Hamilton and M. Tegmark, The Real space power spectrum of the PSCz

survey from 0.01 to 300 h Mpc**-1, Mon. Not. Roy. Astron. Soc. 330 (2002) 506

[astro-ph/0008392].

[75] SDSS collaboration, M. Tegmark et al., The 3-D power spectrum of galaxies from

the SDSS, Astrophys. J. 606 (2004) 702 [astro-ph/0310725].

– 47 –

https://arxiv.org/abs/2107.04275
https://arxiv.org/abs/1409.1225
https://doi.org/10.1103/PhysRevD.97.063526
https://arxiv.org/abs/1512.06831
https://arxiv.org/abs/1610.09321
https://doi.org/10.1088/1475-7516/2015/11/007
https://doi.org/10.1088/1475-7516/2015/11/007
https://arxiv.org/abs/1406.7843
https://doi.org/10.1088/1475-7516/2015/09/029, 10.1088/1475-7516/2015/9/029
https://doi.org/10.1088/1475-7516/2015/09/029, 10.1088/1475-7516/2015/9/029
https://arxiv.org/abs/1503.08826
https://doi.org/10.1088/1475-7516/2014/08/056
https://arxiv.org/abs/1402.5916
https://doi.org/10.1088/1475-7516/2015/07/030
https://arxiv.org/abs/1412.5169
https://doi.org/10.1016/j.physrep.2017.12.002
https://doi.org/10.1016/j.physrep.2017.12.002
https://arxiv.org/abs/1611.09787
https://doi.org/10.1088/1475-7516/2018/12/035
https://arxiv.org/abs/1806.04015
https://doi.org/10.1088/1475-7516/2016/07/028
https://doi.org/10.1088/1475-7516/2016/07/028
https://arxiv.org/abs/1605.02149
https://doi.org/10.1088/1475-7516/2018/07/053
https://arxiv.org/abs/1804.05080
https://arxiv.org/abs/2109.06734
https://doi.org/10.1038/281358a0
https://arxiv.org/abs/2110.00006
https://doi.org/10.1046/j.1365-8711.2002.05033.x
https://arxiv.org/abs/astro-ph/0008392
https://doi.org/10.1086/382125
https://arxiv.org/abs/astro-ph/0310725


[76] R. Scoccimarro, Redshift-space distortions, pairwise velocities and nonlinearities,

Phys. Rev. D70 (2004) 083007 [astro-ph/0407214].

[77] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale

structure of the universe and cosmological perturbation theory, Phys. Rept. 367

(2002) 1 [astro-ph/0112551].

[78] M. Schmittfull, T. Baldauf and U. Seljak, Near optimal bispectrum estimators for

large-scale structure, Phys. Rev. D91 (2015) 043530 [1411.6595].

[79] R. Casas-Miranda, H. J. Mo, R. K. Sheth and G. Boerner, On the Distribution of

Haloes, Galaxies and Mass, Mon. Not. Roy. Astron. Soc. 333 (2002) 730

[astro-ph/0105008].

[80] T. Baldauf, U. Seljak, R. E. Smith, N. Hamaus and V. Desjacques, Halo

stochasticity from exclusion and nonlinear clustering, Phys. Rev. D 88 (2013)

083507 [1305.2917].

[81] T. Baldauf, S. Codis, V. Desjacques and C. Pichon, Peak exclusion, stochasticity

and convergence of perturbative bias expansions in 1+1 gravity, Mon. Not. Roy.

Astron. Soc. 456 (2016) 3985 [1510.09204].
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