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Abstract We present the 3DGAN for the simulation
of a future high granularity calorimeter output as three-
dimensional images. We prove the efficacy of Generative
Adversarial Networks (GANs) for generating scientific data
while retaining a high level of accuracy for diverse metrics
across a large range of input variables. We demonstrate a suc-
cessful application of the transfer learning concept: we train
the network to simulate showers for electrons from a reduced
range of primary energies, we then train further for a five
times larger range (the model could not train for the larger
range directly). The same concept is extended to generate
showers for other particles depositing most of their energies
in electromagnetic interactions (photons and neutral pions).
In addition, the generation of charged pion showers is also
explored, a more accurate effort would require additional
data from other detectors not included in the scope of the
current work. Our further contribution is a demonstration of
using GAN-generated data for a practical application. We
train a third-party network using GAN-generated data and
prove that the response is similar to a network trained with
data from the Monte Carlo simulation. The showers gener-
ated by GAN present accuracy within 10% of Monte Carlo
for a diverse range of physics features, with three orders of
magnitude speedup. The speedup for both the training and
inference can be further enhanced by distributed training.

1 Introduction

Particles undergo complex stochastic interactions upon con-
tact with materials. The modeling of these interactions is
further complicated by the large number of secondary par-
ticles involved. The Monte Carlo simulation depends on
repeated random sampling to produce a snapshot of the parti-
cle interactions with a detector. Simulation is crucial in most
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High Energy Physics (HEP) experiments and is extremely
resource-intensive. More than 50% of the current computing
resources of the HEP community are utilized in simulation
alone [1]. In the future that need will increase further due
to the higher luminosity and granularity of future experi-
ments, and it will not be possible to create a corresponding
increase in computing resources. The main motivation for the
fast simulation is to incorporate other faster alternatives to
decrease the cost of future experiments. Current fast simula-
tion approaches are mostly based on parametrization [2–4] or
lookup table [5] approaches, providing between 10 and 100
times speedup while achieving different levels of accuracy.

Generative Adversarial Network (GAN) [6] is a train-
ing paradigm for deep generational neural networks. Other
approaches for generative networks include variational autoen-
coders [7] and autoregressive models [8], etc. All of these
approaches have their own strengths and weaknesses. The
autoencoder-based methods often produce blurry images
while the pixel-based methods are not only slow to evaluate
but also suffer from limited capacity. The GAN approach has
been able to demonstrate highly realistic and sharp images
as compared to other approaches [6]. There have been many
recent variants of the GAN methodology, such as WGAN [9],
StackGAN [10], and Progressive GAN [11] further enhanc-
ing the quality and resolution of generated images. The gen-
erative problem often involves intractable probability densi-
ties and thus methods involving likelihood estimates are not
practical for most purposes. GAN can learn a distribution
implicitly since it does not rely on the explicit computation
of probability densities. Therefore the GAN approach is suit-
able for the generation of a wider range of data such as musi-
cal notes [12], natural language [13], medical data [14,15],
natural scenes [6], faces [11] and image denoising [16]. Since
simulation is essentially a generative problem thus a success-
ful image generation model can be exploited in this domain.
A potential advantage of deep generative models is that the
generated distribution does not have to be explicitly defined,
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and thus even the real data from a detector can be simulated
directly.

We leverage the GAN methodology to generate HEP
calorimeter output. Calorimeters are special HEP detectors
that record particles through the measurement of the energies
deposited by them. These detectors can be regarded as huge
cameras taking pictures of particle interactions. The Monte
Carlo simulation for the detector output is extremely precise
but highly expensive both in regards to the simulation time
and resources. For most HEP experiments the calorimeter is
a simulation bottleneck, consuming, for example, more than
80% of the simulation time for the ATLAS experiment [2].
We generate the calorimeter cells as monochromatic pixe-
lated images with the cell energy depositions as our pixel
intensities.

The 3DGAN [17–19] was the first effort where the detec-
tor output was generated employing three dimensional con-
volutions, a more powerful approach for retaining correla-
tions in all three spatial dimensions. Following our work, a
number of similar approaches have been presented but all
the previous implementations generate the detector output
either as a two-dimensional image or a concatenated set of
two-dimensional images. We demonstrate our approach for a
high granularity detector with a higher spatial resolution and
thus consequently much larger image dimensions than previ-
ous such efforts. We pre-process the cell depositions by tak-
ing a power less than one, thus decreasing the dynamic range
of corresponding pixel intensities and improving the conver-
gence. We employ a multi-step training process to generate
images, from a complex multivariate distribution, for a large
range of input conditions. We also perform extensive vali-
dations from diverse viewpoints including vision and deep
learning, as well as, physics-based evaluation. The network
scores highly on all the platforms both for the pertinence to
the training data and for maintaining sufficient diversity. The
details of the network development and the validation from
different perspectives have been presented previously [18].
The current work is geared more towards the physics commu-
nity and thus performs mostly physics-based validation. Pre-
viously we simulated electrons coming with energies from a
wide spectrum by employing our multi-step training. Now we
successfully extend the same approach to simulate additional
particle types such as photon and neutral pion where most
of the energy is lost in electromagnetic interactions. We per-
form an additional investigation to prove that the GAN could
accurately reproduce the signature features of a particular
particle type. The performance of the GAN model is further
evaluated regarding GAN-specific failure modes. We also
undertake some preliminary exploration of the charged pion
simulation and generation of rare events. We finally present
a successful practical example of using the GAN-generated
data in a typical reconstruction tool, demonstrating that the

GAN-generated images could provide similar performance
as Monte Carlo images.

The current paper is organized as follows. Section 2
presents the overview of past efforts for fast simulation of
HEP calorimeters exploiting deep neural networks. The next
section (Sect. 3) describes the Monte Carlo training dataset.
The basic structure of the calorimeter and the important fea-
tures of our data are discussed. Section 4 describes how the
GAN approach is adapted to the problem of HEP detector
simulation. The approach has been exploited for the genera-
tion of particles with predominantly electromagnetic show-
ers. The results for comparison to Monte Carlo simulation are
presented in Sect. 5. Some preliminary work is also carried
out for the charged pion simulation as presented in Sect. 6.
Another study exploring the simulation of rare modes is pre-
sented in Sect. 7. Section 8 presents a practical application for
the use of GAN-generated data. Finally, Sect. 9 summarises
the main contributions and presents some future suggestions.

2 Previous work

Fast simulation is already incorporated in existing experi-
ments through approaches like parametrization [2–4,20] and
Lookup tables [5], etc. Usually a part of the simulation is
replaced by fastsim where some tradeoff between speed and
accuracy can be feasible. Following the same concept deep
learning has also been explored to generate simulation data.
Fast simulation using neural networks can be regarded as a
special type of parametrization, with the weights of the neural
network as parameters, optimized through a training process.

The GAN technique is an unsupervised training method-
ology. The power of GAN lies in the fact that the target dis-
tribution does not have to be tractable and instead the train-
ing relies on a Minimax game between a discriminator (D)
network and a generator (G) network. The discriminator is
trained to differentiate between the target and the generated
distributions, while the generator is trained to confuse the dis-
criminator. Both the networks compete with each other till
the generator manages to completely confuse the discrimi-
nator, given enough capacity for both models. At this point,
the GAN is said to have converged.

Calorimeter data have been simulated through deep gener-
ative networks in a number of recent approaches as presented
in Table 1. LAGAN [21] was one of the first fast simulation
approaches based on deep learning. A simplified calorimeter
was simulated as 2D jet images for high energy W bosons
(signal) and generic quark/gluon jets (background). CALO-
GAN [22] employed the LAGAN architecture to generate
sets of three two-dimensional images that were then con-
catenated to obtain the output for a three-layered simplified
calorimeter conditioned on the primary particle energy (EP )
ranging from 1–100 GeV. Since then, there have been other
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demonstrations employing deep learning for HEP calorime-
ter simulation. Deep learning has been used for fast simula-
tion of the ATLAS calorimeter [23]. Showers with energies
1–260 GeV and pseudorapidity |η| in the range of 0.2–0.25
were generated as flattened arrays of pixels, by a dense net-
work employing both VAE and GAN methodologies. The
images were also conditioned on the primary particle energy
and constrained on the total energy deposition. The GAN-
generated showers were reported to have better performance
as compared to the VAE generated showers. WGAN has also
been used to simulate the LHC detector output collapsed to a
two-dimensional array of cells [24]. A simplified version of
HGCAL was simulated as seven 2D images concatenated
together, conditioned on the primary particle energy and
impact position [25]. The DijetGAN [26] employed GAN
for the simulation of QCD dijet events: a background pro-
cess for important physics studies at LHC. Since the final ver-
sion of 3DGAN [18] was presented some recent approaches
have also attempted employing diverse methodologies. The
SARM [27] model is based on the Autoregressive (ARM)
architecture simulating simplified calorimeter outputs for
single quarks against collimated pairs of quarks and muons
produced in isolation against muons produced in a shower.
The performance of the simulation was claimed to be of a
much higher quality than previous such efforts but the auto-
regressive models are slow to compute and thus the attained
speedup is only limited. Another recent approach [28] exper-
imented with several GAN-like architectures (including the
BIB-AE, combining GAN and AE features). They simulated
high granularity calorimeter for the ILD [30] detector as
30 × 30 × 30 three-dimensional images. The simulation was
limited to the orthogonally incident photons coming with 10–
100 GeV primary energy. The CaloFlow [29] applied the nor-
malizing flow concept to the simplified calorimeter geometry
(similar to the CALOGAN [22]), resulting in a much higher
performance level. The work is quite promising and provides
the additional benefit of tractable likelihoods.

The 3DGAN initial prototype [17] exploited 3D convolu-
tional networks to simulate the response of a high granular-
ity calorimeter as 25 × 25 × 25 image. The GAN setup was
used to train the network for a simplified scenario involving
only orthogonally incident electrons. The approach was then
extended to condition 51 × 51 × 25 images on both the par-
ticle energy and incident angle [18,19]. The more complex
distribution could be generated through multi-step training,
architecture, and loss function modifications (details in [31]).
We now simulate the detector output for all the particle types
available in the dataset and further validate the results. The
3DGAN greatly surpasses existing efforts in the granularity
and dimensions of the generated images, conditioned on both
the incident particle angle and energy from a wider range, and
validated in great detail from diverse viewpoints. Finally, a

culmination of the effort is to test the GAN-generated data
for a practical use case.

3 Calorimeter dataset

We present a solution for the needs of future experiments with
higher demands for computing resources due to increased
luminosity and granularity. We, therefore, select the proposed
Linear Collider Detector (LCD), designed in the context of
the future Compact Linear Collider (CLIC) [32] accelera-
tor for our study. The dataset employs the GEANT4 toolkit
(G4) [33] for the generation of the simulation data for several
particle types (i.e., electrons e, photons γ , neutral pions π0

and charged pions π ) and is publicly available on Zenodo at
https://zenodo.org/communities/mpp-hep.1

3.1 Detector geometry

The basic design consideration for improving the jet energy
resolution is to resolve the energy depositions of the indi-
vidual particles in a jet, through a high cell granularity and
precise time information. The granularity of a calorimeter
is related to geometrical segmentation where smaller cell
dimensions enable recording the particle shower in finer
detail and thus also improving the energy resolution. Fig-
ure 1 shows the proposed detector design, highlighting the
main detector concepts. The electron and positron will col-
lide in the central region. The trackers are shown in blue.
The surrounding grey region will comprise the calorimeters.
The calorimeter will be highly segmented with an electro-
magnetic (ECAL) and a hadronic (HCAL) calorimeter.

The data used for the current work is that of the ECAL
central barrel region with a dodecagonal shape [37]. This
region is a cylindrical polygon with an inner radius of 1.5 m
with 25 concentric layers. The proposed granularity for the
ECAL cells is 5.1 × 5.1 mm2. The cells are arranged in
the form of 25 cylindrical layers with silicon sensor planes
(active), alternating with tungsten absorber planes (passive).
The simulation is carried out considering the entire detector
geometry, including the material in front of the calorimeter,
and the effect of the solenoid magnetic field.

3.2 Data features

The energy deposits in the calorimeter cells result from
the interaction of an incoming primary particle with the
calorimeter material. These deposits form a characteristic
shape that can be termed as an “event” or “shower”. A slice
around the barycenter of each shower is saved as a 3D array
of energy depositions. The slicing is carried out by taking

1 Electrons [34], photons [35], and neutral pions [36].
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Fig. 1 Schematic diagram for the CLIC detector (taken from an older
version [38])

Fig. 2 The calorimeter barycenter computation was done in global
coordinates (left) and the cells were saved based on the local coordinates
(right)

a projection of all the deposited energy on the ECAL inner
surface. The barycenter of this 2D image and the point of
origin of the incoming particle are then used to compute the
polar angles (θ and φ) corresponding to each shower. Due to
the different φ granularity for each depth layer in the ECAL,
a multiplicative transformation is also applied to scale every
layer to look like the innermost ECAL layer. Finally, the data
is saved in the HDF5 format. Each entry in the dataset com-
prises the 3D array with cell energy deposits, the incoming
particle energy EP , and the incidence angles θ and φ. The
energies for the incoming particles are uniformly distributed
from 2 to 500 GeV and an incident angle (θ ) uniformly dis-
tributed from 60◦ (1.047 radians) to 120◦ (2.094 radians).

Figure 2 shows the particle gun position with respect to
the calorimeter surface. In the global coordinate system, the
Z axis lies along the axis of the calorimeter cylinder. While
in the local coordinates of the shower it is perpendicular to
the calorimeter surface. Similarly, other axes are also trans-
formed to the local coordinates of each sample. The Z axis
of our 3D images lies along with the detector depth, the X
axis along the φ direction, and the Y axis along the global Z
axis.

The current work only focuses on replicating the selected
dataset while more insight from the point of view of inte-
gration within a simulation framework can be easily incor-
porated for future implementations. The required inputs, the
cut-off threshold for cell energies, and the validation crite-
rion are some directions that can be explored for specific
use-cases. The current work quantifies the shower direction
as a single continuous variable since the aim of our work
is to demonstrate the efficacy of our approach for correctly
simulating the angle of incidence while reducing model com-
plexity. We recompute the angle of incidence for a shower
as a weighted mean of the 3D angles computed using the
barycenter of the event and the barycenters of the XY planes
for each position along Z (weighted by the position along
Z ). We denote this angle as θ although there will be a small
φ contribution especially for very low energy charged parti-
cles. The 3D angle is computed from the images using the
following Algorithm 1:

Algorithm 1: Calculating 3D angle from images
b0 = barycenter of the image with dimensions (xsize, ysize, zsize)
Wtot = ∑zsi ze

z=0 z
for each position z :=1 → zsize do
bz = barycenter of the XY plane at z
lz = slope of b0bz
θz = arctan lz
wz = z
end
θmeasured = 1

Wtot

∑zsi ze
z=1 wzθz

4 3DGAN

The HEP simulation depends on a set of variables that impact
the underlying physics processes described by the simulation.
Therefore, 3DGAN uses the EP and θ of a particle striking
the calorimeter surface as inputs, to generate the appropri-
ate detector response. In order to provide feedback on the
correspondence between generated showers and input condi-
tions, we exploit the concept of auxiliary tasks [39] together
with domain-related constraints. The current work mainly
describe the final optimized version of the 3DGAN model
while additional details about the development process can
be obtained from [31]. The 3DGAN is implemented using
Keras 2.2.4 [40] deep learning python library with Tensor-
flow 1.14.0 [41] as a backend. The code is available at https://
github.com/svalleco/3Dgan/tree/Anglegan.

4.1 Pre-processing

One of the main challenges for generating scientific data
through techniques developed for computer vision lies in the
inherent difference between the dynamic ranges of the pixel
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Fig. 3 The cell energy distribution for GEANT4 MC events (red) and
GAN generated events after a pre-processing by taking the power of
pixel intensities: power = 0.85 (blue); power = 0.75 (green); power = 0.5
(cyan); power = 0.25 (magenta)

intensities. The pixel intensities in a typical RGB image have
a range from 0 to 255 while the energy deposited in detec-
tor cells covers more than 10 orders of magnitude. Some of
the previous efforts [27] map the pixel intensities to a simi-
lar range of intensities or perform normalization [23,29], we
perform only limited pre-processing. We investigated differ-
ent procedures aimed at reducing the dynamic range. Initial
tests conducted taking the logarithms of the pixel intensities,
resulted in the generation of highly distorted images. Taking a
less drastic approach we calculate the power function of pix-
els intensities using an exponent smaller than one. A smaller
exponent results in faster convergence but greater distortion
in generated images, while a larger exponent slows down con-
vergence yet retaining image quality. Figure 3 shows how the
value of the exponent (p) affected the distribution of the gen-
erated pixel intensities for the individual cells. The value of p
is adjusted to an optimum value of 0.85, where a faster con-
vergence is achieved while retaining an acceptable level of
accuracy at both ends of the spectrum. The generated images
are then post-processed by simply taking the inverse of the
power function.

4.2 Architecture

The 3DGAN architecture is presented in Fig. 4. The genera-
tor network implements stochasticity through a latent vector
of 254 random numbers drawn from a Gaussian distribu-
tion. The generator input includes EP and θ concatenated
to the latent vector. The generator network then maps the
input to a layer of linear neurons followed by seven 3D con-
volutional layers. The discriminator input is an image while
the network has only four 3D convolutional layers. Batch
normalization [42] is performed after all except the first con-
volutional layer in the discriminator and the last two layers

in the generator. The leakyRelu [43] activation function is
used for the discriminator hidden layers while the Relu [44]
activation function is used for the generator layers to induce
sparsity. The discriminator uses dropout [45] of 20% for reg-
ularization and a single average pooling layer after the last
convolutional layer since additional pooling layers result in
substantial loss of performance.

The discriminator network has two trainable outputs: a
sigmoid neuron predicts the OG AN and a linear neuron OP

predicts EP . The other two additional outputs are simple
analytical measurements: Osum is the total deposited energy
and Oθ is the measured incident angle (geometrical angle of
the shower energy depositions). These non-trainable outputs
represent physics-based constraints.

4.3 Loss function

The 3DGAN loss function is the weighted sum of individual
losses pertaining to the discriminator outputs and constraints.
The domain-related constraints are essential to achieve a high
level of agreement over the very large dynamic range of the
image pixel intensity distribution. Equation 1 presents the
discriminator loss related to the output OG AN as LG , the loss
related to the output Osum as L E , the output Oθ as Lθ and
the predicted EP as L P balanced by corresponding weights
W .

L3DG AN = WG LG + WP L P + Wθ Lθ + WE L E . (1)

The L P and Lθ both provide feedback on how well the
generated images correspond to the input conditions. The loss
L E ensures energy conservation. LG is evaluated as binary
cross-entropy. L P and L E are implemented on mean percent-
age errors, while Lθ as mean absolute error. The generator
loss is implemented as the inverse of LG together with the
auxiliary losses and constraints. The weights (presented in
Appendix A) are considered as hyperparameters and chosen
to balance the loss ranges and their relative importance (in
this case the loss LG is given higher priority as compared to
the auxiliary losses).

4.4 Training

The 3DGAN training is inspired by the concept of transfer
learning. The GAN could not converge for the highly com-
plex multivariate distribution directly thus a two-step train-
ing is applied. In order to successfully train the network, we
reduce the complexity by training the GAN first for elec-
tron events having EP ∼ U (100, 200) GeV. After the GAN
converges, the same trained model is further trained with the
data from the whole EP range of EP ∼ U (2, 500) GeV.
The first training step exploits 137, 342 electron events. The
GAN is then trained for the larger EP range, utilizing a much
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Fig. 4 The 3DGAN architecture, see the text for details

larger size of training data (400 k events) from each parti-
cle type (electrons, photons, and neutral pions). The train
and test losses are evaluated on the data divided in a ratio
of nine to one. The first training step is run for 130 epochs
(2 h per epoch on GTX 1080) while the second step is run
for 30 epochs (4 h per epoch on GTX 1080). Finally, the
best network is selected according to the minimum relative
error for the sampling fraction (SF) related to the mapping
of total deposited energy (Esum) to EP , on additional vali-
dation data (20k events are filtered around specific EP bins).
This last step is aimed to further improve the accuracy for
the SF .

The training process for each epoch is presented by the
Algorithm 2. For each training iteration the discriminator is
trained twice: once on a batch of real data, and next on a
batch of generated data. For a balanced approach, the gen-
erator is also trained twice while freezing the weights of
the discriminator. The RMSProp [46] optimizer is utilized
to train the network through Stochastic Gradient Descent.
Figure 5 shows the LG losses associated to the discrimina-
tor (blue) and the generator (orange). It can be seen that the
loss for the discriminator increases, while the loss for the
generator increases till both losses are converged at around
0.6 (log(4)). At this point, the OG AN output for both the
data (red) and the GAN images (blue), shown in Fig. 5
right panel has similar distributions centered around 0.5.
The discriminator is indeed confused and the GAN con-
verges.

Algorithm 2: Training the 3DGAN model
initialize
for number of epochs do

#Training
for all batches in the training data do

get real EP , θ , Esum and image batches from data
latent batch ∼ N (0 , 1)

generator input = EP ++ θ++ latent
generate fake events for the same EP and θ

train discriminator on real batch
train discriminator on fake batch
for 2 times do

latent batch ∼ N (0 , 1)

generator input = EP ++ θ++ latent
use real EP and θ for fake events
train the generator (maximizing the discriminator loss
on the generated images)

end
# Testing
Evaluate discriminator on real and fake data
Evaluate generator using the inverse of discriminator loss
on generated data

end
end

4.5 Generation time

The 3DGAN greatly reduces the simulation time. Table 2
compares the time taken to generate a shower using Monte
Carlo and GAN. An average shower from the given EP range
can be simulated using GEANT4 in about 17 second per
particle on an Intel Xeon 8180. The average inference time
for GAN is around 16 msec for the same hardware. Recent
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Fig. 5 The LG losses for the generator (blue) and the discriminator (orange) converge for the first training step with restricted EP range. (Left)
training losses. (Middle) test losses. (Right) the discriminator output OG AN for MC (red) and GAN (blue) images is similar and the discriminator
is confused

Table 2 Inference timing for
3DGAN

Method Platform Time/shower (msec) Speedup

Monte Carlo 2S Intel Xeon Platinum 8180 17000 1.0

3DGAN CPU 16 1063

3DGAN GPU GTX 1080 4 4250

advances in computing speeds are mostly directed towards
parallel processing due to limitations on the transistor sizes.
Deep learning models have an additional advantage of being
able to exploit parallel processing on multi-core hardware,
attaining further speedup. Traditional simulation approaches
based on Monte Carlo involve sequential processes. Cur-
rently, it is not possible to run a full Geant4-based simulation
on GPUs while GAN can exploit the distributed comput-
ing to decrease the inference time to around an average of
4 ms/particle on GeForce GTX 1080 for batch sizes 32, 64,
128, and 256. The speedup of many orders of magnitude is
achieved.

5 Results and discussion

The performance assessment for GAN models is a subject of
much debate and diverse viewpoints [47]. The GAN evalua-
tion is nontrivial due to the intractable probability densities
and thus is mainly sample-based and application-specific. We
have validated the realism and diversity of our generated data
from several independent viewpoints, such as the output of
a third-party neural network and image quality assessment
as presented previously [31] but the current work focuses
mainly on the physics-based comparison to a Monte Carlo
simulation.

The particle showers have specific characteristics due to
the underlying physics processes, depending on the detector
material and the type, energy, and direction of the particle
initiating the shower. We validate these characteristics as a
function of our inputs by dividing the data in 5 GeV EP and
0.1 radian (5.73◦) θ bins. To ensure an unbiased comparison,

Fig. 6 Example of a random GEANT4 electron event (left) with EP =
202.78 GeV and θ = 91.12◦ vs. an event generated by GAN (right) for
the same EP and θ values

GAN events are generated with the same EP and θ values
as the GEANT4 events. The bin-wise comparison of each
physics-based feature, results in hundreds of histograms, for
each particle type. We present here a selected subset of the
detailed and exhaustive validation that we consider to be the
most essential and representative of performance. The results
presented in this section are also alternated among different
bins and particle types, in order to convey the overall level
of accuracy.

5.1 Visual inspection

An initial qualitative assessment can be performed by com-
paring the events visually. Figure 6 shows an example of a
3D electron event. The event on the left has been generated
by GEANT4, while the event on the right has been generated
by the GAN for the same input values. It can be observed
that both events have very similar visual characteristics while
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Fig. 7 Projections of Monte Carlo vs. GAN events on the YZ, XZ and
XY planes. (Top) Electron with EP = 6.87 GeV and θ = 95.86◦.
(Mid) neutral pions with EP = 97.72 GeV and θ = 62.16◦. (Bottom)
photons with EP = 403.62 GeV and θ = 116.33◦

retaining uniqueness for individual cell deposits. The graph-
ical projections on different planes further illustrates the
shower correlation to the incident angle (θ ) and energy (EP ).
Figure 7 compares the projections of the GEANT4 showers
to the corresponding GAN showers. The top panel presents
electron events from the lowest limit of the EP spectrum.
The mid panel shows neutral pion events, while the bottom
panel display photons events, with the EP and θ from differ-
ent regions of the spectrum. The GAN images appear similar
to the respective GEANT4 images with the deposited cell
energies correlated to the input conditions while retaining
stochasticity, for all particle types and input conditions.

5.2 Particle shower features

Shower shapes define the structure of the deposited energy
distribution, as a shower develops through the detector mate-
rial. The profiles of the energy deposition along the detector
axes are important observables related to the shower geome-
try and crucial for most particle identification techniques. We
would like to point out that these geometrical features are not
included in the 3DGAN loss function as presented in Eq. 1

and are learned by the GAN implicitly. Figure 8 presents the
shower shapes for the X , Y and Z axes as a function of θ

and EP . In order to summarize the performance for all par-
ticle types, we present a different particle in each column:
the shapes for electrons in the first column from the left,
the photons in the middle column, and the neutral pions in
the rightmost column. The top row presents the transverse
shape distribution for the Y axis corresponding to the differ-
ent θ bins (with random EP ) since the Y axis profile is most
relevant for θ . The plots are displayed in the log scale to
enhance the sparse distributions along the tails. The second
row presents the shapes along the Z axis (longitudinal direc-
tion) in linear scale for the different EP bins (with random
θ ). The network is able to reproduce a similar shape distri-
bution as the GEANT4 showers, furthermore, the network
can correctly relate it to the inputs. In the transverse profiles,
some discrepancies are observed in the log scale. These dis-
crepancies occur at the volume edges, where smaller energy
depositions occur. This region is also highly sparse and out-
side the main body of the shower with expected energies well
below 0.1 MeV, which is comparable to the pedestal values.

Moments are another aspect of the shower geometry. The
GEANT4 showers are all centered on the barycenter of the
energy deposition by design thus the first moment (M1)
defining the shower center is easily replicated by GAN.
Therefore, we present here the performance related to the
second moment (M2) having a more complex distribution
depending on both EP and θ . Figure 9 left panel presents
the distribution of the second moment or the width of the
shower for electrons. Here it can be appreciated that the
GAN has learned the non-Gaussian width distribution. The
mid plot shows the difference between internal correlation
present between the shower inputs (EP and θ ) and the shower
features (shapes, moments, total deposition, hits, and ratios
of energy deposition in different parts of the shower) for
GEANT4 and GAN photons. The GAN showers are able to
reproduce the internal correlations present between the dif-
ferent shower observables. The right panel displays the close
agreement between the θ measured from GEANT4 neutral
pion events and that measured from the GAN events gener-
ated for the same θ values.

The energies deposited in detector cells are the pixel inten-
sities of our images. The images are mostly empty, cen-
tered around a shower. The energies are deposited only in
around 20% of the cells. Figure 10 left panel shows the
level of sparsity (S) as the fraction of cells with non-zero
energy deposition (1 − S) against the threshold used for cut-
off. The GAN images have similar sparsity distributions as
the GEANT4 events, without specifically constraining the
image. The distributions for cell energy depositions (photon)
shown in the mid panel have a similar shape for GEANT4
and GAN events. We had reported that a sharp, vertical drop
around 0.2 MeV was present in the GEANT4 cell energy dis-

123



  386 Page 10 of 18 Eur. Phys. J. C           (2022) 82:386 

Fig. 8 Shower Shapes for the GEANT4 vs. GAN events as a function
of inputs. (Top row) transverse shower shapes along the Y axis: (left)
electrons with θ in the 62◦ bin; (mid) photons with θ in the 90◦ bin;
(right) neutral pions with θ in the 118◦ bin. (Bottom row) longitudinal

shower shapes: (left) electrons with EP in the 100 GeV bin; (mid) pho-
tons with EP in the 200 GeV bin; (right) neutral pions with EP with
the 400 GeV bin

Fig. 9 The GAN vs. GEANT4 shower features. (Left) the shower
width (M2) along the Y axis for electrons (k denotes p-value for the Kol-
mogorov test). (Mid) difference between internal correlations present

between physics features and the inputs for photons. (Right) the corre-
lation between the measured angle from GEANT4 events and the GAN
events generated for the same θ values for the neutral pions

Fig. 10 Shower features related to the pixel intensities (cell depositions) for the GEANT4 (red) vs. GAN (blue) events. (Left) sparsity level as a
function of cutoff threshold for electrons. (Mid) distribution of cell energy deposits for photons. (Right) sampling fraction for neutral pion showers
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Fig. 11 The GAN could successfully learn the photon features after
further training a network generating electrons with reduced EP range.
(Left) the SF for photons is lower than electrons both in GEANT4
events and GAN events. The bottom panel shows the relative error
(δSF ) for the sampling fraction. The k denotes the p-value from the Kol-

mogorov test. (Right) the distribution of the energy fraction deposited
in the first part of the shower (R1) for the electron and photon showers.
The distribution for R1 < 0.1 (zoomed in the inset) has very different
distributions for electrons and photons. The GAN also demonstrates a
similar behavior

tribution that the GAN could not learn, yet tried to smooth
out in the best manner [18]. Since then a recent work [28]
also recognizes this feature and tries to replicate the effect
by additional post-processing on the generated images. They
note that their network improves the performance on the sim-
ulation of the correct pixel distribution at the cost of reduced
performance for other features. We also report a reduction
in performance when constraining the pixel intensity distri-
bution through our loss function. We believe in the future
the concept of ensembling [48] can be used to employ two
networks to generate the pixels above and below this region.
The sampling fraction (SF) is an important characteristic of
the detector response. Figure 10 left panel presents SF for
neutral pions. The SF is presented as a function of EP . There
is a close agreement for most of the input range with some
discrepancies at low energies, where events are highly sparse
with low cell energy deposits.

The characteristic features for the electromagnetic show-
ers are faithfully reproduced in the GAN-generated showers
for different particle types. We test if the generated show-
ers for different particle types are mutually distinguishable
through their corresponding features. This is crucial as the
final networks for all particle types, use the same initial
weights trained to generate electron-induced showers for a
reduced energy range. The photon-initiated showers have
some minor differences from electron-initiated showers. The
photons penetrate more distance into the detector material
before starting to interact [49,50]. This effect can be evalu-
ated by studying the SF and the fraction of the total energy
deposited in the first part (8 cells along the Z axis) of the
shower. Figure 11 left panel shows the profiles of SF as a

function of EP for the central region of the spectrum. The
SF for photons is lower than electrons for a similar value of
EP . The right panel compares the distribution of the energy
deposited in the first part (first 8 layers) of the shower for
electrons and photons. The photons present more entries for
the region where the fraction of the total energy deposited in
the first part of the shower (R1 = E1−8/Esum) is less than
10%. The GAN-generated photons clearly demonstrate these
identifiable features.

5.3 Some empirical tests for GAN evaluation

Some important criteria for the evaluation of the GAN model
involve studying GAN failure phenomenon, like mode col-
lapse, memorization, and over-training. We evaluate the
3DGAN model through visual assessment of the projections
of the GAN-generated events, as described in Sect. 5.1. The
validation is inspired by tests based on the Birthday Paradox,
as suggested for GAN evaluation [47]. The distance between
the GEANT4 image and the corresponding GAN-generated
image is measured in terms of Euclidean distances in the
pixel space since the data set is similarly aligned and centered
around the shower barycenter. The 3DGAN conditions the
generated images on inputs (EP and θ ) and thus the compar-
ison takes the conditioning into account by sorting the data in
bins based on the inputs, similar to comparisons conducted
in Sect. 5.2. The training dataset has random inputs sampled
from a uniform distribution while in the case of GAN any
number of images can be generated for a particular set of
inputs (Fig. 12).
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Fig. 12 Projections of random Mote Carlo events vs. the closet GAN
event among the 2000 events generated for the same EP and θ . (Top)
EP = 101.63 GeV and θ = 115.58◦. (Mid) EP = 196.4 GeV and
θ = 92.17◦. (Bottom) EP = 402.68 GeV and θ = 63.32◦

The first test that we conduct aims to identify any overfit-
ting or memorization of the training data. The test utilizes
the training data as the aim is to understand if the GAN
is simply memorizing data samples. The test is performed
with images from 50 GeV, 100 GeV, 200 GeV, 300 GeV,
400 GeV, and 500 GeV bins, further sorted for θ equal to
62◦, 90◦, and 118◦ (a total of 18 bins). We randomly sample
10 images from each selected bin of the GEANT4 training
data and then generate 2k events using GAN corresponding to
each GEANT4 image. The distances between the GEANT4
image and the corresponding 2k GAN events are computed.
The GEANT4 images are visually compared to the 10 clos-
est GAN images and none of the images are found to be
duplicates. Thus indicating that the GAN is not memorizing
data images and is able to generate random samples from a
similar distribution. Figure 13 compares examples of some
GEANT4 images against the closest GAN images for a few
bins. It can be seen that the GAN images are distinct from the
respective GEANT4 images and cannot be regarded as copies
or even near-copies. The same performance is observed for
all bins. We also compare each set of the 2k GAN images
against each other. Duplicates in the GAN-generated images
would indicate a loss of diversity or over-fitting. Figure 12
shows examples of the most similar GAN images generated
for the same inputs. The images appear unique, with a dis-

Fig. 13 Most similar pairs of electron events among the 2000 events
generated by GAN for the same EP and θ . Projections on the YZ, XZ
and XY planes. (Top) EP = 104.73 GeV and θ = 116.64◦. (Mid)
EP = 200.68 GeV and θ = 91.57◦. Bottom EP = 403.36 GeV and
θ = 64.48◦

Fig. 14 Average of 200k events for the Monte Carlo vs. GAN presented
as projections on the YZ, XZ and XY planes

tinct pattern of energy depositions and we do not observe any
duplicates. The above tests indicate that not only is GAN not
memorizing the data but also generates diverse images con-
ditioned on the same EP and θ .

Figure 14 compares the average of 200k GEANT4 elec-
tron events with 200k GAN events. Cells always denot-
ing zero energy deposition would indicate mode collapse
where pixels are stuck at zero. This behavior is not observed
except for a few pixels along the transverse edges of the
volume where the sparsity is very high and depositions are
quite small. Some differences in the distributions can also
be related to the differences in the cell pixel intensity dis-

123



Eur. Phys. J. C           (2022) 82:386 Page 13 of 18   386 

Fig. 15 Shower Shapes for GEANT4 vs. GAN charged pion events along X (left), Y (mid) and Z (right) axes with random EP and θ

Fig. 16 Shower moments along Y axis for GEANT4 vs. GAN charged pions. (Left) M1Y (shower center). (Mid) M2Y (shower width). (Right)
M3Y (shower skewness)

tributions for low energies as observed in Fig. 10 middle
panel. The effect is most pronounced for the low depositions
occurring near the volume edges. The distributions for the
GAN-generated images have a slight loss in the diversity for
this region but no significant mode collapse is observed.

6 Simulating charged pions

The charged pions deposit a much smaller part of their ener-
gies in the ECAL while most of the energy is deposited in
the HCAL. The current project is only limited to the ECAL
data due to the limitation of the computing resources, thus the
work for charged pion is only a preliminary study. A more
accurate approach will also need to incorporate data from
HCAL. We will present the results of our study to lay the
foundation for any future work.

The transfer learning approach could not be extended to
charged pions as the showers have very different distribu-
tions. The GAN is trained for the full EP range of the charged
pions, directly from random weights, for about 200 epochs
using (300k) events. There is a great diversity in the charged
pion events, and most of the events have low energy depo-
sition in the ECAL. The data also contains some spurious
events with little or no energy deposition. Therefore, data
is subjected to a threshold of 0.2 GeV for the total energy
deposited in the event aimed at removing these events. This
rejection also results in removing low EP events. Future
efforts involving HCAL might alleviate the need for this cut.

Since visual inspection will not be helpful to understand
the performance, due to high variance in the showers thus
we present only the distributions of physics-based features.
Figure 15 presents the overall shower shapes in log scale.
The shape distributions along the X and Z axis show slightly
better performance as compared to the Y axis, probably due
to the higher variance present in this dimension. Figure 16
compares the distribution of the first three moments defining
the shower center, width, and skewness along the Y axis,
display similar distributions.

Figure 17 left panel displays the sampling fraction for
GEANT4 and GAN charged pion events. It can be seen that
there is a difference between the means of the two distribu-
tions, while the shaded area representing the standard devi-
ation shows some overlap. The mid panel presents the dis-
tribution of the pixel intensities that are energies deposited
in the calorimeter cells. There is a deterioration in perfor-
mance as compared to other particles, particularly the effect
of the presence of a cut around 0.2 MeV (see Sect. 5) is more
pronounced. The left panel presents the difference in inter-
nal correlations between physics-based features like shapes,
moments, hits, EP and θ for the GEANT4 and GAN events.
There is less than 10% error for the correlations, even given
the highly diverse and incomplete showers. In order to convey
an idea of the diversity present in these showers, we investi-
gate the barycenters of the shower energy depositions along
the longitudinal axis (Z) for electrons and charged pions, as
a function of EP . Figure 18 compares the first moment for
the GEANT4 and GAN events. The charged pion showers
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Fig. 17 Shower features for GAN vs. GEANT4 charged pion events. (Left) SF as a function of EP with shaded area representing standard
deviation. (Mid) pixel intensities with log yscale. (Right) difference between internal correlations among shower features

show greater diversity and depth as compared to electrons,
also apparent in the GAN events.

7 Rare modes

The discriminator assigns a higher probability of being real-
istic to images exhibiting features that the GAN cannot repro-
duce correctly . We visually investigate such events having
OG AN value greater than 0.6, with the help of graphical pro-
jections. It is observed that most of these events manifest rare
modes in data like pre-showering, late showering, and incor-
rectly centered events. As other modes are found to be even
rarer, thus only the early showering events are further investi-
gated. Figure 19 top row presents an example of a GEANT4
pre-showering event. The particles that start depositing their
energies before entering the calorimeter volume have mul-
tiple particles striking the detector surface, thus resulting in
multiple branches. Only a few percent of the Monte Carlo
samples present such behavior and the percentage decreases
with increasing EP .

Figure 19 bottom row presents an example of a pre-
showering event generated by GAN. It must be mentioned
here that in the first training step more such events are gen-
erated. The performance for these rare modes deteriorates
with further training for the full EP range due to a decrease
in the percentage of such events for higher energies. In order
to further improve the performance, methods like the ensem-
bling [48] can be explored.

8 Training with GAN data

We present a practical use case for the GAN-generated
events. Triforce [19] is a deep learning model developed
by a third-party study for the identification of particle type
and primary energy for particle showers from the calorimeter
dataset used for 3DGAN. We had previously employed the
pre-trained Triforce DNN model for classification and regres-

Fig. 18 The distribution for the first moment along the Z axis (Mz1)
for electrons and charged pions. The barycenter of deposition along
the Z axis shows very different distributions for both particles with
the charged pion showers starting much later. The p-value from Kol-
mogorov test is represented as k

Fig. 19 Graphical projections for the XY and X Z planes for MC
events with high discriminator probability of being real images; (top)
GEANT4 event; (bottom) GAN event

sion of the GAN events [18] and proved that the type and the
primary particle energy for the GAN-generated events was
correctly predicted.

Triforce can also be considered as an example of a typi-
cal reconstruction tool used in HEP simulation. We test the
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Fig. 20 Performance of the network trained on GEANT4 electrons and charged pions (left) vs. that of the network trained GAN electrons and
GEANT4 charged pions (right). The profile plot for true and predicted EP for the GAN and Monte Carlo samples are very similar. There were
9834 events for each type

Table 3 Triforce classification results

Trained on Accuracy for MC Accuracy for GAN

Monte Carlo e− 0.9928 ± 0.014 0.9992 ± 0.014

GAN e− 0.9884 ± 0.014 0.9998 ± 0.014

performance of our 3DGAN generated images for training
this tool. The Triforce requires two types of particles (elec-
trons and charged pions) for training. We train the Triforce
GoogleNet model from scratch on GEANT4 electron events
and then on GAN electron events. The charged pion events
in both trainings are those generated by the GEANT4. Fig-
ure 20 presents a comparison for the primary particle energy
regression for the network trained on GEANT4 against the
network trained on GAN electrons showing a similar perfor-
mance. The particle type classification accuracy presented in
Table 3 also manifest similar values. Thus we show that the
GAN simulation can be used to replace the GEANT4 simu-
lation without any loss in the classification accuracy, for the
specific use-case.

In the context of GAN evaluation, the GAN-train and
GAN-test are two very interesting concepts [51]. The accu-
racy of a classifier network trained on GAN generated events
and tested on data events is termed as GAN-train. When GAN
images are high quality and as diverse as the training set,
the score on the validation set should be similar to training
accuracy. A lower accuracy would indicate that GAN images
are not covering the entire distribution of the training data.
GAN-test is the accuracy of a network trained on true data
and validated on GAN images. A lower accuracy would indi-
cate that the GAN images are not sufficiently realistic while
a higher accuracy could be related to mode dropping. The
3DGAN shows similar performance as the GEANT4 train-
ing data and thus the results of this test can also be regarded
as proof of high accuracy and diversity of the GAN generated
events.

9 Conclusions and future suggestions

Simulation is crucial for most HEP experiments. Monte Carlo
methodology can successfully simulate particle interactions
at the cost of time and resources. Fast simulation is a set of
faster alternatives that have been successfully used to replace
detailed simulation where some loss in accuracy can be
acceptable. Recent advances in deep learning have also had
an impact on the HEP community and many interesting appli-
cations including simulation, were attempted. Deep networks
can potentially simulate raw detector data without requiring
the formulation of the internal processes. The 3DGAN is an
effort aimed to simulate the detector output, as images gen-
erated by a neural network. These images are conditioned on
a number of variables, having large dynamic range of values.
We exploit a multi-step training process, resulting in accu-
rate simulation for electrons, photons, and neutral pions. The
accuracy for individual data features varies but is within 10%
of the GEANT4 simulation for all quantities. Preliminary
work on charged pion simulation is also promising where
the ECAL contains only partial showers, manifesting higher
variance. The GAN is able to reproduce the essential features
of a charged pion shower. Another exploratory study demon-
strate the possibility of generating rare modes present in the
data. We further provide an example of a practical use of
the GAN-generated events. The GAN simulated events are
able to train a third-party particle classification and regres-
sion tool for the correct classification of the GEANT4 events.
The response of the tool trained on GAN data is similar to
that trained ones GEANT4 data. Finally, we would like to
state that the GAN-generated showers are simulated with a
speedup of three orders of magnitude.

We would like to point out some insights from our endeav-
our that maybe helpful in the context of any future work. For
the current application certain domain-related features like
the total deposited energy need to be hardcoded in the loss
function while some other features can be learned implicitly.
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These features include geometrical properties such as shapes
and moments, level of sparsity, pixel intensity distribution,
and correlations among the different features as well as the
inputs. The model can learn complex distributions for indi-
vidual features and the only part where the GAN struggles is
reproducing the sharp drop in pixel intensities as discussed in
Sect. 5. Apart from that, the sparse peripheral regions of the
images are more difficult to be correctly generated, and there
is some loss in performance for very low EP particles. The
current training allows learning of an average response for
the total deposited energy since the training relies on direct
comparison for small data batches. We believe that a better
formulation of the loss might result in better agreement for
future efforts. The preliminary work on charged pion and rare
mode simulation shows great promise. The charged pion sim-
ulation can be improved by including the HCAL data. The
generation of rare modes can benefit by exploring methods
like the ensembling approach, where multiple networks can
be trained simultaneously for different modes present in the
data. The current effort proves that GAN can generate events
conditioned on multiple continuous variables that can be fur-
ther adapted according to the requirements of integrating into
a practical simulation. The inputs needed for conditioning the
showers can be studied in detail. A cutoff threshold for cell
energies can be identified, as well as, the most crucial tests
for validation. The speedup can also be further increased by
exploiting parallel hardware [52] that cannot yet be done for
the sequential logic employed by the standard Monte Carlo
tools. A distributed training [53] will be most essential for
future generalization of the approach through hyperparame-
ter scan.
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Appendix A: Hyper-parameters for 3DGAN

Table 4 presents the values for the different hyperparameters
selected for 3DGAN.

Table 4 Hyperparameters for 3DGAN fully optimized version

No. Param Value Description

1 Epochs 130 for step 1 and 30 epochs
for step 2

Number of iterations through entire training data

2 Batch size 64 Number of samples in a minibatch

3 Latent size 254 Size of latent vector sampled from Gaussian with
mean = 0 and std = 1

4 Discriminator layers 4 Convolutional layers in the discriminator

5 Generator layers 7 Convolutional layers in the generator

6 Optimizer RMSprop [46] Type of optimizer

7 lr 0.01 Learning rate

8 Pre-processing cell intensities
by power

0.85 Taking a power of cell intensities

9 Pre-processing target E p Scaling by 1/100 Dividing E p by a factor of 100

10 WG 3 Weight for loss associated to real/fake probability

11 WP 0.1 Weight for loss associated to auxiliary energy regression
task

12 WE 0.1 Weight for loss associated to sum of intensities

13 WA 25 Weight for loss associated to measured angle
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