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Abstract: We present the 3DGAN for the simulation of a future high granularity calorime-
ter output as three-dimensional images. We prove the efficacy of Generative Adversarial
Networks (GANs) for generating scientific data while retaining a high level of accuracy
for diverse metrics across a large range of input variables. We demonstrate a successful
application of the transfer learning concept: we train the network to simulate showers for
electrons from a reduced range of primary energies, we then train further for a five times
larger range (the model could not train for the larger range directly). The same concept
is extended to generate showers for other particles (photons and neutral pions) depositing
most of their energies in electromagnetic interactions. In addition, the generation of charged
pion showers is also explored, a more accurate effort would require additional data from
other detectors not included in the scope of the current work. Our further contribution
is a demonstration of using GAN-generated data for a practical application. We train a
third-party network using GAN-generated data and prove that the response is similar to a
network trained with data from the Monte Carlo simulation.

The showers generated by GAN present accuracy within 10% of Monte Carlo for a
diverse range of physics features, with three orders of magnitude speedup. The speedup for
both the training and inference can be further enhanced by distributed training.

1Corresponding author.
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1 Introduction

Particles undergo complex stochastic interactions upon contact with materials. The mod-
eling of these interactions is further complicated by the large number of secondary particles
involved. The Monte Carlo simulation depends on repeated random sampling to produce
a snapshot of the particle interactions with a detector. Simulation is crucial in most High
Energy Physics (HEP) experiments and is extremely resource-intensive. More than 50% of
the current computing resources of the HEP community are utilized in simulation alone [1].
In the future that need will increase further due to the higher luminosity and granularity of
future experiments, and it will not be possible to create a corresponding increase in com-
puting resources. The main motivation for the fast simulation is to incorporate other faster
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alternatives to decrease the cost of future experiments. Current fast simulation approaches
are mostly based on parametrization [2–4] or lookup table [5] approaches, providing between
10 and 100 times speedup while achieving different levels of accuracy.

Generative Adversarial Network (GAN) [6] is a training paradigm for deep genera-
tional neural networks. Other approaches for generative networks include Variational au-
toencoders [7] and autoregressive models [8], etc. All of these approaches have their own
strengths and weaknesses. The autoencoder-based methods often produce blurry images
while the pixel-based methods are not only slow to evaluate but also suffer from limited
capacity. The GAN approach has been able to demonstrate highly realistic and sharp im-
ages as compared to other approaches [6]. There have been many recent variants of the
GAN methodology, such as WGAN [9], StackGAN [10], and Progressive GAN [11] further
enhancing the quality and resolution of generated images. The generative problem often
involves intractable probability densities and thus methods involving likelihood estimates
are not practical for most purposes. GAN can learn a distribution implicitly since it does
not rely on the explicit computation of probability densities. Therefore the GAN approach
is suitable for the generation of a wider range of data such as musical notes [12], natural lan-
guage [13], medical data [14, 15], natural scenes [6], faces [11] and image denoising[16]. Since
simulation is essentially a generative problem thus a successful image generation model can
be exploited in this domain. A potential advantage of deep generative models is that the
generated distribution does not have to be explicitly defined, and thus even the real data
from a detector can be simulated directly.

We leverage the GAN methodology to generate HEP calorimeter output. Calorimeters
are special HEP detectors that record particles through the measurement of the energies
deposited by them. These detectors can be regarded as huge cameras taking pictures of
particle interactions. The Monte Carlo simulation for the detector output is extremely
precise but highly expensive both in regards to the simulation time and resources. For
most HEP experiments the calorimeter is a simulation bottleneck, consuming, for example,
more than 80% of the simulation time for the ATLAS experiment [2]. We generate the
calorimeter cells as monochromatic pixelated images with the cell energy depositions as our
pixel intensities.

The 3DGAN [17–19] is the first effort where the detector output is generated retaining
correlations in all three spatial dimensions. We employ three-dimensional convolutional
layers in our network, while previously detector output was generated either as a two-
dimensional image or a concatenated set of two-dimensional images. We demonstrate our
approach for a high granularity detector with higher spatial resolution and thus conse-
quently much larger image dimensions than previous such efforts. We pre-process the cell
depositions by taking a power less than one, thus decreasing the dynamic range of corre-
sponding pixel intensities and improving the convergence. We employ a multi-step training
process to generate images, from a complex multivariate distribution, for a large range of
input conditions. We also perform extensive validations from diverse viewpoints including
vision and deep learning, as well as, physics-based evaluation. The network scores highly
on all the platforms both for the pertinence to the training data and for maintaining suf-
ficient diversity. The details of the network development and the validation from different
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perspectives have been presented previously [18]. The current work is geared more towards
the physics community and thus is limited to only physics-based validation. Previously we
simulated electrons coming with energies from a wide spectrum by employing our multi-
step training. Now we successfully extend the same approach to simulate additional particle
types such as photon and neutral pion where most of the energy is lost in electromagnetic
interactions. We perform an additional investigation to prove that the GAN could accu-
rately reproduce the signature features of a particular particle type. We also undertake
some preliminary exploration of the charged pion simulation and generation of rare events.
We finally present a successful practical example of using the GAN-generated data in a
typical reconstruction tool, demonstrating that the GAN-generated images could provide
similar performance as Monte Carlo images.

The current paper is organized as follows. Section 2 presents the overview of past
efforts for fast simulation of HEP calorimeters exploiting deep neural networks. The next
section (Section 3) describes the Monte Carlo training dataset. The basic structure of the
calorimeter and the important features of our data are discussed. Section 4 describes how
the GAN approach is adapted to the problem of HEP detector simulation. The approach has
been exploited for the generation of particles with predominantly electromagnetic showers.
The results for comparison to Monte Carlo simulation are presented in Section 5. Some
preliminary work is also carried out for the charged pion simulation as presented in Section 6.
Another study exploring the simulation of rare modes is presented in Section 7. Section 8
presents a practical application for the use of GAN-generated data. Finally, Section 9
summarises the main contributions and presents some future suggestions.

2 Previous Work

Fast simulation is already incorporated in existing experiments through approaches like
parametrization [2–4, 20] and Lookup tables [5], etc. Usually a part of the simulation is
replaced by fastsim where some tradeoff between speed and accuracy can be feasible. Fol-
lowing the same concept deep learning has also been explored to generate simulation data.
Fast simulation using neural networks can be regarded as a special type of parametrization,
with the weights of the neural network as parameters, optimized through a training process.

The GAN technique is an unsupervised training methodology. The power of GAN
lies in the fact that the target distribution does not have to be tractable and instead the
training relies on a Minimax game between a discriminator (D) network and a generator (G)
network. The discriminator is trained to differentiate between the target and the generated
distributions, while the generator is trained to confuse the discriminator. Both the networks
compete with each other till the generator manages to completely confuse the discriminator,
given enough capacity for both models. At this point, the GAN is said to have converged.

Calorimeter data have been simulated through deep generative networks in a num-
ber of recent approaches as presented in Table 1. LAGAN [21] was one of the first fast
simulation approaches based on deep learning. A simplified calorimeter was simulated
as 2D jet images for high energy W bosons (signal) and generic quark/gluon jets (back-
ground). CALOGAN [22] employed the LAGAN architecture to generate sets of three two-
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Table 1. Calorimeter simulation with deep learning

No.Model Algorithm Architecture Condition Output

1 LAGAN [21] (2017) GAN 2D Locally
connected

Particle Type
as discrete
labels

25× 25

2 CALOGAN [22]
(2017)

GAN 2D Locally
connected

EP ∼ U(1, 100)

GeV
layer1: 3 × 96

layer2: 12× 12

layer3: 12× 6

3 3DGAN initial pro-
totype [17] (2018)

ACGAN Conv3D EP ∼ U(2, 500)

GeV
25× 25× 25

4 ATLAS [23] (2018) WGAN
and
VAE

Dense EP ∼ U(1, 260)

GeV
vector of 266
cells.

5 LHCb [24] (2019) WGAN Conv2D Five variables
related to
position and
momentum

30× 30

6 HGCAL [25] (2019) WGAN Conv2D
and Locally
connected

EP and initial
impact position
(x,y)

Concatenation
of 7 (12 × 15)
layers

7 3DGAN [19] (2019) ACGAN Conv3D EP ∼ U(2, 500)

GeV and θ ∼
U(60◦, 120◦)

51× 51× 25

8 DijetGAN [26]
(2020)

WGAN Conv2D vector of 7 jet
variables.

9 ILD [27] (2021) GAN,
WGAN
and
BIB-AE

Conv3D EP ∼
U(10, 100)

GeV)

30× 30× 30.

dimensional images that were then concatenated to obtain the output for a three-layered
simplified calorimeter conditioned on the primary particle energy (EP ) ranging from 1−100
GeV. Since then, there have been other demonstrations employing deep learning for HEP
calorimeter simulation. Deep learning has been used for fast simulation of the ATLAS
calorimeter [23]. Showers with energies 1− 260 GeV and pseudorapidity |η| in the range of
0.2− 0.25 were generated as flattened arrays of pixels, by a dense network employing both
VAE and GAN methodologies. The images were also conditioned on the primary particle
energy and constrained on the total energy deposition. The GAN-generated showers were
reported to have better performance as compared to the VAE generated showers. WGAN
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has also been used to simulate the LHC detector output collapsed to a two-dimensional
array of cells [24]. A simplified version of HGCAL was simulated as seven 2D images con-
catenated together, conditioned on the primary particle energy and impact position [25].
The DijetGAN [26] employed GAN for the simulation of diject events: a background process
for important physics studies at LHC. A more recent approach [27] experimented with sev-
eral GAN architectures for the simulation of high granularity calorimeter for the ILD [28]
detector as 30 × 30 × 30 three-dimensional images. The simulation was limited to the
orthogonally incident photons coming with 10− 100 GeV primary energy.

The 3DGAN initial prototype [17] exploited 3D convolutional networks to simulate the
response of a high granularity calorimeter as 25× 25× 25 image. The GAN setup was used
to train the network for a simplified scenario involving only orthogonally incident electrons.
The approach was then extended to condition 51 × 51 × 25 images on both the particle
energy and incident angle [18, 19]. The more complex distribution could be generated
through multi-step training, architecture, and loss function modifications (details in [29]).
We now simulate the detector output for all the particle types available in the dataset and
further validate the results. The 3DGAN greatly surpasses existing efforts in the granularity
and dimensions of the generated images, conditioned on both the incident particle angle and
energy from a wide range, and validated in great detail from diverse viewpoints. Finally, a
culmination of the effort is to test the GAN-generated data for a practical use case.

3 Calorimeter Dataset

We present a solution for the needs of future experiments with higher demands for com-
puting resources due to increased luminosity and granularity. We, therefore, select the
proposed Linear Collider Detector (LCD), designed in the context of the future Compact
Linear Collider (CLIC) [30] accelerator for our study. The dataset employs the GEANT4
toolkit [31] for the generation of the simulation data for several particle types (i.e., electrons
e, photons γ, neutral pions π0 and charged pions π) and is publicly available on Zenodo at
https://zenodo.org/communities/mpp-hep.

3.1 Detector Geometry

Figure 1 shows the proposed detector design, highlighting the main detector concepts.
The basic design consideration for improving the jet energy resolution is to resolve the
energy depositions of the individual particles in a jet, through a high cell granularity and
precise time information. The electron and positron will collide in the central region. The
trackers are shown in blue. The surrounding grey region will comprise the calorimeters.
The calorimeter will be highly segmented with an electromagnetic (ECAL) and a hadronic
(HCAL) calorimeter.

The data used for the current work is that of the ECAL central barrel region. This
region has a cylindrical shape with an inner radius of 1.5 m with 25 concentric layers. The
proposed granularity for the ECAL cells is 5.1 × 5.1 mm2. The cells are arranged in the
form of 25 cylindrical layers with silicon sensor planes (active), alternating with tungsten
absorber planes (passive). The simulation is carried out considering the entire detector
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Figure 1. Schematic diagram for the CLIC calorimeter [32]
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Figure 2. The calorimeter barycenter computation was done in global coordinates (left) and the
cells were saved based on the local coordinates (right).

geometry, including the material in front of the calorimeter, and the effect of the solenoid
magnetic field.

3.2 Data Features

The energy deposits in the calorimeter cells result from the interaction of an incoming
primary particle with the calorimeter material. These deposits form a characteristic shape
that can be termed as an "event" or "shower". A slice around the barycenter of each shower
is saved as a 3D array of energy depositions. The slicing is carried out by taking a projection
of all the deposited energy on the ECAL inner surface. The barycenter of this 2D image
and the point of origin of the incoming particle are then used to compute the polar angles
(θ and φ) corresponding to each shower. Due to the different φ granularity for each depth
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layer in the ECAL, a multiplicative transformation is also applied to scale every layer to
look like the innermost ECAL layer. Finally, the data is saved in the HDF5 format. Each
entry in the dataset comprises the 3D array with cell energy deposits, the incoming particle
energy EP , and the incidence angles θ and φ. The energies for the incoming particles are
uniformly distributed from 2 to 500 GeV and an incident angle (θ) uniformly distributed
from 60◦ (1.047 radians) to 120◦ (2.094 radians).

Figure 2 shows the particle gun position with respect to the calorimeter surface. In the
global coordinate system, the Z axis lies along the axis of the calorimeter cylinder. While in
the local coordinates of the shower it is perpendicular to the calorimeter surface. Similarly,
other axes are also transformed to the local coordinates of each sample. The Z axis of
our 3D images lies along with the detector depth and X, Y are the transverse axes. The
calorimeter is isotropic in the φ direction, therefore only the θ direction is incorporated for
the current work. The θ value is recomputed as a weighted mean of the angles computed
using the barycenter of the event and the barycenters of the XY planes for each position
along Z (weighted by the position along Z).

4 3DGAN

The HEP simulation depends on a set of variables that impact the underlying physics pro-
cesses described by the simulation. Therefore, 3DGAN uses the EP and θ of a particle strik-
ing the calorimeter surface as inputs, to generate the appropriate detector response. In order
to provide feedback on the correspondence between generated showers and input conditions,
we exploit the concept of auxiliary tasks [33] together with domain-related constraints. The
current works mainly describe the final optimized version of the 3DGAN model while ad-
ditional details about the development process can be obtained from [29]. The 3DGAN is
implemented using Keras 2.2.4 [34] deep learning python library with Tensorflow 1.14.0 [35]
as a backend. The code is available at https://github.com/svalleco/3Dgan.

4.1 Pre-processing

One of the main challenges for generating scientific data through techniques developed for
computer vision lies in the inherent difference between the dynamic ranges of the pixel
intensities. The pixel intensities in a typical RGB image have a range from 0 to 255 while
the energy deposited in detector cells covers more than 10 orders of magnitude. We have
implemented a pre-processing procedure aimed at reducing this dynamic range. Initial
tests conducted taking the logarithms of the pixel intensities, resulted in the generation of
highly distorted images. Taking a less drastic approach we calculate the power function of
pixels intensities using an exponent smaller than one. A smaller exponent results in faster
convergence but greater distortion in generated images, while a larger exponent slows down
convergence yet retaining image quality. Figure 3 shows how the value of the exponent
(p) affected the distribution of the generated pixel intensities for the individual cells. The
value of p is adjusted to an optimum value of 0.85, where a faster convergence is achieved
while retaining an acceptable level of accuracy at both ends of the spectrum. The generated
images are then post-processed by simply taking the inverse of the power function. The

– 7 –

 https://github.com/svalleco/3Dgan


N
or

m
al

iz
ed

 e
nt

rie
s

                GEANT 4         
GAN (p = 0.85)
GAN (p = 0.75)
GAN (p = 0.50)
GAN (p = 0.25)

Cell energy deposition [GeV]
10-210-410-610-8 10-210-1010-1210-14 1

10-1

10-2

10-3

10-4

10-5

10-6

Figure 3. The cell energy distribution for GEANT4 MC events (red) and GAN generated events
after a pre-processing by taking the power of pixel intensities: power =0.85 (blue); power =0.75

(green); power =0.5 (cyan); power =0.25 (magenta).

data is also subjected to a threshold of 0.2 GeV for the total energy deposited in the event.
This rejection is aimed at removing some spurious events with little or no energy deposition.

4.2 Architecture

Upsampling
(6, 6, 6)

Conv1

Latent
vector

θ
E

P

9x9x8x8

Reshape
9x36x72x72

8,6,6,8

Zero
padding

Conv5 Conv6 Conv7

6,4,4,6 6,3,3,5
1,2,2,2

Batch
normalization

Convolution 
3-5 are 
similar

Weight 
kernel

F, x, y, z

Generated
Image

Image

16,5,6,6 8,5,6,6 8,5,6,6 8,5,6,6

Average
Pooling

FlatteningConv1 Conv2 Conv3 Conv4
dropout

O
θ

Generator

Discriminator

Lambda1

Lambda2 O
sum

O
GAN

O
P

Figure 4. The 3DGAN architecture, see the text for details.

The 3DGAN architecture is presented in Figure 4. The generator network implements
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stochasticity through a latent vector of 254 random numbers drawn from a Gaussian dis-
tribution. The generator input includes EP and θ concatenated to the latent vector. The
generator network then maps the input to a layer of linear neurons followed by seven 3D
convolutional layers. The discriminator input is an image while the network has only four
3D convolutional layers. Batch normalization [36] is performed after all except the first
convolutional layer in the discriminator and the last two layers in the generator. The
leakyRelu [37] activation function is used for the discriminator hidden layers while the
Relu [38] activation function is used for the generator layers to induce sparsity. The dis-
criminator uses dropout [39] of 20% for regularization and a single average pooling layer
after the last convolutional layer since additional pooling layers result in substantial loss of
performance.

The discriminator network has two trainable outputs: a sigmoid neuron predicts the
OGAN and a linear neuron OP predicts EP . The other two additional outputs are sim-
ple analytical measurements: Osum is the total deposited energy and Oθ is the measured
incident angle (geometrical angle of the shower energy depositions). These non-trainable
outputs represent physics-based constraints.

4.3 Loss Function

The 3DGAN loss function is the weighted sum of individual losses pertaining to the dis-
criminator outputs and constraints. The domain-related constraints are essential to achieve
a high level of agreement over the very large dynamic range of the image pixel intensity
distribution. Equation 4.3 presents the discriminator loss related to the output OGAN as
LG, the loss related to the output Osum as LE , the output Oθ as LA and the predicted EP
as LP balanced by corresponding weights W .

L3DGAN =WGLG +WPLP +WALA +WELE (4.1)

The LP and Lθ both provide feedback on how well the generated images correspond to
the input conditions. The loss LE ensures energy conservation. LG is evaluated as binary
cross-entropy. LP and LE are implemented on mean percentage errors, while LA as mean
absolute error. The generator loss is implemented as the inverse of LG together with the
auxiliary losses and constraints. The weights (presented in Appendix A) are considered as
hyperparameters and chosen to balance the loss ranges and their relative importance (in
this case the loss LG is given higher priority as compared to the auxiliary losses).

4.4 Training

The 3DGAN training is inspired by the concept of transfer learning. The GAN could not
converge for the highly complex multivariate distribution directly thus a two-step training
is applied. In order to successfully train the network, we reduce the complexity by training
the GAN first for electron events having EP ∼ U(100, 200) GeV. After the GAN con-
verges, the same trained model is further trained with the data from the whole EP range of
EP ∼ U(2, 500) GeV. The first training step exploits 137, 342 electron events. The GAN
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is then trained for the larger EP range, utilizing a much larger size of training data (400 k
events) from each particle type (electrons, photons, and neutral pions). The train and test
losses are evaluated on the data divided in a ratio of nine to one. The first training step is
run for 130 epochs (2 hours per epoch on GTX 1080) while the second step is run for 30

epochs (4 hours per epoch on GTX 1080). Finally, the best network is selected according
to the minimum relative error for the SF on additional validation data (20k events are
filtered around specific EP bins). This last step is aimed to further improve the accuracy
for the SF .

Algorithm 1: Training the 3DGAN model
initialize
for number of epochs do

#Training
for all batches in the training data do

get real EP , θ, Esum and image batches from data
latent batch ∼ N (0 , 1)

generator input = EP ++ θ++ latent
generate fake events for the same EP and θ
train discriminator on real batch
train discriminator on fake batch
for 2 times do

latent batch ∼ N (0 , 1)

generator input = EP ++ θ++ latent
use real EP and θ for fake events
train the generator (minimizing the discriminator loss on the generated
images)

end
# Testing
Evaluate discriminator on real and fake data
Evaluate generator using the inverse of discriminator loss on generated data

end
end

The training process for each epoch is presented by the Algorithm 1. For each training
iteration the discriminator is trained twice: once on a batch of real data, and next on a
batch of generated data. For a balanced approach, the generator is also trained twice while
freezing the weights of the discriminator. The RMSProp [40] optimizer is utilized to train
the network through Stochastic Gradient Descent. Figure 5 shows the LG losses associated
to the discriminator (blue) and the generator (orange). It can be seen that the loss for
the discriminator increases, while the loss for the generator increases till both losses are
converged at around 0.6 (log(4)). At this point, the OGAN output for both the data (red)
and the GAN images (blue), shown in Figure 5 right panel has similar distributions centered
around 0.5. The discriminator is indeed confused and the GAN converges.
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Table 2. Inference Timing for 3DGAN
Method Platform Time/shower

(msec)
Speedup

Monte Carlo
2S Intel Xeon Platinum 8180

17000 1.0

3DGAN CPU 16 2500

3DGAN GPU GTX 1080 4 4250

4.5 Generation Time

The 3DGAN greatly reduces the simulation time. Table 2 compares the time taken to
generate a shower using Monte Carlo and GAN. The inference time is around 4 ms/particle
on GeForce GTX 1080. A similar shower can be simulated using the GEANT4 in about
17 second per particle on an Intel Xeon 8180 (currently it is not possible to run a full
Geant4-based simulation on GPUs). The speedup of many orders of magnitude is achieved.

5 Results and Discussion

The performance assessment for GAN models is a subject of much debate and diverse view-
points [41]. The GAN evaluation is nontrivial due to the intractable probability densities
and thus is mainly sample-based and application-specific. We have validated the realism
and diversity of our generated data from several independent viewpoints, such as the output
of a third-party neural network and image quality assessment as presented previously [29]
but the current work focuses mainly on the physics-based comparison to a Monte Carlo
simulation.

The particle showers have specific characteristics due to the underlying physics pro-
cesses, depending on the detector material and the type, energy, and direction of the par-
ticle initiating the shower. We validate these characteristics as a function of our inputs by
dividing the data in 5 GeV EP and 0.1 radian (5.73◦) θ bins. To ensure an unbiased com-
parison, GAN events are generated with the same EP and θ values as the GEANT4 events.
The bin-wise comparison of each physics-based feature, results in hundreds of histograms,
for each particle type. We present here a selected subset of the detailed and exhaustive
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Figure 6. GEANT4 vs. GAN electrons showers with Ep = 202.78 GeV and θ = 91.12◦.

validation that we consider to be the most essential and representative of performance. The
results presented in this section are also alternated among different bins and particle types,
in order to convey the overall level of accuracy.

5.1 Visual Inspection

An initial qualitative assessment can be performed by comparing the events visually. Fig-
ure 6 shows an example of a 3D electron event. The event on the left has been generated
by GEANT4, while the event on the right has been generated by the GAN for the same
input values. It can be observed that both events have very similar visual characteristics
while retaining uniqueness for individual cell deposits. The graphical projections on differ-
ent planes further illustrates the shower correlation to the incident angle (θ) and energy
(EP ). Figure 7 compares the projections of the GEANT4 showers to the corresponding
GAN showers. The top panel presents neutral pion events, while the bottom panel display
photons events, with the EP and θ from both ends of the spectrum. The GAN images
appear similar to the respective GEANT4 images with the deposited cell energies corre-
lated to the input conditions while retaining stochasticity, for all particle types and input
conditions.

5.2 Particle Shower Features

Shower shapes define the structure of the deposited energy distribution, as a shower develops
through the detector material. The profiles of the energy deposition along the detector
axes are important observables related to the shower geometry and crucial for most particle
identification techniques. We would like to point out that these geometrical features are not
included in the 3DGAN loss function as presented in Equation 4.3 and are learned by the
GAN implicitly. Figure 8 presents the shower shapes for the X, Y and Z axes as a function
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neutral pions with EP = 97.72 GeV and θ = 62.16◦. Bottom) photons with EP = 403.62 GeV and
θ = 116.33◦.

of θ and EP . In order to summarize the performance for all particle types, we present a
different particle in each column: the shapes for electrons in the first column from the left,
the photons in the middle column, and the neutral pions in the rightmost column. The top
row presents the transverse shape distribution for the Y axis corresponding to the different θ
bins since the Y axis profile is most relevant for θ. The plots are displayed in the log scale to
enhance the sparse distributions along the tails. The second row presents the shapes along
the Z axis (longitudinal direction) in linear scale for the different EP bins. The network is
able to reproduce a similar shape distribution as the GEANT4 showers, furthermore, the
network can correctly relate it to the inputs. In the transverse profiles, some discrepancies
are observed in the log scale. These discrepancies occur at the volume edges, where smaller
energy depositions occur. This region is also highly sparse and outside the main body of
the shower with expected energies well below 0.1 MeV, which is comparable to the pedestal
values.

Moments are another aspect of the shower geometry. The GEANT4 showers are all
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centered on the barycenter of the energy deposition by design thus the first moment (M1)
defining the shower center is easily replicated by GAN. Therefore, we present here the
performance related to the second moment (M2) having a more complex distribution de-
pending on both EP and θ. Figure 9 left panel presents the distribution of the second
moment or the width of the shower for electrons. Here it can be appreciated that the
GAN has learned the non-Gaussian width distribution. The mid plot shows the difference
between internal correlation present between the shower inputs (EP and θ) and the shower
features (shapes, moments, total deposition, hits, and ratios of energy deposition in differ-
ent parts of the shower) for GEANT4 and GAN photons. The GAN showers are able to
reproduce the internal correlations present between the different shower observables. The
right panel displays the close agreement between the θ measured from GEANT4 neutral
pion events and that measured from the GAN events generated for the same θ values.

The energies deposited in detector cells are the pixel intensities of our images. The
images are mostly empty, centered around a shower. The energies are deposited only in
around 20% of the cells. Figure 10 left panel shows sparsity (S) as the fraction of cells
with some deposition against the threshold used for cutoff. The GAN images have similar
sparsity distributions as the GEANT4 events, without specifically constraining the image.
The distributions for cell energy depositions (photon) shown in the mid panel have a similar
shape for GEANT4 and GAN events. We had reported that a sharp, vertical drop around
0.2 MeV was present in the GEANT4 cell energy distribution that the GAN could not
learn, yet tried to smooth out in the best manner [18]. Since then a recent work [27] also
recognizes this feature and tries to replicate the effect by additional post-processing on the
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generated images. They note that their network improves the performance on the simulation
of the correct pixel distribution at the cost of reduced performance for other features. We
also report a reduction in performance when constraining the pixel intensity distribution
through our loss function. We believe in the future the concept of ensembling [42] can
be used to employ two networks to generate the pixels above and below this region. The
sampling fraction (SF ) is an important characteristic of the detector response. Figure 10
left panel presents SF for neutral pions. The SF is presented as a function of EP . There
is a close agreement for most of the input range with some discrepancies at low energies,
where events are highly sparse with low cell energy deposits.

The characteristic features for the electromagnetic showers are faithfully reproduced in
the GAN-generated showers for different particle types. We test if the generated showers for
different particle types are mutually distinguishable through their corresponding features.
This is crucial as the final networks for all particle types, use the same initial weights
trained to generate electron-induced showers for a reduced energy range. The photon-
initiated showers have some minor differences from electron-initiated showers. The photons
penetrate more distance into the detector material before starting to interact [43, 44]. This
effect can be evaluated by studying the SF and the fraction of energy deposited in the first
(8 cells along the Z axis) part of the shower. Figure 11 left panel shows the profiles of
SF as a function of EP for the central region of the spectrum. The SF for photons is
lower than electrons for a similar value of EP . The right panel compares the distribution
of energy deposited in the first part of the shower for electrons and photons. The photons
present more entries for the region where the fraction of energy deposited in the first part
of the shower R1 is less than 10%. The GAN-generated photons clearly demonstrate these
identifiable features.

6 Simulating Charged Pions

The charged pions deposit a much smaller part of their energies in the ECAL while most of
the energy is deposited in the HCAL. The current project is only limited to the ECAL data
due to the limitation of the computing resources, thus the work for charged pion is only
a preliminary study. A more accurate approach will also need to incorporate data from
HCAL. We will present the results of our study to lay the foundation for any future work.
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The transfer learning approach could not be extended to charged pions as the showers
have a very different distributions. The GAN is trained for the full EP range of the charged
pions, directly from random weights, for about 200 epochs using (300k) events. There is a
great diversity in the charged pion events, and most of the events have low energy deposition
in the ECAL. Since visual inspection will not be helpful to understand the performance, thus
we present only the distributions of physics-based features. Figure 12 presents the overall
shower shapes in log scale. The shape distributions along the X and Z axis show slightly
better performance as compared to the Y axis, probably due to the higher variance present
in this dimension. Figure 13 compares the distribution of the first three moments defining
the shower center, width, and skewness along the Y axis, display similar distributions.

Figure 14 left panel displays the sampling fraction for GEANT4 and GAN charged pion
events. It can be seen that there is a difference between the means of the two distributions,
while the shaded area representing the standard deviation shows some overlap. The mid
panel presents the distribution of the pixel intensities that are energies deposited in the
calorimeter cells. There is a deterioration in performance as compared to other particles,
particularly the effect of the presence of a cut around 0.2 MeV (see Section 5) is more
pronounced. The left panel presents the difference in internal correlations between physics-
based features like shapes, moments, hits, EP and θ for the GEANT4 and GAN events.
There is a less than 10% error for the correlations, even given the highly diverse and
incomplete showers. In order to convey an idea of the diversity present in these showers, we
investigate the barycenters of the shower energy depositions along the longitudinal axis (Z)
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for electrons and charged pions, as a function of EP . Figure 15 compares the first moment
for the GEANT4 and GAN events. The charged pion showers show greater diversity and
depth as compared to electrons, also apparent in the GAN events.

7 Rare modes

The discriminator assigns a higher probability of being realistic to images exhibiting features
that the GAN cannot reproduce correctly . We visually investigate such events havingOGAN
value greater than 0.6, with the help of graphical projections. It is observed that most of
these events manifest rare modes in data like pre-showering, late showering, and incorrectly
centered events. As other modes are found to be even rarer, thus only the early showering
events are further investigated. Figure 16 top row presents an example of a GEANT4
pre-showering event. The particles that start depositing their energies before entering the
calorimeter volume have multiple particles striking the detector surface, thus resulting in
multiple branches. Only a few percent of the Monte Carlo samples present such behavior
and the percentage decreases with increasing EP .

Figure 16 bottom row presents an example of a pre-showering event generated by GAN.
It must be mentioned here that in the first training step more such events are generated.
The performance for these rare modes deteriorates with further training for the full EP
range due to a decrease in the percentage of such events for higher energies. In order to
further improve the performance, methods like the ensembling [42] can be explored.
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8 Training with GAN data

We present a practical use case for the GAN-generated events. Triforce [19] is a deep
learning model developed by a third-party study for the identification of particle type and
primary energy for particle showers from the calorimeter dataset used for 3DGAN. We had
previously employed the pre-trained Triforce DNN model for classification and regression
of the GAN events [18] and proved that the type and the primary particle energy for the
GAN-generated events was correctly predicted.

Triforce can also be considered as an example of a typical reconstruction tool used in
HEP simulation. We test the performance of our 3DGAN generated images for training this
tool. The Triforce requires two types of particles (electrons and charged pions ) for training.
We train the Triforce GoogleNet model from scratch on GEANT4 electron events and then
on GAN electron events. The charged pion events in both trainings are those generated by
the GEANT4. Figure 17 presents a comparison for the primary particle energy regression
for the network trained on GEANT4 against the network trained on GAN electrons showing
a similar performance. The particle type classification accuracy presented in Table 3 also
manifest similar values. Thus we prove that the GAN simulation can be used to replace
the GEANT4 simulation without any loss of accuracy.

In the context of GAN evaluation, the GAN-train and GAN-test are two very interesting
concepts [45]. The accuracy of a classifier network trained on GAN generated events and
tested on data events is termed as GAN-train. When GAN images are high quality and
as diverse as the training set, the score on the validation set should be similar to training
accuracy. A lower accuracy would indicate that GAN images are not covering the entire
distribution of the training data. GAN-test is the accuracy of a network trained on true
data and validated on GAN images. A lower accuracy would indicate that the GAN images
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Table 3. Triforce classification results
Trained on Accuracy for MC Accuracy for GAN

Monte Carlo electrons 0.9928± 0.014 0.9992± 0.014

GAN electrons 0.9884± 0.014 0.9998± 0.014

are not sufficiently realistic while a higher accuracy could be related to mode dropping. The
3DGAN shows similar performance as the GEANT4 training data and thus the results of
this test can also be regarded as proof of high accuracy and diversity of the GAN generated
events.

9 Conclusions and Future Suggestions

Simulation is crucial for most HEP experiments. Monte Carlo methodology can success-
fully simulate particle interactions at the cost of time and resources. Fast simulation is
a set of faster alternatives that have been successfully used to replace detailed simulation
where some loss in accuracy can be acceptable. Recent advances in deep learning have had
a tremendous impact on the HEP community and are especially interesting for simulation
due to the possibility of training directly from the detector data, not possible using other
methodologies. The 3DGAN is an effort aimed to simulate the detector output, as images
generated by a neural network. These images are conditioned on a number of variables,
having large dynamic range of values. We exploit a multi-step training process, resulting in
accurate simulation for electrons, photons, and neutral pions. The accuracy for individual
data features varies but is within 10% of the GEANT4 simulation for all quantities. Pre-
liminary work on charged pion simulation is also promising where the ECAL contains only
partial showers, manifesting higher variance. The GAN is able to reproduce the essential
features of a charged pion shower. Another exploratory study demonstrate the possibility
of generating rare modes present in the data. We further provide an example of a practical
use of the GAN-generated events. The GAN simulated events are able to train a third-
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party particle classification and regression tool for the correct classification of the GEANT4
events. The response of the tool trained on GAN data is similar to that trained on GEANT4
data. Finally, we would like to state that the GAN-generated showers are simulated with
a speedup of three orders of magnitude.

We would like to point out some insights from our endeavour that maybe helpful in the
context of any future work. Certain domain-related features like the total deposited energy
need to be hardcoded in the loss function while other features can be learned implicitly.
These features include geometrical properties such as shapes and moments, level of sparsity,
pixel intensity distribution, and correlation among the different features as well as the
inputs. The model can learn complex distributions for individual features and the only part
where the GAN struggles is reproducing the sharp drop in pixel intensities as discussed in
Section 5. Apart from that, the sparse peripheral regions of the images are more difficult to
be correctly generated, and there is some loss in performance for very low EP particles. The
current training allows learning of an average response for the total deposited energy since
the training relies on direct comparison for small data batches. We believe that a better
formulation of the loss might result in better agreement in future efforts. The preliminary
work on charged pion and rare mode simulation shows great promise. The charged pion
simulation can be improved by including the HCAL data. The generation of rare modes
can benefit by exploring methods like the ensembling approach, where multiple networks
can be trained simultaneously for different modes present in the data. The speedup can also
be further increased by exploiting parallel hardware [46] that cannot yet be done for the
sequential logic employed by the standard Monte Carlo tools. A distributed training [47]
will be most essential for future generalization of the approach through hyperparameter
scan.
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A Hyper-parameters for 3DGAN

Table 4 presents the values for the different hyperparameters selected for 3DGAN.

Table 4. Hyperparameters for 3DGAN fully optimized version
No. param value description

1 epochs 130 for step 1 and 30

epochs for step 2

Number of iterations through
entire training data

2 batch size 64 Number of samples in a mini-
batch

3 latent size 254 Size of latent vector sampled
from Gaussian with mean=0
and std =1

4 discriminator layers 4 Convolutional layers in the dis-
criminator

5 generator layers 7 Convolutional layers in the gen-
erator

6 optimizer RMSprop [40] type of optimizer
7 lr 0.01 learning rate
8 pre-processing cell intensi-

ties by power
0.85 taking a power of cell intensities

9 pre-processing target Ep scaling by 1/100 Dividing Ep by a factor of 100
10 WG 3 Weight for loss associated to

real/fake probability
11 WP 0.1 Weight for loss associated to

auxilliary energy regression task
12 WE 0.1 Weight for loss associated to

sum of intensities
13 WA 25 Weight for loss associated to

measured angle
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