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Abstract

The fraction of Z+jet events that contain a charm jet is measured for the first time
in the forward region of proton-proton collisions. The data sample used corresponds
to an integrated luminosity of 6 fb−1 collected at a center-of-mass energy of 13 TeV
with the LHCb detector. The ratio of production cross sections σ(Zc)/σ(Zj) is
determined in intervals of Z-boson rapidity in the range 2.0 < y(Z) < 4.5. A
sizable enhancement is observed in the forward-most y(Z) interval, which could be
indicative of a valence-like intrinsic-charm component in the proton wave function.
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The possibility that the proton wave function may contain a |uudcc̄〉 component,
referred to as intrinsic charm (IC), in addition to the charm content that arises due to
perturbative gluon radiation, i.e. g→cc̄ splitting, has been debated for decades (for a recent
review, see Ref. [1]). Light front QCD (LFQCD) calculations predict that non-perturbative
IC manifests as valence-like charm content in the parton distribution functions (PDFs)
of the proton [2, 3]; whereas, if the c-quark content is entirely perturbative in nature,
the charm PDF resembles that of the gluon and sharply decreases at large momentum
fractions, x. Understanding the role that non-perturbative dynamics play inside the
nucleon is a fundamental goal of nuclear physics [4–14]. Furthermore, the existence of
IC would have many phenomenological consequences. For example, IC would alter both
the rate and kinematics of c hadrons produced by cosmic-ray proton interactions in the
atmosphere; the subsequent semileptonic decays of such c hadrons are an important source
of background in studies of astrophysical neutrinos [15–20]. The cross sections of many
processes at the LHC and other accelerators would also be affected [21–31].

Measurements of c-hadron production in deep inelastic scattering [32] and in fixed-
target experiments [33], where the typical momentum transfers were Q . 10 GeV (natural
units are used throughout this Letter), have been interpreted both as evidence for [34, 35]
and against [36] the percent-level IC content predicted by LFQCD. Even though such
experiments are in principle sensitive to valence-like c-quark content, interpreting these
low-Q data is challenging since it requires careful theoretical treatment of hadronic and
nuclear effects. Recent global PDF analyses, which also include measurements from the
LHC, are inconclusive and can only exclude IC carrying more than a few percent of the
momentum of the proton [37,38].

Reference [28] proposed studying IC by measuring the fraction of Z-boson+jet events
that contain a charm jet, Rc

j ≡ σ(Zc)/σ(Zj), in the forward region of proton-proton (pp)
collisions at the LHC. The ratio Rc

j was chosen because it is less sensitive than σ(Zc) to
experimental and theoretical uncertainties. Since Zc production is inherently at large Q,
above the electroweak scale, hadronic effects are small. A leading-order Zc production
mechanism is gc→ Zc scattering (see Fig. 1), where in the forward region one of the
initial partons must have large x, hence Zc production probes the valence-like region.
Using next-to-leading-order (NLO) Standard Model (SM) calculations, Fig. 2 illustrates
that a percent-level valence-like IC contribution would produce a clear enhancement in
Rc
j for large (more forward) values of Z rapidity, y(Z); whereas only small effects are

expected in the central region where all previous measurements of Rc
j were made [39,40].
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Figure 1: Leading-order Feynman diagrams for gc→ Zc production.
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Figure 2: NLO SM predictions [28] for Rcj without IC [41], allowing for potential IC [38], and
with the valence-like IC predicted by LFQCD with a mean momentum fraction of 1% [37]. The
fiducial region from Ref. [40] is used for y(Z) < 2; otherwise the fiducial region of this analysis is
employed. The broadening of the error band that arises in the forward region, when allowing for
IC, is due to the lack of sensitivity to valence-like IC from previous experiments. More details
on these calculations are provided in the Supplemental Material [42].

Table 1: Definition of the fiducial region.

Z bosons pT(µ) > 20 GeV, 2.0 < η(µ) < 4.5, 60 < m(µ+µ−) < 120 GeV
Jets 20 < pT(j) < 100 GeV, 2.2 < η(j) < 4.2

Charm jets pT(c hadron) > 5 GeV, ∆R(j, c hadron) < 0.5
Events ∆R(µ, j) > 0.5

This Letter presents the first measurement of Rc
j in the forward region of pp collisions.

The data sample used corresponds to an integrated luminosity of 6 fb−1 collected at
a center-of-mass energy of

√
s = 13 TeV with the LHCb detector. The Z bosons are

reconstructed using the Z→µ+µ− decay, where henceforth all Z/γ∗ → µ+µ− production in
the mass range 60 < m(µ+µ−) < 120 GeV is labeled Z→µ+µ−. The analysis is performed
using jets clustered with the anti-kT algorithm [43] using a distance parameter R = 0.5.
The fiducial region is defined in terms of the transverse momentum, pT, pseudorapidity,
η, and azimutal angle, φ, of the muon and jet momenta, and includes a requirement on
∆R(µ, j) ≡

√
∆η(µ, j)2 + ∆φ(µ, j)2 to ensure that the muons and jet are well separated,

which suppresses backgrounds from QCD multijet events and electroweak processes like
W+jet production. Charm jets are the subset for which there is a promptly produced
and weakly decaying c hadron within the jet. The fiducial region is defined in Table 1. If
multiple jets satisfy these criteria, the one with the highest pT is selected.

The quantity Rc
j is measured in intervals of y(Z) as Rc

j = N(c-tag)/[ε(c-tag)N(j)],
where N(c-tag) is the observed Zc yield, ε(c-tag) is the c-tagging efficiency, and N(j) is
the total Zj yield. The integrated luminosity does not enter this expression because Rc

j
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involves a ratio of production cross sections. In addition, the muon and jet reconstruction
efficiencies largely cancel in the ratio due to the similarity of the Z-boson and jet kinematics
in Zc and Zj production. The c-tagging algorithm, which is described in detail in Ref. [44],
looks for a displaced-vertex (DV) signature inside the jet cone that is indicative of the
weak decay of a c hadron.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, described in detail in Refs. [45, 46]. Simulated data samples are used to
evaluate the detector response for jet reconstruction, including the c-tagging efficiency, and
to validate the analysis. In the simulation, pp collisions are generated using Pythia [47]
with a specific LHCb configuration [48]. Decays of unstable particles are described
by EvtGen [49], in which final-state radiation is generated using Photos [50]. The
interaction of the generated particles with the detector, and its response, are implemented
using the Geant4 toolkit [51] as described in Ref. [52].

The online event selection is performed by a trigger [53,54] consisting of a hardware
stage using information from the calorimeter and muon systems, followed by a software
stage that performs a full event reconstruction. At the hardware stage, events are required
to have a muon with pT(µ) > 6 GeV. In the software stage, the muon track is required to
be of good quality and to have pT(µ) > 10 GeV. The offline selection builds Z→µ+µ−

candidates from two oppositely charged muon tracks that must be in the fiducial region
defined in Table 1 and consistent with originating directly from the same pp collision.

Jet reconstruction is performed offline by clustering charged and neutral particle-flow
candidates [55] using the anti-kT clustering algorithm as implemented in FastJet [56].
Reconstructed jets with 15 < pT(j) < 100 GeV and 2.2 < η(j) < 4.2 are kept for further
analysis. Jets with 15 < pT(j) < 20 GeV, which are outside of the fiducial region, are
retained for use when unfolding the detector response. The η(j) requirement, which is
included in the fiducial region and was first used in Refs. [57–59], ensures a nearly uniform
c-tagging efficiency of about 24%, with minimal pT(j) or η(j) dependence. The fiducial
requirement ∆R(µ, j) > 0.5 is applied to reconstructed jets. Finally, the highest-pT jet
satisfying these criteria from the same pp collision as the Z boson is selected. After
applying all requirements, 68 694 Zj candidates remain in the dataset.

The effects of the detector response on the measured jet momenta are accounted for
using an unfolding procedure. This involves first determining the reconstructed Zc and Zj
yields in intervals of [y(Z), pT(j)]. The non-Z background is neglected for both Zc and Zj
candidates because it is less than 1% and largely cancels in the Rc

j ratio. The c-jet yields
are determined using the DV-based tagging approach described in detail in the following
paragraphs. Interval migration is accounted for by unfolding the pT(j) distributions of
the Zc and Zj yields in each y(Z) interval independently using an iterative Bayesian
procedure [60,61]. The Zc yields are then corrected for c-tagging inefficiency. Finally, the
unfolded [y(Z), pT(j)] distributions are integrated for pT(j) > 20 GeV to obtain the Zc
and Zj yields used to determine the Rc

j ratios. The analysis employs three y(Z) intervals
with ranges 2.00–2.75, 2.75–3.50, and 3.50–4.50, and four pT(j) intervals ranging 15–20,
20–30, 30–50, and 50–100 GeV, where after unfolding the yields in the three highest pT(j)
intervals are summed to obtain Rc

j.
The signature of a c jet is the presence of a long-lived c hadron that carries a sizable

fraction of the jet energy. The tagging of c jets is performed using DVs formed from
the decays of such c hadrons. The choice of using DVs and not single-track or other
non-DV-based jet properties, e.g. the number of particles in the jet, is driven by the need
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Figure 3: Distributions of (left) mcor(DV) and (right) Ntrk(DV) for all DV-tagged candidates in
the Zj data sample reconstructed in the fiducial region with the projections of the fit results
superimposed.

for a small misidentification probability of light-parton jets. Furthermore, the properties of
DVs from c-hadron decays are known to be well modeled by simulation, which means that
only small corrections using control samples are required. Since DVs can also be formed
from the decays of b hadrons or due to artifacts of the reconstruction, the DV-tagged charm
yields are obtained by fitting the distributions of DV features with good discrimination
power between c, b, and light-parton jets.

The tracks used as inputs to the DV-tagger algorithm are required to have pT > 0.5 GeV
and to be inconsistent with originating directly from a pp collision. A DV is associated
to a jet when ∆R < 0.5 between the jet axis and the DV direction of flight, defined by
the vector from the pp interaction point to the DV position. Requirements that reject
strange-hadron decays and particles formed in interactions with material [62] are placed
on the mass, m(DV), and momentum, p(DV), of the particles that form the DV, along
with the DV position. In addition, only DVs with at most four tracks are used, since
higher-multiplicity DVs are almost exclusively due to b-hadron decays. More details about
the c-tagging algorithm are provided in Ref. [44].

Two DV properties are used to separate charm jets from beauty and light-
parton jets: the number of tracks in the DV, Ntrk(DV), and the corrected mass,
mcor(DV) ≡

√
m(DV)2 + [p(DV) sin θ]2 + p(DV) sin θ, where θ is the angle between the

momentum and the flight direction of the DV. The corrected mass, which is the minimum
mass the long-lived hadron can have that is consistent with the flight direction, peaks near
the typical c-hadron mass for c jets, and consequently provides excellent discrimination
against other jet types. The DV track multiplicity provides additional discrimination
against b jets, since b-hadron decays often produce many displaced tracks. These two dis-
tributions are fitted simultaneously to obtain the DV-tagged c-jet yields. The probability
density functions, referred to as templates, for c, b, and light-parton jets are obtained from
calibration data samples that are each highly enriched in a given jet flavor [44]. Figure 3
shows the mcor(DV) and Ntrk(DV) distributions for all DV-tagged candidates in the Zj
data sample reconstructed in the fiducial region, along with the fit projections; such fits
are performed in each [y(Z), pT(j)] interval to obtain the reconstructed Zc yields.

The effects of pT(j) interval migration are corrected for using the unfolding procedure.
The detector response is studied using the pT-balance distribution pT(j)/pT(Z) for Zj
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Figure 4: The detector-response matrix for c-tagged jets. The shading represents the interval-to-
interval migration probabilities ranging from (white) 0 to (black) 1. Jets with true (reconstructed)
pT(j) in the 20–100 GeV region but for which the reconstructed (true) pT(j) is either below
15 GeV or above 100 GeV are included in the unfolding but not shown graphically.

candidates that are nearly back-to-back in the transverse plane, using the same technique
as in Refs. [55, 63]. Small adjustments are applied to the pT(j) scale and resolution
in simulation to obtain the best agreement with data. In addition, for the Zc and Zj
samples the pT(j) and pT(DV) distributions in simulation are adjusted to match those
observed in data. The unfolding matrix for jets that contain a reconstructed DV is shown
in Fig. 4, while the corresponding matrix for inclusive Zj production is provided in the
Supplemental Material [42].

The dominant systematic uncertainty is due to limited knowledge of the c-tagging
efficiency, which is measured in pT(j) intervals using data in Ref. [44] and briefly summa-
rized here. Scale factors that correct for discrepancies between data and simulation are
determined using a tag-and-probe approach on a dijet calibration sample. A stringent
requirement is applied to the tag jet which enriches the probe-jet sample in charm content.
The DV-tagged c-jet yield in the probe sample is obtained in the same way the Zc yield
is determined in this analysis, namely by fitting the mcor(DV) and Ntrk(DV) distributions
for DV-tagged probe jets. The total number of c jets in the probe sample is obtained
by fully reconstructing the D0 → K−π+ and D+ → K−π+π+ decays, obtaining the
prompt-charm yields by fitting the D-meson mass and impact-parameter distributions,
then correcting these yields for the detector response, decay branching fractions [64],
and c-hadron fragmentation fractions [65]. The c-tagging efficiency is the ratio of the
DV-tagged and total c-jet probe-sample yields. The scale factors that correct the c-tagging
efficiency in simulation are determined to be 1.03±0.06, 1.01±0.08, and 1.09±0.17 in the
20–30, 30–50, and 50–100 GeV pT(j) intervals, respectively, with corresponding c-tagging
efficiencies of (23.9± 1.4)%, (24.4± 1.9)%, and (23.6± 4.1)%. These uncertainties, which
include all statistical and systematic contributions, are propagated to the Rc

j results
producing 6–7% relative uncertainties in each y(Z) interval.

Other sources of smaller systematic uncertainty are also considered. First, variations
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Table 2: Relative systematic uncertainties on Rcj, where ranges indicate that the value depends
on the y(Z) intervals.

Source Relative Uncertainty

c tagging 6–7%
DV-fit templates 3–4%
Jet reconstruction 1%
Jet pT scale & resolution 1%

Total 8%

Table 3: Numerical results for the Rcj measurements, where the first uncertainty is statistical
and the second is systematic.

y(Z) Rc
j (%)

2.00–2.75 6.84± 0.54± 0.51
2.75–3.50 4.05± 0.32± 0.31
3.50–4.50 4.80± 0.50± 0.39

2.00–4.50 4.98± 0.25± 0.35

of the mcor(DV) and Ntrk(DV) templates are studied, which arise from using different
strategies to model the backgrounds in the highly enriched calibration data samples.
However, the shifts observed in the Zc yields largely cancel with the corresponding shifts
seen in ε(c-tag). The residual differences of 3–4% in each y(Z) interval are assigned as
systematic uncertainties. The ratio of the jet-reconstruction efficiency for c and inclusive
jets is consistent with unity in all kinematic intervals in simulation, with a 1% systematic
uncertainty assigned due to the limited sample sizes. Finally, the statistical precision of
the back-to-back Zj sample used to determine the pT(j) scale and resolution is propagated
through the unfolding procedure resulting in a 1% relative systematic uncertainty on Rc

j.
The systematic uncertainties are summarized in Table 2.

Figure 5 shows the measured Rc
j distribution in intervals of y(Z); the numerical

results are provided in Table 3, and additional results are reported in the Supplemental
Material [42]. The measured Rc

j values are compared to NLO SM calculations [28] based on
Refs. [66–72], which are validated against additional predictions [69,70,73,74] and updated
here to use more recent PDFs [37,38,41,75,76]. The NNPDF analysis provides results
where the charm PDF is allowed to vary, both in size and in shape [38]. Reference [37]
updated the CT14 analysis [77] to include the IC content predicted by LFQCD [2, 3],
which results in the enhancement at forward y(Z) shown previously in Fig. 2. More details
on the theory calculations are provided in the Supplemental Material [42].

The observed Rc
j values are consistent with both the no-IC and IC hypotheses in the

first two y(Z) intervals; however, this is not the case in the forward-most interval where
the ratio of the observed to no-IC-expected values is 1.85± 0.25. As illustrated in Fig. 2,
this is precisely the y(Z) region where valence-like IC would cause a large enhancement.
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Indeed, Fig. 5 shows that, after including the IC PDF shape predicted by LFQCD
with a mean momentum fraction of 1%, the theory predictions are consistent with the
data. Incorporating these novel forward Rc

j results into a global analysis should strongly
constrain the large-x charm PDF, both in size and in shape. While the large enhancement
in the forward-most y(Z) interval is suggestive of valence-like IC, no definitive statements
can be made until the Rc

j results are included in a global PDF analysis.
In conclusion, the fraction of Z+jet events where the jet is a charm jet is measured for

the first time in the forward region of pp collisions. The data sample used corresponds
to an integrated luminosity of 6 fb−1 collected at a center-of-mass energy of 13 TeV with
the LHCb detector. The ratio Rc

j is measured in intervals of y(Z) and compared to NLO
SM calculations. The observed spectrum exhibits a sizable enhancement at forward Z
rapidities, consistent with the effect expected if the proton wave function contains the
|uudcc̄〉 component predicted by LFQCD. Incorporating these results into global PDF
analyses could reveal that the proton contains valence-like intrinsic charm.
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[67] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2,
Comput. Phys. Commun. 191 (2015) 159, arXiv:1410.3012.

[68] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algo-
rithms, JHEP 11 (2004) 040, arXiv:hep-ph/0409146.

[69] J. Alwall et al., The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, JHEP
07 (2014) 079, arXiv:1405.0301.

[70] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012)
061, arXiv:1209.6215.

[71] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections
in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[72] W. T. Giele and S. Keller, Implications of hadron collider observables on
parton distribution function uncertainties, Phys. Rev. D58 (1998) 094023,
arXiv:hep-ph/9803393.

[73] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the
LHC, JHEP 07 (2011) 018, arXiv:1105.0020.

[74] J. M. Campbell, R. K. Ellis, and W. T. Giele, A multi-threaded version of MCFM,
Eur. Phys. J. C75 (2015) 246, arXiv:1503.06182.

[75] NNPDF collaboration, R. D. Ball et al., Parton distributions for the LHC Run II,
JHEP 04 (2015) 040, arXiv:1410.8849.

12

https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.5170/CERN-2011-006.313
https://doi.org/10.5170/CERN-2011-006.313
http://arxiv.org/abs/1105.1160
https://doi.org/10.1088/1748-0221/13/06/P06008
http://arxiv.org/abs/1803.07466
https://doi.org/10.1103/PhysRevLett.118.192001
https://doi.org/10.1103/PhysRevLett.118.192001
http://arxiv.org/abs/1701.05116
http://pdg.lbl.gov/
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epjc/s10052-016-4246-y
http://arxiv.org/abs/1509.01061
https://doi.org/10.1007/JHEP01(2011)095
http://arxiv.org/abs/1009.5594
https://doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
https://doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.1007/JHEP12(2012)061
https://doi.org/10.1007/JHEP12(2012)061
http://arxiv.org/abs/1209.6215
https://doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
https://doi.org/10.1103/PhysRevD.58.094023
http://arxiv.org/abs/hep-ph/9803393
https://doi.org/10.1007/JHEP07(2011)018
http://arxiv.org/abs/1105.0020
https://doi.org/10.1140/epjc/s10052-015-3461-2
http://arxiv.org/abs/1503.06182
https://doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849


[76] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton dis-
tributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C75 (2015) 204,
arXiv:1412.3989.

[77] S. Dulat et al., New parton distribution functions from a global analysis of quantum
chromodynamics, Phys. Rev. D93 (2016) 033006, arXiv:1506.07443.

13

https://doi.org/10.1140/epjc/s10052-015-3397-6
http://arxiv.org/abs/1412.3989
https://doi.org/10.1103/PhysRevD.93.033006
http://arxiv.org/abs/1506.07443


Supplemental Material for LHCb-PAPER-2021-029

Study of Z bosons produced in association with charm in the forward region

Theory Predictions

The NLO SM calculations of Ref. [28] are updated here to use more recent PDFs [37,38,
41,75,76]. These predictions are made using the Zj PowhegBox matrix element [66]
interfaced to the Pythia 8 parton shower [67] using Powheg matching [68]. These
predictions were cross-checked against results produced with the aMC@NLO matrix
element generator [69] interfaced to the Pythia 8 parton shower using FxFx matching [70].
Hadronization was performed with the Pythia 8 event generator, while hadrons were
decayed with the EvtGen package [49] interfaced with the Photos final state radiation
generator [71]. The results in Ref. [28] were produced using the CT14 NNLO PDF set [77]
for the matrix element, and the corresponding LO PDF set for the parton shower. Using
the kinematics of the initiating partons, these results were then weighted in this analysis
to produce predictions from more recent PDF sets.

The associated systematic uncertainty for these predictions consists of PDF, scale,
and strong-coupling uncertainty. Full correlations were considered when evaluating these
uncertainties. The PDF uncertainty is determined using the technique of Monte Carlo
PDF replicas [72], while the scale uncertainty is determined from the envelope obtained by
independently varying both the factorization and renormalization scales by up to a factor
of two. The strong coupling uncertainty is evaluated by varying αs within experimental
uncertainty. Both the scale and strong-coupling uncertainties largely cancel in the ratio,
leaving the PDF as the dominant source of uncertainty.

These theory predictions are validated by comparing to the Rc
j results from the CMS

collaboration at central y(Z) [40], where there is minimal sensitivity to IC. The CMS
collaboration measured Rc

j to be (10.2 ± 0.9)%. Reference [40] also provides NLO SM
predictions, (11.1 ± 0.3)% and (9.0 ± 0.9)%, obtained using the aMC@NLO generator
interfaced with the Pythia 8 parton shower using FxFx matching and the fixed-order
MCFM generator [73,74], respectively. Repeating the procedure used to obtain the theory
predictions presented in this Letter, but in the CMS fiducial region, gives (9.6± 1.0)%,
(9.5± 1.0)%, and (9.7± 1.0)% for the PDF4LHC15 no IC, NNPDF 3.0 IC allowed, and
CT14 with LFQCD PDFs, respectively. Therefore, the approach used here produces
predictions that are consistent both with the CMS measurement and with the theory
predictions provided in Ref. [40].

Finally, in Fig. 5 the CT14 with LFQCD results are from the PDF set labeled as
BHPS3 in Ref. [37], which is provided for the value 〈x〉IC = 1%.
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Additional Numerical Results

Numerical results are provided in Table 3. The statistical uncertainties are uncorrelated
between y(Z) intervals, whereas the systematic uncertainties are approximately completely
correlated. Since many of the systematic uncertainties are correlated between y(Z)
intervals, numerical results are also provided for the ratios of Rc

j values between pairs of
intervals in Table S1.

Table S1: Numerical results for the ratios rcj(i/k) ≡ Rcj[y(Z)i]/Rcj[y(Z)k], where the first
uncertainty is statistical and the second is systematic for each result. The labels low, mid, and
high refer to y(Z) ranges of 2.00–2.75, 2.75–3.50 and 3.50–4.50, respectively.

Ratio Value

rcj(mid/low) 0.59± 0.07± 0.04
rcj(high/low) 0.70± 0.09± 0.05
rcj(high/mid) 1.19± 0.16± 0.05
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J. Garćıa Pardiñas26,j , B. Garcia Plana46, F.A. Garcia Rosales12, L. Garrido45, C. Gaspar48,
R.E. Geertsema32, D. Gerick17, L.L. Gerken15, E. Gersabeck62, M. Gersabeck62, T. Gershon56,
D. Gerstel10, L. Giambastiani28, V. Gibson55, H.K. Giemza36, A.L. Gilman63,
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70Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

71Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to 7

72Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of
Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China,
associated to 3

73School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3

74Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 13

75Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to 17

76Institut für Physik, Universität Rostock, Rostock, Germany, associated to 17

77Eotvos Lorand University, Budapest, Hungary, associated to 48

78INFN Sezione di Perugia, Perugia, Italy, associated to 21

79Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 32

80Universiteit Maastricht, Maastricht, Netherlands, associated to 32

v



81National Research Centre Kurchatov Institute, Moscow, Russia, associated to 41

82National Research University Higher School of Economics, Moscow, Russia, associated to 42

83National University of Science and Technology “MISIS”, Moscow, Russia, associated to 41

84National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 41

85DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to 45

86Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to 59

87University of Michigan, Ann Arbor, United States, associated to 68
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