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Abstract. In recent years, cloud sync & share storage services, provided
by academic and research institutions, have become a daily workplace envi-
ronment for many local user groups in the High Energy Physics (HEP) com-
munity. These, however, are primarily disconnected and deployed in isolation
from one another, even though new technologies have been developed and inte-
grated to further increase the value of data. The EU-funded CS3AMESH4EOSC
project is connecting locally and individually provided sync and share services,
and scaling them up to the European level and beyond. It aims to deliver the
ScienceMesh service, an interoperable platform to easily sync and share data
across institutions and extend functionalities by connecting to other research
services using streamlined sets of interoperable protocols, APIs and deploy-
ment methodologies. This supports multiple distributed application workflows:
data science environments, collaborative editing and data transfer services.

In this paper, we present the architecture of ScienceMesh and the technical de-
sign of its reference implementation, a platform that allows organizations to join
the federated service infrastructure easily and to access application services out-
of-the-box. We discuss the challenges faced during the process, which include
diversity of sync & share platforms (Nextcloud, Owncloud, Seafile and others),
absence of global user identities and user discovery, lack of interoperable proto-
cols and APIs, and access control and protection of data endpoints. We present
the rationale for the design decisions adopted to tackle these challenges and de-
scribe our deployment architecture based on Kubernetes, which enabled us to
utilize monitoring and tracing functionalities. We conclude by reporting on the
early user experience with ScienceMesh.

1 Introduction

Enterprise file synchronization and sharing (EFSS) providers in the European landscape, such
as Nextcloud, Owncloud, and Seafile, have become indispensable to research groups, scien-
tists and engineers, owing to the ease of sharing, transferring and synchronizing petabytes
of data and deploying applications to work on it. Especially during the pandemic, there has
been a significant increase in the use and implementation of small local ecosystems of tools
for research collaboration. Typical deployments, however, suffer from the problem of ser-
vice fragmentation, as they consist mostly of ad-hoc binding implementations of multiple
user-facing applications and storage backends. While this approach works well in the short
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term by reducing the time taken to take the system to production, it introduces multiple prob-
lems [1]:

1. Integrating new application services developed at other sites is a cumbersome process
as the implementations cater to specific infrastructures and use-cases and are, therefore,
independent from each other. This makes portability across EFSSs extremely difficult.

2. Users don’t have the freedom to work with an application of their choice as the system
only provides bindings with a single option. This issue has been plaguing a widespread
migration to cloud-based services.

3. Collaboration is restricted to just the local consumers, imposing barriers which limit it
to the institutional level.

To address these issues and to enable interactive and agile sharing across deployments, the
CS3MESH4EOSC [2] project aims to combine various systems and services to boost open-
science by developing a joint, coordinated service for users in the research and education
space at a pan-European level. The goal of the project, funded by the European Union, is
to develop the ScienceMesh service, a federated mesh which would allow users to sync and
share data, and consume multiple applications across deployments all over Europe.

1.1 Use Cases

ScienceMesh aims to go above and beyond the functionalities provided by the commonly
used cloud sync platforms, providing tools and applications focused on improving the degree
of collaboration in the research ecosystem, especially the HEP community, by leaps and
bounds. Initially, focus has been directed to the following data services and efforts for their
development are in full swing:

e Federated, secure sharing and synchronization of data across different sync-and-share
providers.

e Real-time collaborative editing through open-source office suites such as Collabora and
Codimd, data archiving and publishing through platforms such as Zenodo.

e Data science environments, such as SWAN [3], for data processing and analysis in Jupyter-
Lab notebooks.

e On-demand data transfers, moving large datasets across countries using tools such as
Rclone and Rucio [4].

The rest of the paper is organized as follows: we start by presenting the architecture
and workflows involved in the ScienceMesh service in Section 2 and the technical aspects
behind this architecture in the reference implementation, which serves as the backend for
the aforementioned use cases, in Section 3. We describe our Kubernetes-based deployment
infrastructure in Section 4 and conclude by describing the initial user testing with the platform
and the next steps in the project in Section 5.

2 CS3MESHA4EOSC: Design and Workflow

To facilitate more EFSS providers to join the federated mesh, we utilize existing standard
protocols wherever appropriate and work on maturing and extending protocols already in use
by the CS3 community [5]. As a design principle, industry standard transport protocols (for
example, REST and gRPC) are used to interconnect server-side components and to achieve
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maximal interoperability. The choice of the transport protocol is based on the following
criteria: quality of implementation, wide adoption in the industry and in open-source projects,
support for multiple programming languages (to increase integration with all systems based
on different technologies) and enterprise-grade tooling (debuggers, testing frameworks).

2.1 Open Cloud Mesh (OCM)

Open Cloud Mesh (OCM) [6, 7] aims to develop a web-based protocol for universal file ac-
cess beyond individual cloud deployments that would support a globally interconnected mesh
of such deployments without sacrificing any of the innumerable advantages in privacy, con-
trol and security that an on-premise cloud provides. OCM defines a vendor-neutral, common
file access layer across an organization and/or across globally interconnected organizations,
regardless of the user data locations and choice of clouds.

To keep the API specification minimal, only the endpoints to enable receiving and listing
shares from other mesh providers have been added [8]; the initiation of share creation by
the users has been left to the internal mechanism adopted by the individual EFSS providers.
When a user initiates an OCM share, their EFSS provider sends a POST request to an end-
point exposed by the recipient’s provider. These endpoints can be retrieved either from the
local database or a central registry to which all providers must register. These remain un-
protected as the original user’s provider won’t have any information about the authentica-
tion mechanisms followed on the others. While no authentication happens between any two
providers, there are, however, access control mechanisms in place to prevent DOS attacks
and bogus requests, which are discussed in Section 3. A share is created only when the calls
to both mesh providers complete successfully, ensuring data consistency.

Alice EFSS -1 EFSS -2 Bob

POST /ocm-shares
Path: /a/doc, Grantee: bob@efss-2
POST /shares

Path: /a/doc, Grantee: bob®@efss-2,
Owner: alice@efss-1,
Protocol: WebDAV
Permissions: R/W

GET /shares

[/a/doc at alice@efss-1]

Alice EFSS -1 EFSS -2 Bob

Figure 1. OCM Share workflow across providers in ScienceMesh

2.2 User discovery

The existing OCM protocol implements sharing that requires the "origin" user to know the
exact federated identity of the party in the remote system, as is evident in Figure 1. While this
requirement seems natural from the point of view of the design of an API which is meant to
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be simple and platform-agnostic, from a user experience point of view such knowledge can-
not be reasonably expected, since identity management strategies will vary across providers
and often involve seemingly random unique identifiers which would be almost always im-
possible to predict by the sharing party. Multiple approaches were considered and evaluated
to introduce a discovery mechanism to OCM:

e Having a central registry which enables searching for users and groups. While this is
the most straightforward approach, it would introduce multiple constraints and require ad-
ditional infrastructure, not to mention scalability issues. It would involve exposing in-
formation about local legacy users to other deployments, to which not every user might
consent. Furthermore, the same user may be registered across multiple providers with the
same identifiers, which would significantly degrade the user experience associated with the
search process.

e Having a workflow which allows users to be "invited" in order to start collaborating.
Through invites shared via any third-party communication channel, the recipient would
be redirected to a service which would allow them to "reveal" and prove their identity via
their cloud provider. This would solve the issue of consent and users having multiple ac-
counts, but would have the downside of introducing a dependency on an additional central
service.

The approach adopted for ScienceMesh starts from the second option described above
and tries to improve on the scalability aspect by removing the additional dependency on the
central server. As an alternative, each provider itself exposes a service which allows the recip-
ient to choose the system through which they want to collaborate, in case they have accounts
on more than one. Once the recipient is authenticated to their system, this is communicated
to the host provider, and the invitation workflow is complete.

Alice. EFSS-1 EFSS -2 Bob

Token sent via mail/QR code/text

Accept invite via EFSS-2

oK

Endpoint: federation.efss-2.com/invites/forward, origin: efss-1, token

POST /invites/forward

Origin: efss-1, token
POST /invites/accept
Bob's metadata, token
0K, invite accepted

OK

POST /notifications

Invite accepted by Bob

Alice EFSS-1 EFSS -2 Bob

Figure 2. Creating and accepting invites to initiate OCM sharing
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2.3 File manipulation over WebDAV

The aforementioned invitation and OCM share workflows enable the required metadata ex-
change, keeping in mind the need to share as minimal information as possible to preserve
user privacy. These involve sending POST requests to the other mesh providers and thus
won’t create any significant bottlenecks as far as performance is concerned. The actual file
access and manipulation, however, can prove to be extremely resource-heavy and thus needed
time-tested protocols to be implemented. ScienceMesh currently serves these over the Web-
DAV [9] protocol. WebDAV (Web Distributed Authoring and Versioning) extends the Hyper-
text Transfer Protocol (HTTP) by adding functionalities which allow clients to author remote
Web content. These functionalities include maintenance of metadata such as authors, modi-
fication date and time, namespace management, collections, and permissions enforcement.

The Interoperability Platform (Section 3) implements a custom WebDAYV service which
abstracts the underlying details from the end users. When the originating system creates a
share on the recipient’s provider, a JWT [10] token is transported which contains encrypted
information about the resource path, namespace, permissions and the endpoints for accessing
it. When the recipient wants to access the shared resource, this request forwards this token
back to the host system, where it is translated by a storage registry (Section 3.2), and the
resources are served accordingly.

3 Implementation of the Interoperability Platform

We now present a reference implementation for the complete architecture, developed with the
aim to facilitate joining the federated service infrastructure by interested organizations and to
encourage wider adoption of the OCM protocol. The implementation is based on the vendor-
neutral Cloud Sync and Share Services APIs (CS3APIs) [1, 11] interfaces and is present in
the Interoperability Platform (IOP) called Reva [12].

3.1 CS3APIs

CS3APIs provide programming interfaces to define and connect various services to ensure
interoperability in a sync & share system. These connect various microservices, from storage
backends and authentication mechanisms to front-end applications and sharing drivers, in a
vendor-neutral format over a well-defined metadata control plane. Thus, these enable porting
applications adhering to certain specifications across platforms, allowing administrators to
significantly widen the scope of services being offered by integrating new applications and
data services seamlessly.

CS3APIs messages are defined using Protocol Buffers, which allows encoding structured
data in extremely efficient formats, and removes the limitations associated with the choice
of technology stacks by providing language interoperability. gRPC is the chosen transport
protocol for inter-component communication.

In addition to the already existing interfaces spanning the breadth of sync and share sys-
tem requirements, we introduce new definitions for OCM-specific endpoints which would
allow multiple drivers to be easily plugged in. These include:

e OCM Invite API: Provides endpoints to generate invite tokens, forward recipient metadata
to other mesh providers and complete the invitation workflow.

e OCM Share API: These are endpoints which are utilized by EFSSs to create internal
OCM shares. These are also responsible for triggering actions on the remote providers to
ensure consistency across providers. These also store share references which are translated
to WebDAV endpoints through which the shared resources can be manipulated.
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e OCM Core API: These unprotected endpoints (Section 2.1) are exposed by all providers
registered in the mesh, using which other trusted mesh providers can create remote shares
on their site.

e OCM Provider API: These are utilized to retrieve metadata exposed by the mesh providers
and verify incoming requests, based on methods described in 3.3.

3.2 Reva

Reva is a microservice-based implementation of CS3APIs which has been powering the back-
end at CERNBox [13] since 2018, a sync and share platform which supports 37,000 users,
accessing over 12 PB of data. It also serves as the storage and applications component for the
new flagship ownCloud platform, oCIS [14]. It serves as the entry point multiple driver imple-
mentations of each of the CS3APIs interfaces which can be served simultaneously (Figure 3).
This allows EFSSs to connect directly to it via CS3APIs and get access to a rich ecosystem of
applications without worrying about their inner workings. Reva operates using dynamic rule-
based registries which redirect the interface requests to the corresponding drivers based on an
administrator-set configuration, client headers or user agents. Service discovery is enabled
via configuration files but a dedicated microservice which would allow arbitrary services to
register themselves is also planned.

The OCM protocol has been integrated with Reva, which allows reusing state of the art
software, and access to functionalities not specified in the OCM specification. These added
functionalities can vary across the various providers registered in the mesh, and discussing
those is out of the scope of this paper. The existing application bindings are also available
out-of-the-box, which significantly expands the breadth of use cases fulfilled in ScienceMesh.

)
|

CS3APIs

Applications
orage (Jupyter NB,
(53, EOS, NFS) Drawl0, Codimd)

Figure 3. Reva: interoperability across interfaces

3.3 Access Control over Unprotected Endpoints

As described in Section 2, both the OCM share and invitation APIs need to expose unpro-
tected endpoints which are accessed by other providers in the federated mesh. This lack of
authentication introduces multiple security concerns that can be exploited by attackers. We
employ the following measures to counter these:

6



EPJ Web of Conferences 251, 02041 (2021) https://doi.org/10.1051/epjcont/202125102041
CHEP 2021

e Rate limiting the number of requests to the metadata endpoints. Since shares and invites
are initiated manually, an increase in the access rate to the corresponding endpoints may
suggest a DOS attack. This limit has to be applied to the unprotected endpoints, while
data access through WebDAV is protected by bearer tokens and can’t be placed under this
restriction as multiple applications might require read or write access at high frequencies.

e Shared API keys between the different providers can be used to establish trust between
pairs of providers. As mentioned in Section 2.1, these keys are part of provider metadata
which can either be retrieved locally or polled from a central service. While the former
approach is bound to fail if there’s a change in the keys or if a new provider registers in
the mesh, the latter places a lot of trust on the central server, which might become a single
point of failure. The keys might also be leaked in cases of man-in-the-middle (MITM)
attacks, which can then be utilized to propagate bogus data.

e Another access control mechanism is based on reverse lookups of the incoming request’s
host. This would require knowledge of the domains of all the registered providers and
making sure that the request initiator can be resolved to these. This approach takes care of
the invulnerability to MITM attacks.

4 Deployment Reference

A very relevant aspect to consider while designing complex software systems is how they are
deployed and operated over time. As pointed in previous sections, we have relied on well-
established open-source projects as the mesh building blocks, and when it came to deploying
those blocks, we chose to be consistent with that same approach. With this in mind, we
focused on two mature technologies that have gained popularity and adoption in the last
decade:

o Application containers: While container runtimes are not a new concept, the Docker
project put them back in the spotlight by providing a simple but powerful packaging and a
distribution model for the generated artifacts.

e Container orchestration: It offers a set of primitives that can be perceived to provide
operating-system-like APIs and features (scheduler, jobs, etc.) to manage container work-
loads distributed across a cluster. It reduces the toil of managing and scaling complex
service topologies and provides built-in extensibility and policy-enforcement mechanisms.

4.1 Challenges of Cloud-Native Adoption

To embrace the technologies just described, we evaluated Kubernetes as the ideal platform to
deploy the sites participating in the CS3MESH4EOSC testbed. Maintaining comprehensive
documentation [15] to use these abstractions is also crucial for this assumption to work.
While there are several reasons to back up this decision, it is also relevant to describe some
of the challenges that it poses. Being such a powerful but recent and evolving technology,
Kubernetes still presents a steep learning curve, with most organizations still evaluating it
prior to adoption. Also, some aspects related to networking and storage are still not as mature
as they should be out-of-the-box, requiring additional components to overcome those.

4.2 Packaging and Distribution

Given the substantial challenge of deploying the project on such a spectre of organizations,
we tried to lower the entry barrier for adoption as much as possible while providing simple
but powerful configuration options.
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The Helm project defines itself as a *’Kubernetes package manager’ and was selected
for this task primarily for its simplicity and composability, as well as the broad community
adoption and learning resources. The following taxonomy is a bottom-up summary of where
each artifact fits in this strategy.

1. Container images: The atomic functional units. These are publicly available [16] and
can be deployed in a cluster using pods.

2. Helm charts: Use templates to instantiate and configure application manifests that
consume the container images based on the user-provided values.

3. "Umbrella" charts: Meta-packages, collections of charts that can be used to:

e Reuse existing, official or community-contributed packages to create semantically-
related collections of third-party software that share a context.

e Hide the fine-grained dependency details.

Initial versions of the charts deployed a single daemon architecture with minimal con-
figuration options and appropriate defaults, backed by ephemeral storage. Persistent storage
through independent storage providers supported by either native Kubernetes entities [17] or
by network file systems, and configured with separated concerns was subsequently introduced
as the project grew. These charts reduce the complexity of traditional configuration manage-
ment systems to a set of YAML files, ensuring that users do not require prior knowledge of
the platform to deploy the applications.

‘
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prometheus-community/ grafana/ cs3org/ cs3org/ cs3org/ cs3org/ collabora-code/ codimd/
revad wopiserver ® collabora codimd
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Figure 4. ScienceMesh project chart topology.

Using the IOP umbrella chart [18], a site can be deployed, upgraded, or configured on
an existing cluster, extended and integrated with supported applications, all with a single
command. This principle also applies to the central monitoring component, deployed through
the "Central Brain’ chart. In figure 4, we describe some of the relationships between the
project charts and their components.

4.3 Observability and Telemetry

To monitor user interaction and activity, we need techniques that capture and describe the
internal state of such a complex system. The ’observability’ term has been broadly adopted
recently to describe such needs. It seats on three pillars: metrics, logs and traces. While the
gathering of the first two is well-established in IT operations teams, the complexity introduced
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by distributed architectures has also created the need for more powerful tools, capable of
preserving the relevant context of a distributed transaction across the system.

To achieve the desired level of visibility for these sites, we devised a "central brain"
component, composed of a subset of projects from the rich Prometheus ecosystem. This
involved the integration of probes guided by alarming thresholds to determine the behaviour
of the platform from an admin perspective. Following the umbrella-chart model, a similar
package to simplify the deployment of this monitoring infrastructure was published.

O oo

. PROMETHEUS

Reva

Wetric Scrapping

ScionceMesh Metric Producers.

(3 o o | P ot |
@orve Biomo
' Parties

Figure 5. ScienceMesh Federated Monitoring Architecture

Once the sites were complemented with increasing applications and components, the
choice of Prometheus proved its value by being aligned with the building principles of Sci-
enceMesh: scalable and decentralised. A lightweight Prometheus server instance on each site
aggregates disparate metrics for a short retention period and is the entry point for the central
server, fine-tuned for increased retention and integrated with alarming and visualization tools,
such as Grafana. A different approach is applied for logging, where the centralization of the
logs though projects like Logstash [19] or Grafana Loki [20], should be made on a per-
site basis to prevent the disclosure of user-sensitive information. Lastly, we also treat the
tracing instrumentation using the OpenTelemetry [21] and Jaeger projects as first-class citi-
zens throughout the project, acknowledging the added value that the correlation of events can
provide to detect and troubleshoot issues.

5 Preliminary Tests and Conclusion

Implementation of the OCM protocols interacting over CS3APIs in the IOP has enabled us
to work towards making these use cases available across the 8 early adopter sites, which
are based on different EFSS platforms - CERNBox, SURFdrive, PSNCBox, CloudSTOR,
Sciebo, owncloud @ CESNET, SWITCHdrive and ScienceData, while other partners are about
to join. Initial automated as well as manual rounds of tests across these sites covered many
scenarios, from validating the registration of new sites in the mesh, to issuing OCM share
requests and manipulating resources over WebDAV. Various bugs and missing functionalities
were reported during these tests and fixed, making the platform more robust. Collaborative
editing using the Collabora CODE [22] application was tested across multiple sites as well, a
small demonstration of one of the many the use cases that ScienceMesh can enable.
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Efforts into developing bindings for more research-oriented applications and attracting
members from the HEP community to join the mesh will continue over the next few years.
These developments would enable us to scale our platform to a much larger audience, en-
abling true collaboration among researchers all over Europe.
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