Constraints on Off-shell Higgs Boson Production and the Higgs Boson Total Width in ZZ Final states with the ATLAS Detector

Theodota LAGOURI ⁽¹⁾ on behalf of the ATLAS Collaboration ICNFP 2021 23 August-2 September, Crete, Greece

Abstract

The off-shell production of SM Higgs boson, at the high-mass off-peak region beyond 2m₇, well above the measured resonance mass of m_H=125 GeV, has a substantial cross section at the LHC, due to the increased phase space as the Z bosons become onshell with the increasing energy scale. This presents a novel way of characterizing the properties of the Higgs boson in terms of the off-shell event yields, normalized to the SM prediction (referred to as signal strength μ), and the associated off-shell Higgs boson couplings. Assuming the ratio of the Higgs boson couplings to the SM predictions is independent of the momentum transfer of the Higgs boson production mechanism, a combination with the on-shell signal-strength measurement was used to set indirect limits on the total Higgs boson width with the 36 fb⁻¹ ATLAS Run-2 data collected in proton-proton collisions at the centre-of-mass energy of $\sqrt{s} = 13$ TeV.

ATLAS EXPERIMENT

Introduction & Motivation

- <u>Main Purpose</u> is to study the off-shell Higgs boson production in ZZ events above the m_{H} peak (~15% of the overall ggF crosssection)
 - Further characterize the Higgs boson properties:
 - measure the off-shell signal strength
 - probe new physics which can play a role in modifying the couplings structure
 - The SM Higgs total width, $\Gamma_{\rm H} \sim 4$ MeV, is not directly measurable at the LHC due to experimental limits
 - indirectly constrain the Higgs total width, assuming identical on-shell and off-shell couplings

Analysis Results

- For the $ZZ \rightarrow 4\ell$ channel, the shape fits to a Matrix Element -based kinematic discriminant, while the $ZZ \rightarrow 2\ell 2\nu$ fits to the transverse mass ZZ distribution
- Main backgrounds: $qq \rightarrow ZZ, gg \rightarrow ZZ$
- Interference (negative) between signal and $gg \rightarrow ZZ$ continuum is considered
- The experimental systematics are almost negligible. The dominant systematic is the theory uncertainty on the highorder QCD corrections for ZZ background and signal

$H^* \rightarrow ZZ \rightarrow 4I$

Analysis Overview

- The study is based on two independent analyses (ZZ $\rightarrow 4\ell$, ZZ $\rightarrow 2\ell 2\nu$) that are combined to derive the final constraints
- The event selections are performed inclusively in the number of jets to reduce QCD-corrections dependence
- Use data collected by the ATLAS experiment in 2015 and 2016 at an integrated luminosity of 36.1 fb⁻¹
- On-shell region is defined between 118-129 GeV, while the off-shell is defined between 220-2000 GeV (ZZ $\rightarrow 4\ell$) and 250-2000 GeV (ZZ $\rightarrow 2\ell 2\nu$)

Analysis Strategy

<u>Two-steps strategy:</u>

Conclusions

- Measurement of off-shell Higgs boson production in $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ ($\ell = e \text{ or } \mu$)
- Using LHC ATLAS Run-2 36.1 fb⁻¹ data at \sqrt{s} =13 TeV
- Observed (expected) upper limit at 95% CL on off-shell Higgs signal strength of 3.8 (3.4)
- 1. Off-shell signal strength measurement
 - Interpetation of off-shell when fixing the ratio of the signal strength in ggF and VBF to the SM prediction
- 2. Higgs total width measurement
 - Interpretation of the Higgs total width when assuming the same on-shell and off-shell couplings $\frac{\mu_{off-shell}}{\mu_{on-shell}} = \frac{\Gamma_H}{\Gamma_H^{SM}}$
- **References:**

- Off-shell Higgs signal strength: event yield normalized to SM prediction
- Combination with the on-shell signal-strength measurements yields observed (expected) 95% CL upper limit on Higgs boson total width of 14.4 (15.2) MeV • Assuming ratio of Higgs boson couplings to SM predictions independent of momentum transfer of Higgs production mechanism

(1) Affiliation: UTA, Chile

CONSTRAINTS ON OFF-SHELL HIGGS BOSON PRODUCTION AND THE HIGGS BOSON TOTAL WIDTH IN ZZ FINAL STATES WITH THE ATLAS DETECTOR

Theodota Lagouri (UTA)

On behalf of the ATLAS Collaboration

INTRODUCTION& MOTIVATION

- Main Purpose is to study the off-shell Higgs boson production in ZZ events above the m_H peak (~15% of the overall ggF cross-section)
 - Further characterize the Higgs boson properties:
 - measure the off-shell signal strength
 - probe new physics which can play a role in modifying the couplings structure
 - The SM Higgs total width, $\Gamma_{\rm H} \sim 4$ MeV, is not directly measurable at the LHC due to experimental limits
 - indirectly constrain the Higgs total width, assuming identical on-shell and off-shell couplings

INTERFERENCE

- <u>Interference</u> is significant between off-shell signal and continuum ggZZ background
- SBI=S+B+I, S : signal (gg \rightarrow H^{*} \rightarrow ZZ), B : background (gg \rightarrow ZZ), I : interference term

- Signal only, Background only, and SBI samples used
- Interference term "I" is derived with the samples "I = SBI-S-B"
- Signal related distribution (signal strength, μ): μ ·S+ $\sqrt{\mu}$ ·I+B

Differential cross-sections

ANALYSIS STRATEGY

- The study is based on two independent analyses $(ZZ \rightarrow 4\ell, ZZ \rightarrow 2\ell^2 v)$ that are combined to derive the final constraints
- On-shell region is defined between 118-129 GeV, while the off-shell is defined between 220-2000 GeV $(ZZ \rightarrow 4\ell)$ and 250-2000 GeV $(ZZ \rightarrow 2\ell 2v)$
- Interference (negative) between signal and $gg \rightarrow ZZ$ continuum background is considered
- $ZZ \rightarrow 4\ell$ channel, ME, Matrix Element based kinematic discriminant
- $ZZ \rightarrow 2\ell 2\nu$ channel, m_T^{ZZ} , transverse mass ZZ distribution

$$D_{\rm ME} = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right) \quad c=0.1$$

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

ANALYSIS OVERVIEW $(ZZ \rightarrow 4\ell)$

- On-shell high-mass* event selection used as baseline in the off-shell region: $220 \text{ GeV} < m_{4l} < 2000 \text{ GeV}$
- Four final states: 4e, 4μ , $2e2\mu$, $2\mu2e$
- Backgrounds:
 - ZZ continuum from MC, $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$, ~97%
 - Reducible estimated from data, ~3%
- Shape fit to Matrix Element (ME) based kinematic discriminant
 - ME is based on 8 observables defining the event kinematics in the center of mass frame of 4ℓ system
- $P_{q\bar{q}}$: the matrix element squared for the $q\bar{q} \rightarrow ZZ \rightarrow 4\ell$ process,
- P_{gg} : the matrix element squared for the $gg \rightarrow (H^* \rightarrow)ZZ \rightarrow 4\ell$ process which includes the Higgs boson with SM couplings, continuum background and their interference,
- P_H : the matrix element squared for the $gg \to H^* \to ZZ \to 4\ell$ process.

ANALYSIS OVERVIEW(ZZ $\rightarrow 2 \ell 2 \nu$)

- Gain in signal yield $Br(ZZ \rightarrow 2\ell 2\nu) \sim 6 Br(ZZ \rightarrow 4\ell)$
- Baseline selection same as high-mass* $ZZ \rightarrow 2\ell 2\nu$ search reoptimized
 - Higher energy region: $E_T^{miss} > 175 \text{ GeV}, E_T^{miss}/H_T > 0.33$
- Two final states: $2\mu 2\nu$, $2e2\nu$ (2 isolated leptons, large E_T^{miss})
- Backgrounds
 - Irreducible from MC, $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$, ~63%
 - Reducible from data, ~37%
- Shape fit to transverse mass distribution m_T^{ZZ}

SYSTEMATICS

- The experimental systematic uncertainties for both channels are almost negligible
- The dominant systematic is the theory uncertainty on the high-order QCD corrections for qqZZ background and signal $gg(\rightarrow H^*) \rightarrow ZZ$ (10-20%)

*Eur. Phys. J. C 78 (2018) 293

ANALYSIS RESULTS (ZZ)

Expected and observed yields in the signal region for both final states

		77 40		77 0.00
Process		$ZZ \rightarrow 4\ell$		$ZZ \rightarrow 2\ell 2\nu$
		$m_{4\ell}>220~{\rm GeV}$	$m_{4\ell} > 400 \; {\rm GeV}$	$m_{\rm T}^{ZZ} > 250 { m GeV}$
$gg \rightarrow (H^* \rightarrow)ZZ$		96 ± 15	10.6 ± 2.0	22 ± 4
	$(gg \rightarrow H^* \rightarrow ZZ (S))$	9.8 ± 1.5	5.9 ± 1.0	$20.1 \pm 3.3)$
	$(gg \rightarrow ZZ (B)$	101 ± 16	11.8 ± 2.2	$28 \pm 6)$
$\operatorname{VBF}(H^* \rightarrow)ZZ$		8.29 ± 0.34	3.07 ± 0.13	2.83 ± 0.14
	$(\text{VBF } H^* \to ZZ \text{ (S)}$	1.67 ± 0.08	1.14 ± 0.04	$5.45 \pm 0.30)$
	(VBF ZZ (B)	9.9 ± 0.4	4.17 ± 0.18	$6.92 \pm 0.35)$
$q\bar{q} \rightarrow ZZ$		520 ± 42	77 ± 8	132 ± 15
$q\bar{q} \rightarrow WZ$		-	-	68 ± 4
$WW/t\bar{t}/Wt/Z \to \tau\tau$		-	-	2.6 ± 1.0
Z + jets		-	-	6.0 ± 2.8
Other backgrounds		14.6 ± 0.7	2.15 ± 0.15	1.14 ± 0.08
Total Expected (SM)		639 ± 60	93 ± 10	234 ± 16
Observed		704	114	261
Other signal hypothesis				
$gg \rightarrow (H^* \rightarrow)ZZ (\mu_{\text{off-shell}} = 5)$		117 ± 18	26 ± 5	61 ± 12
VBF $(H^* \rightarrow)ZZ (\mu_{\text{off-shell}} = 5)$		11.0 ± 0.5	4.85 ± 0.22	8.8 ± 0.4

Leading systematic uncertainties

Sustamatia uncontaintu	95% CL upper limit on $\mu_{\text{off-shell}}$		
Systematic uncertainty	$ZZ\to 4\ell$	$ZZ \rightarrow 2\ell 2\nu$	Combined
QCD scale $q\bar{q} \rightarrow ZZ$	4.2	3.9	3.2
QCD scale $gg \rightarrow (H^* \rightarrow)ZZ$	4.2	3.6	3.1
Luminosity	4.1	3.5	3.1
Remaining systematic uncertainties	4.1	3.5	3.0
All systematic uncertainties	4.3	4.4	3.4
No systematic uncertainties	4.0	3.4	3.0

ANALYSIS INTERPRETATION

• Derive the Higgs width based on the both on-shell and off-shell coupling measurement

- Off-shell signal strength measurement:
 - Fix the ratio $\mu^{ggF} / \mu^{VBF} = 1$ as SM predicted, and derive the limit on inclusive $\mu_{off-shell}$
- Higgs boson total width measurement: $\mu_{\text{off-shell}}/\mu_{\text{on-shell}} = \Gamma_H/\Gamma_{SM}$
 - Assume identical on-shell and off-shell couplings ($\kappa_{g,on-shell} = \kappa_{g,off-shell} = \kappa_{V,off-shell} = \kappa_{V,off-shell}$)
- $R_{gg} = \mu^{\text{ggF}}_{\text{off-shell}} / \mu^{\text{ggF}}_{\text{on-shell}}$, interpreted as ratio of off-shell to on-shell gluon couplings
 - Assume coupling scale factors $\kappa_V = \kappa_{V, \text{ on-shell}} = \kappa_{V, \text{ off-shell}}$ (profiled), and total width equal to SM prediction ($\Gamma/\Gamma_{SM}=1$)

ANALYSIS RESULTS-FITS

 $H^* \rightarrow ZZ \rightarrow 4I$

 $\pm 2 \sigma$

[2.7, 7.1]

CONCLUSIONS

- Measurement of off-shell Higgs boson production in $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ (ℓ : e or μ),
- Using LHC-ATLAS Run-2 (2015+2016) data at $\sqrt{s}=13$ TeV with luminosity of 36.1 fb⁻¹
- Observed (expected) upper limit at 95% CL on *off-shell Higgs signal strength* of 3.8 (3.4)
 - Off-shell Higgs signal strength: event yield normalized to SM prediction
- Combination with the on-shell signal-strength measurements yields observed (expected) 95% CL upper limit on *Higgs boson total width* of 14.4 (15.2) MeV
 - Assuming ratio of Higgs boson couplings to SM predictions independent of momentum transfer of Higgs production mechanism

References:

- 1. Phys. Lett. B 786 (2018) 223
- 2. Eur. Phys. J. C (2015) 75:335