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Abstract

A data set corresponding to an integrated luminosity of 9 fb−1 of proton-proton
collisions collected by the LHCb experiment has been analysed to search for

B+
c → D

(∗)+
(s)

( )

D (∗)0 decays. The decays are fully or partially reconstructed, where
one or two missing neutral pions or photons from the decay of an excited charm
meson are allowed. Upper limits for the branching fractions, normalised to B+

decays to final states with similar topologies, are obtained for fourteen B+
c decay

modes. For the decay B+
c → D+

s D
0, an excess with a significance of 3.4 standard

deviations is found.
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1 Introduction

Heavy-flavour states with b quarks are characterised by a relatively long lifetime and a
large number of decay channels, and allow for highly sensitive studies of charge and parity
(CP ) symmetry violation and quantum-loop induced amplitudes. In the B+

c meson, a b
quark is accompanied by a charm quark, c, forming a system where decays of both the
beauty and the charm quark, as well as weak annihilation processes, contribute to the
decay amplitude [1].

Transition amplitudes between up-type quarks and down-type quarks are described by
the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [2, 3]. Figure 1 illustrates
the CKM-favoured, but colour-suppressed B+

c → D+
s D

0 decay (unless specified otherwise,
charge conjugation is implied throughout this article) and the CKM-suppressed, but
colour-favoured B+

c → D+
s D

0 decay, which are expected to have similar amplitudes. This
may result in a large, O(1), CP asymmetry for final states that are common between D0

and D0 decays. Consequently decays of B+
c mesons to two charm mesons, B+

c → D+
(s)

( )

D 0,

have been proposed to measure the angle γ ≡ arg(−VudV ∗ub/VcdV ∗cb) [4–7], one of the key
parameters of the CKM matrix. Presently, the most precise determinations of γ come

from measurements of the CP asymmetry in B+→
( )

D 0K+ decays [8, 9].
Predicted branching fractions of B+

c decays to two charm mesons are listed in Table 1.

Final-state interactions may result in an enhancement of B+
c → D+

( )

D 0 decay rates [10].
Moreover, contributions from physics beyond the Standard Model could potentially affect
fully hadronic B decays [11–13].

This article describes a search for fourteen B+
c → D

(∗)+
(s)

( )

D (∗)0 decay channels, using

proton-proton (pp) collision data collected by the LHCb experiment, corresponding to an
integrated luminosity of 9 fb−1, of which 1 fb−1 was recorded at a centre-of-mass energy√
s = 7 TeV, 2 fb−1 at

√
s = 8 TeV and 6 fb−1 at

√
s = 13 TeV. The data taken at 7 and

8 TeV are referred to as Run 1, and the data taken at 13 TeV as Run 2. The Run 1 data

has previously been analysed and no evidence of B+
c → D

(∗)+
(s)

( )

D (∗)0 decays was found [18].

Charm mesons are reconstructed in the D0→ K−π+, D0→ K−π+π−π+,
D+→ K−π+π+, D+

s → K+K−π+, and D∗+→ D0π+ decay modes. In the decay

B+
c → D∗+

( )

D 0, at least one of the neutral charm mesons is required to decay as
D0→ K−π+. Partially reconstructed B+

c decays, which involve one or two excited charm
mesons producing a photon or a neutral pion in their decay, are also included in the search.

B+
c

D+
s

D0

W+

c

b

c

s

u

c

1

B+
c D0

D+
s

W+

c

b
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s
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1Figure 1: Diagrams for the (left) CKM-favoured, colour-suppressed B+
c → D+

s D
0 and (right)

CKM-suppressed, colour-favoured B+
c → D+

s D
0 decays.

1



Table 1: Predicted branching fractions of B+
c decays to two charm mesons, in units of 10−6.

Channel Ref. [14] Ref. [15] Ref. [16] Ref. [17]

B+
c → D+

s D
0 2.3± 0.5 4.8 1.7 2.1

B+
c → D+

s D
0 3.0± 0.5 6.6 2.5 7.4

B+
c → D+D0 32± 7 53 32 33

B+
c → D+D0 0.10± 0.02 0.32 0.11 0.31

B+
c → D∗+D0 12± 3 49 17 9

B+
c → D∗+D0 0.09± 0.02 0.40 0.38 0.44

These decays manifest themselves as relatively narrow structures in the mass distributions
of the reconstructed final states below the B+

c mass.
The branching fractions, B, of B+

c decays to fully reconstructed final states are

measured relative to high-yield B+→ D
(∗)+
(s) D0 normalisation modes,

R(D
(∗)+
(s)

( )

D 0) ≡
fc

fu

B(B+
c → D

(∗)+
(s)

( )

D 0)

B(B+→ D
(∗)+
(s) D0)

=
N(B+

c → D
(∗)+
(s)

( )

D 0)

ε(B+
c → D

(∗)+
(s)

( )

D 0)

ε(B+→ D
(∗)+
(s) D0)

N(B+→ D
(∗)+
(s) D0)

, (1)

where fc/fu is the ratio of the B+
c to B+ fragmentation fraction, N denotes the

measured B+
(c) yields, and ε represents the detection efficiencies. The value of

fc/(fu + fd) · B(B+
c → J/ψµ−νµ) has been measured at centre-of-mass energies of 7 and

13 TeV [19]. Under the assumption of equal production from hadronisation of B+ and B0,
fu = fd, the value of fc/fu is found to be 0.73% at

√
s = 7 TeV and 0.76% at

√
s = 13 TeV

with relative uncertainties of approximately 25%, dominated by the uncertainty on the
predicted value of B(B+

c → J/ψµ−νµ). Earlier measurements of fc/fu at 7 and 8 TeV using
fully reconstructed B+

c decays found compatible values [20, 21].

The invariant-mass distributions of partially reconstructed B+
c → D∗+(s)

( )

D 0 and

B+
c → D+

(s)

( )

D ∗0 decays overlap, so the sum of their branching fractions is measured
as

R′(D+
(s)

( )

D 0) ≡
fc

fu

B(B+
c → D∗+(s)

( )

D 0) + B(B+
c → D+

(s)

( )

D ∗0)

B(B+→ D+
(s)D

0)

=

 N(B+
c → D∗+(s)

( )

D 0)

ε(B+
c → (D∗+(s)→ D+

(s)X
0)

( )

D 0)
+
N(B+

c → D+
(s)

( )

D ∗0)

ε(B+
c → D+

(s)

( )

D ∗0)

 ε(B+→ D+
(s)D

0)

N(B+→ D+
(s)D

0)
,

(2)

where X0 represents a neutral pion or a photon.

Decays of B+
c → D∗+

( )

D ∗0 with a fully reconstructed D∗+→ D0π+ decay, and one

missing neutral pion or photon from the
( )

D ∗0 meson decay, results in measurements of

R′(D∗+
( )

D 0) ≡
fc

fu

B(B+
c → D∗+

( )

D ∗0))

B(B+→ D∗+D0)
=

N(B+
c → D∗+

( )

D ∗0)

ε(B+
c → D∗+

( )

D 0)

ε(B+→ D∗+D0)

N(B+→ D∗+D0)
. (3)
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The B+
c → D∗+s

( )

D ∗0 and B+
c → D∗+

( )

D ∗0 decays can also be observed when both
excited charm mesons decay with either a photon or a neutral pion and neither of the two
neutral particles are reconstructed. In such cases, the ratio R′′ is measured:

R′′(D+
(s)

( )

D 0) ≡
fc

fu

B(B+
c → D∗+(s)

( )

D ∗0)

B(B+→ D+
(s)D

0)

=
N(B+

c → D∗+(s)
( )

D ∗0)

ε(B+
c → (D∗+(s)→ D+

(s)X
0)

( )

D 0)

ε(B+→ D+
(s)D

0)

N(B+→ D+
(s)D

0)
.

(4)

In total sixteen ratios are measured, corresponding to fourteen B+
c branching fractions,

since B+
c → D∗+

( )

D ∗0 decays are accessed in both the D+
( )

D 0 and D∗+
( )

D 0 channels.

2 Detector and simulation

The LHCb detector [22, 23] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region [24], a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes [25,26] placed downstream
of the magnet. The tracking system provides a measurement of the momentum, p, of
charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200 GeV/c. The minimum distance of a track to a primary pp collision vertex
(PV), the impact parameter, is measured with a resolution of (15 + 29/pT)µm, where pT
is the component of the momentum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [27]. Photons, electrons and hadrons are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron
and multiwire proportional chambers [28]. The online event selection is performed by a
trigger [29], which consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.

At the hardware trigger stage, events are required to have a muon with high pT or a
hadron, photon or electron with high transverse energy in the calorimeters. For hadrons,
the transverse energy threshold is 3.5 GeV. The software trigger requires a two-, three-
or four-track secondary vertex with a significant displacement from any PV. At least
one track should have pT > 1.7 GeV/c and χ2

IP with respect to any PV greater than 16,
where χ2

IP is defined as the difference in the vertex-fit χ2 of a given PV reconstructed
with and without the considered particle. A multivariate algorithm [30,31] is used for the
identification of secondary vertices consistent with the decay of a b hadron.

Simulation is used to model the effects of the detector acceptance and the imposed
selection requirements, as well as for the training of the multivariate selection of the
B+
c signals, and for establishing the shape of the mass distributions of the signals. The

Pythia [32] package, with a specific LHCb configuration [33], is used to simulate pp
collisions with B+ production. For B+

c production, the Bcvegpy [34] generator is used,
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interfaced with the Pythia parton shower and hadronisation model. Decays of unstable
particles are described by EvtGen [35], in which final-state radiation is generated using
Photos [36]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [37] as described in Ref. [38]. The simulated
B+ production is corrected to match the observed spectrum of B+→ D+

s D
0 decays in

data, using a gradient boosted reweighter (GBR) [39] technique. The weights w(pT, y)
are determined separately for Run 1 and Run 2. Simulated B+

c events are corrected to
match the measured linear dependence of fc/(fu + fd) on pT and y [19]. In addition,
corrections using control samples are applied to the simulated events to improve the
agreement with data regarding particle identification (PID) variables, the momentum
scale and the momentum resolution.

3 Candidate selection

Charm-meson candidates are formed by combining two, three or four tracks that are
incompatible with originating from any reconstructed PV. The tracks are required to
form a high-quality vertex and the scalar sum of their pT must exceed 1.8 GeV/c. To
reduce background from misidentified particles, the pion and kaon candidates must also
satisfy loose criteria on DLLKπ, the ratio of the likelihood between the kaon and pion
PID hypotheses.

The reconstructed mass of D0, D+
s and D+ candidates is required to be within

±25 MeV/c2 of their known values [40]. For channels with a fully reconstructed
D∗+→ D0π+ meson, the mass difference ∆m between the D∗+ and the D0 candidates is
required to be within ±10 MeV/c2 of the known value [40]. If more than one charm-meson
candidate is formed from the same track combination, only the best according to PID
information is selected.

A B+
(c) candidate is formed by combining a D

(∗)+
(s) candidate with a

( )

D 0 candidate

if the combination has a pT greater than 4.0 GeV/c, forms a good-quality vertex and
originates from a PV. The reconstructed decay time of the charm meson candidates with
respect to the B+

(c) vertex divided by its uncertainty, t/σt, is required to exceed −3 for D+
s

and D0 mesons. This requirement is increased to +3 for the longer-lived D+ meson to
eliminate background from B+→ D0π+π−π+ decays where the negatively charged pion is
misidentified as a kaon. Candidate B+

c decays that are compatible with the combination

of a fully reconstructed B0
(s)→ D

(∗)−
(s) π+(π−π+) decay and a charged track are rejected.

To eliminate duplicate tracks, the opening angles between any pair of final-state particles
are required to be at least 0.5 mrad. The invariant-mass resolution of B+

(c) decays is

significantly improved by applying a kinematic fit [41] where the invariant masses of the

D0 and the D
(∗)+
(s) candidates are constrained to their known values [40], all particles from

the D
(∗)+
(s) , D0, and B+

(c) decay are constrained to originate from their corresponding decay

vertex and the B+
(c) candidate is constrained to originate from the PV with which it has

the smallest χ2
IP.

To reduce the combinatorial background, while maintaining high efficiency for signal,
a multivariate selection based on a boosted decision tree (BDT) [42, 43] is employed. The
BDT classifier exploits kinematic and PID properties of selected candidates, namely: the
fit quality of the B+

(c) candidate and both charm-meson candidate vertices; the value of
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χ2
IP of the B+

(c) candidate; the values of t/σt of the B+
(c) and both charm-meson candidates;

the reconstructed masses of the charm-meson candidates; and the reconstructed masses
of the pairs of opposite-charge tracks from the D+

(s) candidate. In addition, for each

charm-meson candidate, the smallest value of pT and the smallest value of χ2
IP among

the decay products, and the smallest (largest) value of DLLKπ among all kaon (pion)
candidates, are included as input variables for the BDT classifier.

The BDT training is performed separately for the D+
s

( )

D 0, D+
( )

D 0 and D∗+
( )

D 0

final states, separately for the D0→ K−π+ and D0→ K−π+π−π+ decay channels, and
separately for the Run 1 and Run 2 data samples. For a given D0 final state, the same
classifier is used for both B+

c → D
(∗)+
(s) D0 and B+

c → D
(∗)+
(s) D0 decays. For signal decays,

the BDT classifier is trained using simulated B+
c events, while for background, data in

the range 5350 < m(D
(∗)+
(s)

( )

D 0) < 6200 MeV/c2 are used. For the background sample, the

charm-meson mass windows are increased from ±25 MeV/c2 to ±75 MeV/c2, to increase
the size of the training sample. The k-fold cross-training technique [44] with k = 5 is used
to avoid biases in the calculation of the BDT output.

The data are divided in increasing order of signal purity into three samples having low,
medium and high BDT output. Most of the sensitivity in this search comes from the data
in the high BDT sample, but including data with lower signal purity increases the signal
efficiency and constrains the shape of the combinatorial background. A small fraction
of the events (≈ 1%) have more than one B+

(c) candidate that satisfies the minimum
BDT requirement. In such cases, one randomly selected candidate is retained per event.
Figure 2 shows the invariant mass distributions of selected B+

(c) candidates in the highest

BDT sample, summed over all D0 final states.

4 Model of the B+
(c) mass distributions

To measure the signal yields, a model of the B+
(c) candidate mass distribution is fitted to

the data in the range 5230 ≤ m(D
(∗)+
(s)

( )

D 0) ≤ 6700 MeV/c2. The model consists of the
following components, constrained to positive yields: the signals for fully reconstructed
B+ and B+

c decays; the signal for B+
c decays with one missing π0 or photon; the signal

for B+
c decays with two missing π0 or photons; the background from B+→ D0K+K−π+

decays; and the combinatorial background.
Fully reconstructed B+ and B+

c signals are described by the sum of a Gaussian function
and a Crystal Ball (CB) [45] function, extended to have power-law tails on both the
low-mass and the high-mass sides. The CB and Gaussian components share a common
peak position. The tail parameters of the CB and the ratio of the CB and Gaussian widths
and integrals are determined from simulation, accounting for a dependence of both widths
on the BDT output. The ratio of the B+

c and B+ widths is determined from simulation,
while the overall width of the B+ is a free parameter in the fit to data. The peak position
of the B+ signal is a free parameter in the fit to data, and the known mass difference
between the B+ and the B+

c meson [40] is used to constrain the peak position of the B+
c

signal.
Genuine B+→ D

(∗)+
(s) D0 decays are forbidden at tree level and consequently have

a negligible yield, but doubly Cabibbo-suppressed (DCS) decays D0→ K−π+(π−π+)

result in crossfeed of B+→ D
(∗)+
(s) D0 decays in the D

(∗)+
(s) D0 final state. An additional
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Figure 2: Invariant-mass distributions for the selected B+
(c) candidates in the highest BDT

samples for (top left) D+
s D

0, (top right) D+
s D

0, (center left) D+D0, (center right) D+D0,
(bottom left) D∗+D0 and (bottom right) D∗+D0, final states. The overlaid curves correspond to
the sum of the corresponding fit results.

source of crossfeed into the D
(∗)+
(s) D0 final state is double misidentification of the pion

and kaon in the Cabibbo-favoured D0→ K−π+(π−π+) decay. The DCS component is

constrained in yield and shape by the large B+→ D
(∗)+
(s) D0 signal, according to the known

D0 branching fractions [40]. For the shape of the misidentified component, the width

of the B+→ D
(∗)+
(s) D0 peak is scaled by a factor determined from a fit to B+→ D+

s D
0

candidates, and also used for the B+→ D(∗)+D0 final states. The yield of the misidentified
component is a free parameter in all fits to data.

Models for decays with one or two missing neutral particles from D
(∗)+
(s) and/or D(∗)0

decays are implemented as templates, obtained from kernel fits [46] to reconstructed mass

distributions in simulation. Both B+
c → D∗+(s)

( )

D 0 and B+
c → D+

(s)

( )

D ∗0 decays contribute

according to their predicted relative branching fractions [14]. For B+
c → D∗+(s)

( )

D ∗0 decays,
the longitudinal and transverse polarised contributions are weighted according to the
predicted polarisation fractions [14].
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The Cabibbo-favoured B+→ D0K+K−π+ decay is a background to the B+→ D+
s D

0

channel, though its yield is strongly reduced by the D+
s mass requirement. This background

is modelled by a single Gaussian function, with the width determined from a sample
of simulated decays and the normalisation determined from the peak in the B+ mass
distribution in the D+

s invariant mass sideband.
The combinatorial background is described by the sum of an exponential function and

a constant, where the parameters are allowed to differ between different D0 decay modes,
but are taken to be the same for all BDT samples of a given B+

c and D0 decay channel.
Studies of the charm-meson invariant-mass sidebands support these assumptions.

An unbinned extended maximum-likelihood fit is used to simultaneously describe the
mass distributions of candidates in different BDT samples and different D0 decay modes.
In these fits the background and B+ yields vary independently, but the branching fraction
ratios R, R′ and R′′, defined in Eqs. 1–4, are constrained to be identical between the BDT
sample and D0 decay modes.

5 Systematic uncertainties

Systematic uncertainties on the B+ yields and the efficiencies affect the normalisation
factor relating the B+

c yield to the branching fraction ratios. These uncertainties are
evaluated separately for Run 1 and Run 2, and for each B+

c decay, D0 channel and BDT
sample. Their effective contribution in the fit, calculated as a weighted average over BDT
samples and D0 decay modes, are listed in Table 2. Where no uncertainty is given, this
corresponds to either the absence of decays with two missing neutral particles in the

D∗+
( )

D 0 channel or the absence of the effect associated with an uncertainty in a given
data-taking period or channel.

The uncertainty on the B+
c signal shape is evaluated by changing the B+

c signal
shape to the sum of two Gaussian functions. Uncertainties related to the B+

c production
spectrum are evaluated by changing the slope parameters from Ref. [19] by their quoted
uncertainties. The uncertainty on the pT- and y-dependent weights used to correct the
B+ production spectrum in simulation is estimated by changing the settings of the GBR
algorithm. Hit resolution parameterisation in the silicon vertex detector affects the χ2

IP

distribution. The uncertainty associated with the parameterisation is therefore evaluated
with simulation by varying the minimal value of the χ2

IP applied to the final-state tracks.
The limited size of the simulation samples results in uncertainties that are uncorrelated

between the BDT samples and D0 decay channels on the efficiency ratios ε(B+
c )/ε(B+).

All other systematic uncertainties are treated as fully correlated. A small uncertainty on
the reconstruction efficiency results from that on the B+

c lifetime [40]. Uncertainties on
the PID efficiencies cancel to first order in the ratio ε(B+

c )/ε(B+) because of the identical
particle content of the final state, and the difference in relative efficiencies with and without
PID corrections is used to estimate the uncertainty from the PID correction procedure.
The requirement to select at most one B+

(c) candidate per event introduces an efficiency
that may not be well reproduced by simulation. Therefore, the fraction of candidates
removed by the requirement of at most one B+

(c) candidate per event is attributed as a
systematic uncertainty. Residual differences appear in the comparison of the distributions
of the BDT output between background-subtracted data and simulation. The effect on
the relative efficiency is evaluated by correcting the simulation to match the distributions
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Table 2: Effective contributions of systematic uncertainties on the normalisation factor, combined
over all BDT samples and D0 decay modes, given in percent.

Final state D+
s

( )

D 0 D+
( )

D 0 D∗+
( )

D 0

Run 1 Run 2 Run 1 Run 2 Run 1 Run 2
B+
c signal shape 9.4 3.8 4.8 5.3 2.8 3.9

B+
c production spectrum 3.7 2.4 3.9 2.4 4.2 2.9

B+ production spectrum 0.5 0.9 0.6 1.0 0.6 1.1
Hit resolution parameterisation – 1.5 – 1.2 – 2.2
R simulation sample size 1.2 1.0 1.4 1.1 1.5 1.5
R′ simulation sample size 1.4 0.9 2.1 1.2 1.1 1.1
R′′ simulation sample size 1.5 0.8 1.7 0.9 – –
B+
c lifetime 1.3 1.4 1.3 1.3 2.1 2.6

PID efficiencies 1.6 1.2 2.8 0.8 2.2 1.4
Multiple B+

(c) candidates 0.4 0.4 0.6 0.5 1.4 1.2

Data-simulation differences 0.1 0.1 0.1 0.1 0.1 0.2
B+→ D0K+K−π+ 0.7 0.5 – – – –
B(D∗+→ D+X0) – – 1.5 1.5 – –
R total 10.4 5.3 7.2 6.6 6.3 6.5
R′ total 4.6 3.7 5.7 3.8 5.5 5.0
R′′ total 4.6 3.7 5.5 3.7 – –

in data. The background from B+→ D0K+K−π+ decays to the B+→ D+
s D

0 signal is
assigned an uncertainty of 100% of its yield, resulting in a normalisation uncertainty of
less than 1%. The measurements of the branching fraction ratios according to Eqs. 2
and 4 involve the value of B(D∗+→ D+X0), the uncertainty of which [40] is taken into
account.

Other uncertainties, listed below, do not directly affect the normalisation and are taken
into account by varying the fit model. Unless specified otherwise, these uncertainties are
taken into account by replacing fixed values of the model parameters by their Gaussian
constraints.

The uncertainty on the combinatorial background shape is evaluated by considering
a single exponential function as an alternative to the exponential plus constant model,
implemented using the discrete profiling method [47]. The B+ shape uncertainty affects
the B+ yield but, because of its long tails, also the background shape. The effect is
evaluated by assigning an uncertainty on the tail parameters determined from a fit to
simulated events. The uncertainty on the α parameters of the CB function is increased
by adding in quadrature the largest observed difference between data and simulation of
this parameter in B+→ D+

s D
0 decays. The fractional uncertainty on the yield of DCS

crossfeed is the sum in quadrature of the fractional uncertainty on the normalisation
yield and on the branching fractions B(D0→ K+π−(π+π−)) [40]. The uncertainty on the
difference between the B+

c and B+ peak positions, 0.5 MeV/c2, arises due to uncertainty
on the measured masses [40, 48] and the momentum scale uncertainty [49]. The ratio
of the B+

c to B+ invariant-mass resolution is assigned an uncertainty from the fit to
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Figure 3: Invariant-mass distributions for the selected B+ candidates in the highest BDT samples,
in the region near the B+ mass, for (left) D+

s D
0 and (right) D+

s D
0 final states. The overlaid

curves correspond to the sum of the corresponding fit results.

simulated decays. Candidates reconstructed as B+
c → D+

(s)

( )

D 0 with one missing neutral

pion or photon have contributions from B+
c → D∗+(s)

( )

D 0 and B+
c → D+

(s)

( )

D ∗0 decays. The

uncertainties on the ratios of their relative contributions are taken from Ref. [14], to
which a term is added in quadrature that accounts for the statistical uncertainties of

the templates. The B+
c → D∗+(s)

( )

D ∗0 signals have contributions from both transverse and
longitudinal polarisations, which have differently shaped distributions of the reconstructed
mass. The uncertainties on the transverse-polarisation fractions are taken from Ref. [14],
to which a term is added in quadrature to account for the statistical uncertainties of the
templates.

6 Results and conclusions

To determine the B+
c branching fraction ratios R, R′, and R′′, fits to data are performed

separately for the six B+
c final states and for Run 1 and Run 2, while different D0 decay

modes and BDT samples are fit simultaneously. The results of the fits are shown in Fig. 2,
where the data of the highest BDT samples and the corresponding fit results are summed

over the D0 decay channels and over data-taking periods. Detailed views of the D+
s

( )

D 0

final states near the B+ mass are shown in Fig. 3 which validate the model of the large
B+→ D+

s D
0 signal and its crossfeed to the D+

s D
0 final state.

The significance of the B+
c signals are calculated using Wilks’ theorem [50] as

S =
√

2∆ logL, where ∆ logL is the difference in the logarithm of the likelihood between
the signal plus background and background-only hypotheses. Systematic uncertainties are
included in the calculation of the significance through nuisance parameters in a minimised
profile likelihood.

Evidence is found only for the decay B+
c → D+

s D
0 in Run 2 data, with a sig-

nificance of 3.7 standard deviations, and the measured branching fraction ratio is
R(D+

s D
0) = (3.6+1.5+0.3

−1.2−0.2)× 10−4, where the first uncertainty is statistical and the sec-
ond is systematic. The quoted significance for this channel is compatible with estimates
from simulated pseudoexperiments.
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Table 3: Upper limits on the branching fraction ratios R, R′ and R′′ of B+
c to B+ decays, defined

in Eqs. 1–4, at the 90(95)% C.L. for Run 2 and Run 1 data, in units of 10−3.

Run 2 Run 1
6 fb−1, 13 TeV 3 fb−1, 7 and 8 TeV

R(D+
s D

0) 0.57 (0.62) 0.45 (0.58)
R′(D+

s D
0) 0.31 (0.43) 0.6 (0.8)

R′′(D+
s D

0) 0.9 (1.0) 0.8 (1.1)
R(D+

s D
0) 0.22 (0.25) 0.51 (0.62)

R′(D+
s D

0) 0.55 (0.62) 0.8 (1.1)
R′′(D+

s D
0) 1.0 (1.1) 1.7 (2.0)

R(D+D0) 3.5 (4.4) 8 (11)
R′(D+D0) 10 (13) 17 (19)
R′′(D+D0) 20 (25) 81 (91)
R(D+D0) 2.9 (3.6) 12 (14)
R′(D+D0) 6.9 (7.9) 11 (13)
R′′(D+D0) 18 (19) 82 (93)
R(D∗+D0) 6.9 (8.4) 26 (28)
R′(D∗+D0) 16 (19) 36 (48)
R(D∗+D0) 3.6 (4.4) 8 (13)
R′(D∗+D0) 10 (12) 35 (44)

The values of R, R′ and R′′ from Run 1 and Run 2 cannot be directly combined since
the value of fc/fu depends on the pp centre-of-mass energy. Therefore, a combined fit
of both the Run 1 and Run 2 data sets is made to the absolute B+

c branching fractions,
using external input for B(B+→ D+

s D
0), B(B+→ D+D0), B(B+→ D∗+D0) [40], and

fc/fu [19]. In this combined fit the excess for B+
c → D+

s D
0 has a significance of 3.4

standard deviations, or 2.5 standard deviations when considering the probability of the
excess to appear in any of the sixteen final states considered. The corresponding value
of the branching fraction is B(B+

c → D+
s D

0) = (3.5+1.5+0.3
−1.3−0.2 ± 1.0)× 10−4, where the first

uncertainty is statistical, the second systematic and the third due to external input.
Upper limits are reported on the ratio of branching fractions for all decays, calculated

at 90% and 95% confidence level (C.L.) with the frequentist CLs method [51,52], separately
for Run 1 and Run 2. These limits are listed in Table 3.

Upper limits on the absolute B+
c branching fractions are based on the Run 2 dataset

alone, which has nearly four times the sensitivity of the Run 1 dataset. The upper limits
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at 90(95%) C.L. are

B(B+
c → D+

s D
0) < 7.2 (8.4)× 10−4;

B(B+
c → D+

s D
0) < 3.0 (3.7)× 10−4;

B(B+
c → D+D0) < 1.9 (2.5)× 10−4;

B(B+
c → D+D0) < 1.4 (1.8)× 10−4;

B(B+
c → D∗+D0) < 3.8 (4.8)× 10−4;

B(B+
c → D∗+D0) < 2.0 (2.4)× 10−4;

B(B+
c → D∗+s D0) + B(B+

c → D+
s D

∗0) < 4.1 (4.9)× 10−4;

B(B+
c → D∗+s D0) + B(B+

c → D+
s D

∗0) < 7.0 (8.5)× 10−4;

B(B+
c → D∗+D0) + B(B+

c → D+D∗0) < 5.8 (6.9)× 10−4;

B(B+
c → D∗+D0) + B(B+

c → D+D∗0) < 3.6 (4.5)× 10−4;

B(B+
c → D∗+s D∗0) < 1.1 (1.4)× 10−3;

B(B+
c → D∗+s D∗0) < 1.2 (1.4)× 10−3;

B(B+
c → D∗+D∗0) < 0.9 (1.1)× 10−3;

B(B+
c → D∗+D∗0) < 5.2 (6.7)× 10−4.

The reported upper limits on B+
c → D∗+

( )

D ∗0 decays are based on the analyses of fully
reconstructed D∗+→ D0π+ decays, which have a higher sensitivity than the channels
with partially reconstructed D∗+→ D+X0 decays.

In conclusion, this article reports the results of a search for B+
c → D

(∗)+
(s)

( )

D 0 decays,

covering fourteen B+
c decay channels in sixteen final states, which include partially

reconstructed decays where one or two neutral pions or photons from the decay of an excited
charm meson are not reconstructed. The results, based on pp collision data corresponding to
9 fb−1 of integrated luminosity, supersede an earlier LHCb measurement [18] on Run 1 data
only. No signal is observed in any of the channels investigated, consistent with the Standard
Model expectation. An excess with a significance of 3.4 standard deviations is found for
the decay B+

c → D+
s D

0, which is in tension with the theoretical expectation [14–17].
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T. Mombächer46, I.A. Monroy74, S. Monteil9, M. Morandin28, G. Morello23, M.J. Morello29,m,
J. Moron34, A.B. Morris75, A.G. Morris56, R. Mountain68, H. Mu3, F. Muheim58,48,
M. Mulder48, D. Müller48, K. Müller50, C.H. Murphy63, D. Murray62, P. Muzzetto27,48,
P. Naik54, T. Nakada49, R. Nandakumar57, T. Nanut49, I. Nasteva2, M. Needham58, I. Neri21,
N. Neri25,i, S. Neubert75, N. Neufeld48, R. Newcombe61, T.D. Nguyen49, C. Nguyen-Mau49,x,
E.M. Niel11, S. Nieswand14, N. Nikitin40, N.S. Nolte64, C. Normand8, C. Nunez86,
A. Oblakowska-Mucha34, V. Obraztsov44, T. Oeser14, D.P. O’Hanlon54, S. Okamura21,
R. Oldeman27,e, M.E. Olivares68, C.J.G. Onderwater79, R.H. O’Neil58, A. Ossowska35,
J.M. Otalora Goicochea2, T. Ovsiannikova41, P. Owen50, A. Oyanguren47, K.O. Padeken75,
B. Pagare56, P.R. Pais48, T. Pajero63, A. Palano19, M. Palutan23, Y. Pan62, G. Panshin84,
A. Papanestis57, M. Pappagallo19,c, L.L. Pappalardo21,f , C. Pappenheimer65, W. Parker66,
C. Parkes62, B. Passalacqua21, G. Passaleva22, A. Pastore19, M. Patel61, C. Patrignani20,d,
C.J. Pawley80, A. Pearce48, A. Pellegrino32, M. Pepe Altarelli48, S. Perazzini20, D. Pereima41,
A. Pereiro Castro46, P. Perret9, M. Petric59,48, K. Petridis54, A. Petrolini24,h, A. Petrov81,
S. Petrucci58, M. Petruzzo25, T.T.H. Pham68, A. Philippov42, L. Pica29,m, M. Piccini78,
B. Pietrzyk8, G. Pietrzyk49, M. Pili63, D. Pinci30, F. Pisani48, M. Pizzichemi26,48,j , Resmi
P.K10, V. Placinta37, J. Plews53, M. Plo Casasus46, F. Polci13, M. Poli Lener23, M. Poliakova68,
A. Poluektov10, N. Polukhina83,u, I. Polyakov68, E. Polycarpo2, S. Ponce48, D. Popov6,48,
S. Popov42, S. Poslavskii44, K. Prasanth35, L. Promberger48, C. Prouve46, V. Pugatch52,
V. Puill11, H. Pullen63, G. Punzi29,n, H. Qi3, W. Qian6, J. Qin6, N. Qin3, R. Quagliani13,
B. Quintana8, N.V. Raab18, R.I. Rabadan Trejo6, B. Rachwal34, J.H. Rademacker54,
M. Rama29, M. Ramos Pernas56, M.S. Rangel2, F. Ratnikov42,82, G. Raven33, M. Reboud8,
F. Redi49, F. Reiss62, C. Remon Alepuz47, Z. Ren3, V. Renaudin63, R. Ribatti29, S. Ricciardi57,
K. Rinnert60, P. Robbe11, G. Robertson58, A.B. Rodrigues49, E. Rodrigues60,
J.A. Rodriguez Lopez74, E.R.R. Rodriguez Rodriguez46, A. Rollings63, P. Roloff48,
V. Romanovskiy44, M. Romero Lamas46, A. Romero Vidal46, J.D. Roth86, M. Rotondo23,
M.S. Rudolph68, T. Ruf48, R.A. Ruiz Fernandez46, J. Ruiz Vidal47, A. Ryzhikov82, J. Ryzka34,
J.J. Saborido Silva46, N. Sagidova38, N. Sahoo56, B. Saitta27,e, M. Salomoni48,
C. Sanchez Gras32, R. Santacesaria30, C. Santamarina Rios46, M. Santimaria23,
E. Santovetti31,p, D. Saranin83, G. Sarpis14, M. Sarpis75, A. Sarti30, C. Satriano30,o, A. Satta31,
M. Saur15, D. Savrina41,40, H. Sazak9, L.G. Scantlebury Smead63, A. Scarabotto13, S. Schael14,
S. Scherl60, M. Schiller59, H. Schindler48, M. Schmelling16, B. Schmidt48, S. Schmitt14,
O. Schneider49, A. Schopper48, M. Schubiger32, S. Schulte49, M.H. Schune11, R. Schwemmer48,
B. Sciascia23, S. Sellam46, A. Semennikov41, M. Senghi Soares33, A. Sergi24,h, N. Serra50,
L. Sestini28, A. Seuthe15, Y. Shang5, D.M. Shangase86, M. Shapkin44, I. Shchemerov83,
L. Shchutska49, T. Shears60, L. Shekhtman43,v, Z. Shen5, V. Shevchenko81, E.B. Shields26,j ,
Y. Shimizu11, E. Shmanin83, J.D. Shupperd68, B.G. Siddi21, R. Silva Coutinho50, G. Simi28,
S. Simone19,c, N. Skidmore62, T. Skwarnicki68, M.W. Slater53, I. Slazyk21,f , J.C. Smallwood63,
J.G. Smeaton55, A. Smetkina41, E. Smith50, M. Smith61, A. Snoch32, M. Soares20,
L. Soares Lavra9, M.D. Sokoloff65, F.J.P. Soler59, A. Solovev38, I. Solovyev38,
F.L. Souza De Almeida2, B. Souza De Paula2, B. Spaan15, E. Spadaro Norella25,i, P. Spradlin59,
F. Stagni48, M. Stahl65, S. Stahl48, S. Stanislaus63, O. Steinkamp50,83, O. Stenyakin44,
H. Stevens15, S. Stone68, M.E. Stramaglia49, M. Straticiuc37, D. Strekalina83, F. Suljik63,
J. Sun27, L. Sun73, Y. Sun66, P. Svihra62, P.N. Swallow53, K. Swientek34, A. Szabelski36,
T. Szumlak34, M. Szymanski48, S. Taneja62, A.R. Tanner54, M.D. Tat63, A. Terentev83,
F. Teubert48, E. Thomas48, D.J.D. Thompson53, K.A. Thomson60, V. Tisserand9,
S. T’Jampens8, M. Tobin4, L. Tomassetti21,f , X. Tong5, D. Torres Machado1, D.Y. Tou13,

19



M.T. Tran49, E. Trifonova83, C. Trippl49, G. Tuci29,n, A. Tully49, N. Tuning32,48, A. Ukleja36,
D.J. Unverzagt17, E. Ursov83, A. Usachov32, A. Ustyuzhanin42,82, U. Uwer17, A. Vagner84,
V. Vagnoni20, A. Valassi48, G. Valenti20, N. Valls Canudas85, M. van Beuzekom32,
M. Van Dijk49, E. van Herwijnen83, C.B. Van Hulse18, M. van Veghel79, R. Vazquez Gomez45,
P. Vazquez Regueiro46, C. Vázquez Sierra48, S. Vecchi21, J.J. Velthuis54, M. Veltri22,r,
A. Venkateswaran68, M. Veronesi32, M. Vesterinen56, D. Vieira65, M. Vieites Diaz49,
H. Viemann76, X. Vilasis-Cardona85, E. Vilella Figueras60, A. Villa20, P. Vincent13,
F.C. Volle11, D. Vom Bruch10, A. Vorobyev38, V. Vorobyev43,v, N. Voropaev38, K. Vos80,
R. Waldi17, J. Walsh29, C. Wang17, J. Wang5, J. Wang4, J. Wang3, J. Wang73, M. Wang3,
R. Wang54, Y. Wang7, Z. Wang50, Z. Wang3, Z. Wang6, J.A. Ward56, H.M. Wark60,
N.K. Watson53, S.G. Weber13, D. Websdale61, C. Weisser64, B.D.C. Westhenry54, D.J. White62,
M. Whitehead54, A.R. Wiederhold56, D. Wiedner15, G. Wilkinson63, M. Wilkinson68,
I. Williams55, M. Williams64, M.R.J. Williams58, F.F. Wilson57, W. Wislicki36, M. Witek35,
L. Witola17, G. Wormser11, S.A. Wotton55, H. Wu68, K. Wyllie48, Z. Xiang6, D. Xiao7, Y. Xie7,
A. Xu5, J. Xu6, L. Xu3, M. Xu7, Q. Xu6, Z. Xu5, Z. Xu6, D. Yang3, S. Yang6, Y. Yang6,
Z. Yang5, Z. Yang66, Y. Yao68, L.E. Yeomans60, H. Yin7, J. Yu71, X. Yuan68, O. Yushchenko44,
E. Zaffaroni49, M. Zavertyaev16,u, M. Zdybal35, O. Zenaiev48, M. Zeng3, D. Zhang7, L. Zhang3,
S. Zhang71, S. Zhang5, Y. Zhang5, Y. Zhang63, A. Zharkova83, A. Zhelezov17, Y. Zheng6,
T. Zhou5, X. Zhou6, Y. Zhou6, V. Zhovkovska11, X. Zhu3, X. Zhu7, Z. Zhu6, V. Zhukov14,40,
J.B. Zonneveld58, Q. Zou4, S. Zucchelli20,d, D. Zuliani28, G. Zunica62.

1Centro Brasileiro de Pesquisas F́ısicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4Institute Of High Energy Physics (IHEP), Beijing, China
5School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
China
6University of Chinese Academy of Sciences, Beijing, China
7Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
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