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Abstract

Rotations of an axion field in field space provide a natural origin for an era of kination domination,

where the energy density is dominated by the kinetic term of the axion field, preceded by an early

era of matter domination. Remarkably, no entropy is produced at the end of matter domination and

hence these eras of matter and kination domination may occur even after Big Bang Nucleosynthesis.

We derive constraints on these eras from both the cosmic microwave background and Big Bang

Nucleosynthesis. We investigate how this cosmological scenario affects the spectrum of possible

primordial gravitational waves and find that the spectrum features a triangular peak. We discuss

how future observations of gravitational waves can probe the viable parameter space, including

regions that produce axion dark matter by the kinetic misalignment mechanism or the baryon

asymmetry by axiogenesis. For QCD axion dark matter produced by the kinetic misalignment

mechanism, a modification to the inflationary gravitational wave spectrum occurs above 0.01 Hz

and, for high values of the energy scale of inflation, the prospects for discovery are good. We briefly

comment on implications for structure formation of the universe.

1

ar
X

iv
:2

10
8.

09
29

9v
4 

 [
he

p-
ph

] 
 1

9 
N

ov
 2

02
4



CONTENTS

1. Introduction 2

2. Axion rotations and kination 5

2.1. Axion rotations 5

2.2. Axion kination 7

2.3. Thermalization 11

3. Cosmological constraints 13

3.1. BBN 13

3.2. CMB 14

4. Dark matter and baryogenesis from axion rotations 18

4.1. Axion dark matter from kinetic misalignment 18

4.2. Baryon asymmetry from axiogenesis 21

5. Gravitational waves 26

5.1. From inflation 26

5.2. From cosmic strings 33

6. Summary and discussion 45

A. Evolution of the energy density of axion rotations 48

1. Logarithmic potential 48

2. Two-field model 49

B. CMB cosmological constraints from Planck 52

1. Perturbation equations of the P field 52

2. Implementation in CLASS 54

References 55

1. INTRODUCTION

The thermal history of the very early Universe remains uncertain. It involved a sequence

of eras, where each era was characterized by a certain expansion rate. The expansion rate is

key to understanding the physical processes occurring during any era and is determined by

ρ(a), the dependence of the energy density on the Friedmann-Robertson-Walker scale factor

a. From the precise observations of the cosmic microwave background (CMB), we know

that as the temperature cooled through the eV region, the universe transitioned from being
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dominated by radiation, with ρ(a) ∝ 1/a4, to being dominated by matter, with ρ(a) ∝ 1/a3.

This matter-dominated era lasted until relatively recently when the universe entered an era

apparently dominated by vacuum energy, with ρ independent of a. Furthermore, at the

time of Big Bang Nucleosynthesis (BBN), when the temperature was in the MeV region, the

universe was radiation-dominated, and there was likely a very early era of vacuum domina-

tion known as inflation, when ρ was independent of a. Since this is the total observational

evidence we have of the very early evolution of our universe, there are clearly many pos-

sible cosmological histories, each having a different sequence of transitions between eras of

differing ρ(a).

It is remarkable that if the universe underwent an era of “kination”, with ρ dominated

by the kinetic energy of a classical homogeneous scalar field, then ρ(a) falls very rapidly as

1/a6, which can lead to interesting physical phenomena. Kination was first considered in

the context of ending inflation [1], and subsequently as a source for a strongly first-order

electroweak phase transition that could enhance baryogenesis [2]. Such a rapid evolution

can also greatly affect the abundance of dark matter [3–7], alter the spectrum of gravita-

tional waves being emitted from cosmic strings [8–15] or originated from inflation [16–32]

during such an era, and boost the matter power spectrum, enhancing small-scale structure

formation [33, 34].

What is the underlying field theory and cosmology that leads to an era of kination? Once

kination starts, it is easy to end since the kination energy density dilutes under expansion

much faster than radiation, so a transition to radiation domination will occur. But how does

kination begin? Going to earlier times during the kination era, the kinetic energy density of

the scalar field rapidly increases. This issue is particularly important for primordial gravi-

tational waves, whether produced from quantum fluctuations during inflation and entering

the horizon during a kination era or from emission from cosmic strings during a kination

era, since the spectrum for both increases linearly with frequency. This UV catastrophe

must get cut off by the physics that initiates the kination era, and hence the peak of the

gravitational wave distribution will have a shape determined by this physics.

Recently a field theory and cosmology for kination was proposed by two of us: axion

kination [35]. An approximate U(1) global symmetry is spontaneously broken by a complex

field. Early on there are oscillations in both angular and radial modes, which we call axion

and saxion modes, in an approximately quadratic potential. The radial oscillation results
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from a large initial field displacement, and the angular mode is excited by higher-dimensional

operators that break the U(1) symmetry. At some point the radial mode is damped, but

by this time the “angular momentum” in the field, that is the charge density, is conserved,

except for cosmic dilution, and a period of circular evolution sets in. This era is assumed to

occur when the radial field is much larger than the vacuum value, fa, the symmetry-breaking

scale for the axion. In fact, at first the trajectory is not quite circular, as the cosmic dilution

of charge leads to a slow inward spiral of the trajectory. If the energy density of the universe

is dominated by the scalar field energy, this inspiral era is a matter-dominated era with

ρ(a) ∝ 1/a3. This era ends when the radial mode settles to fa; the potential vanishes and

the axion energy density is now entirely kinetic so that an era of kination ensues. Kination

ends when the axion energy density falls below that of radiation.

The rotation of an axion field was used in [35] to generate a baryon asymmetry via Axio-

genesis and in [36] to generate axion dark matter via the Kinetic Misalignment Mechanism.

In fact, such schemes did not rely on the axion field energy becoming larger than the radia-

tion energy, so an era of kination was possible but not required. In this paper we study the

implications of a kination-dominated era from this mechanism, where the era is cut off in

the UV by an early matter-dominated era. We consider both the QCD axion [37–40] that

solves the strong CP problem and generic axion-like particles (ALPs).

The early matter-dominated era regulates the spectrum of gravitational waves from in-

flation or cosmic strings. After the linear increase with frequency from the kination era, the

magnitude of the gravitational wave spectrum decreases, producing a triangular peak in the

spectrum.1 Interestingly, the shape of the peak contains information about the shape of the

potential of the complex field and could reveal the origin of the spontaneous U(1) symmetry

breaking resulting in an axion as a Nambu-Goldstone boson.

It is natural to expect this kination era to occur early in the cosmic history, ending

well before BBN. Remarkably, for low fa and large charge density, a late era of kination

domination can occur after BBN, but before matter-radiation equality. This possibility

arises because axion field rotations do not generate entropy. In such scenarios, the beginning

of the matter-dominated era is constrained by BBN and the end of the kination-dominated

era is constrained by the CMB.

1 This is in contrast to the scenarios previously considered in Refs. [22, 23, 26, 29, 32], where a kination

era follows immediately after inflation and BBN limits the duration of the kination era through the dark

radiation constraint.
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We also examine the implication of the NANOGrav signal [41] to axion kination. Similar

signals are also reported by PPTA [42] and EPTA [43]. The signal may be explained by grav-

itational waves emitted from cosmic strings [44, 45]. We discuss how the gravitational wave

spectrum from low to high frequency is modified by axion kination and the modification,

including the peak, can be detected by future observations.

In Sec. 2, we discuss the above mechanism of axion kination cosmology, including two

theories for the potential of the radial mode. We study the transition from the early matter-

dominated era to the kination-dominated era, and also the thermalization of the radial

mode, as this leads to important constraints on the signals. We derive the dependence of

the matter and kination transition temperatures on the axion model parameters. In Sec. 3,

we analyze the constraints on axion kination from both BBN and the CMB. In Sec. 4, we

review the kinetic misalignment mechanism and axiogenesis and derive predictions for the

parameters of axion kination. In Sec. 5, we compute the spectrum of gravitational waves

produced from inflation and cosmic strings in the axion kination cosmology. The spectra

depend on and can be used to infer the kination and matter transition temperatures and

hence axion parameters. We discuss whether future observations of gravitational waves can

detect the imprints of axion kination. We pay particular attention to the parameter space

where the axion rotation also lead to dark matter or to the baryon asymmetry and also to

the case of the QCD axion. Sec. 6 is dedicated to summary and discussion.

2. AXION ROTATIONS AND KINATION

2.1. Axion rotations

In field-theoretical realizations of an axion, the axion field ϕa is the angular direction

θ ≡ ϕa/fa of a complex scalar field P ,

P =
1√
2
Seiθ, (2.1)

where S is the radial direction which we call the saxion. In the present universe, S = fa,

the decay constant, spontaneously breaking an approximate U(1) symmetry. The potential

for P contains small explicit U(1)-breaking terms that give a small mass to the axion. For

simplicity, we take the domain wall number to be unity.
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Given that the U(1) symmetry is explicitly broken to yield a non-zero axion mass, from

the effective field theory point of view, it is plausible that the symmetry is also explicitly

broken by a higher dimensional operator,

V =
P n

Mn−4
+ h.c., (2.2)

where M is a dimensionful parameter. Such a term is in fact expected in theories where the

U(1) symmetry arises as an accidental one [46–49] and is broken by the effects of quantum

gravity [50–54]. In the early universe, S may take on a field value much larger than fa.

The potential gradient to the angular direction given by the higher-dimensional operator

then gives a kick to the angular direction and the complex field begins to rotate. As the

universe expands, the field value of S decreases and the higher-dimensional operator becomes

ineffective. The field P continues to rotate while preserving its angular momentum θ̇S2 up

to the cosmic expansion. Such dynamics of complex scalar fields was proposed in the context

of Affleck-Dine baryogenesis [55]. The angular momentum θ̇S2 is nothing but the conserved

charge density associated with the U(1) symmetry. It is convenient to normalize this charge

density by the entropy density of the universe s,

Yθ =
θ̇S2

s
, (2.3)

which remains constant as long as entropy is not produced. As we will see, the charge

density must be large enough to obtain kination domination. This can be easily achieved in

our scenario because of the large initial S.

Soon after the field rotation begins, the motion is generically a superposition of angular

and radial motion and has non-zero ellipticity. Once P is thermalized, the radial motion

is dissipated, while the angular motion remains because of angular momentum conserva-

tion. One may think that the angular momentum is transferred into particle-antiparticle

asymmetry in the thermal bath. It is, however, free-energetically favored to keep most of

the charge in the form of axion rotations as long as S ≫ T [35]. The resultant motion

after thermalizaion is a circular one without ellipticity. The parameter space that leads to

successful thermalization is investigated in Sec. 2.3.

If the axion couples to a gauge field, the angular momentum can be also transferred into

the helicity of the gauge field through tachyonic instability [56, 57]. The gauge field in the

tachyonic instability band has a wavelength ∼ (αθ̇/π)−1 ≫ T−1 and the resultant gauge
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field cannot be treated as excitations in the thermal bath, and the above thermodynamical

argument is not applicable. However, as is shown in Ref. [58], the backreaction from charged

fermions prevents efficient production of the gauge field. Using the upper bound on the

magnitude of the gauge field derived in the reference, one can show that the energy density of

the gauge field produced by the tachyonic instability is much smaller than the energy density

of the axion rotation. Therefore, the axion rotation is not destroyed by the production of

the gauge field. Note that Ref. [58] assumes no fermions besides those that are created from

the gauge field. With the thermal bath in our setup, the production of the gauge fields will

be even more ineffective.

2.2. Axion kination

The evolution of the energy density of the axion rotations depends on the shape of the

potential of the saxion. A very interesting evolution involving kination is predicted when

the saxion potential is nearly quadratic at S ≫ fa [35]. Such a potential arises naturally

in supersymmetic theories, where the saxion is the scalar partner of the axion: the saxion

potential may be flat in the supersymmetric limit and generated by supersymmetry breaking.

For example, the soft supersymmetry breaking coefficient of P ∗P = S2/2 may be positive

at high scales but evolve under renormalization to negative values at low scales. This triggers

spontaneous breaking of the U(1) symmetry, which can be described by the potential [59],

V (P ) =
1

2
m2
S|P |2

(
ln
2|P |2

f 2
a

− 1

)
, (2.4)

which is nearly quadratic for S ≫ fa. Another example is a two-field model with soft masses,

W = X(PP̄ − v2P ), Vsoft = m2
P |P |2 +m2

P̄ |P̄ |
2. (2.5)

Here X is a stabilizer field that fixes the symmetry breaking field P and P̄ on a moduli

space PP̄ = v2P . For P ≫ vP or P̄ ≫ vP , the saxion potential is dominated by the soft

mass mP and mP̄ , respectively. Without loss of generality, we choose P to be initially much

larger than vP and identify the saxion with the radial direction of P . We neglect possible

renormalization running of mP which modifies the saxion potential only by a small amount.

For these potentials, the axion rotations evolve as follows. When S ≫ fa, the potential

of S is nearly quadratic, and the equation of motion of the radial direction requires θ̇2 =
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V ′(S)/S ≃ m2
S. The conservation of the angular momentum, θ̇S2 ∝ a−3, then requires

S2 ∝ a−3. Here a is the scale factor of the universe, not to be confused with the axion

field which we denote as ϕa. The potential energy ∼ m2
SS

2 and the kinetic energy ∼ θ̇2S2

are comparable. Once S decreases and S ≃ fa, the conservation of the angular momentum

requires θ̇ ∝ a−3. The kinetic energy dominates over the potential energy. The scaling of

the energy density in these two regimes is

ρθ ∝




a−3 : S ≫ fa

a−6 : S ≃ fa.
(2.6)

The scaling of the energy density naturally leads to kination domination [35]. When

S ≫ fa, the rotation behaves as matter and is red-shifted slower than radiation is, so

the universe may become matter-dominated by the axion rotation. Once S approaches fa,

kination domination by the axion rotation begins.

Throughout most of this paper, we adopt a piecewise approximation where ρθ ∝ a−3 for

S > fa and ρθ ∝ a−6 for S = fa. We will comment on how the actual evolution differs

from this. Within this approximation, the Hubble expansion rate H as a function of the

temperature T is given by

H(T ) =
1

MPl

√
π2

90
g∗ ×





T 2 for RD : T ≫ TRM

T 2
RM

(
T

TRM

)3
2

for MD : TRM ≫ T ≫ TMK

T 2
KR

(
T
TKR

)3
for KD : TMK ≫ T ≫ TKR

T 2 for RD : TKR ≫ T

. (2.7)

Here TRM is the temperature at which the matter domination (MD) by the axion rotation

begins, TMK is the temperature at which the kination domination (KD) begins, and TKR is

the temperature at which the KD ends and radiation domination (RD) begins.

In Eq. (2.7), it is assumed that P is thermalized when the rotation is still a subdominant

component of the universe. It is also possible that the thermalization occurs after the

rotation dominates the universe. In this case, the energy associated with the radial mode,

which is comparable to or larger than the angular mode, is converted into radiation energy.

Then the universe evolves as RD → MD → RD → MD → KD → RD, and the scaling in

Eq. (2.7) is applicable to the last four eras. The second RD is very short when the radial
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and the angular component of the initial rotation is comparable, which naturally occurs in

supersymmetric theories; see [60] for details. Yθ computed after the initiation of the rotation

receives entropy production from the dissipation of the radial mode, and is conserved again

afterward. It is this final value of Yθ that concerns us, and we do not investigate how it is

related to the UV parameters of the theory.

The cosmological progression from RD → MD → KD → RD described above is deter-

mined by three parameters, (fa,mS, Yθ), and the three temperatures (TRM, TMK, TKR) can

be expressed in terms of these,

TRM =
4

3
mSYθ ≃ 1.3× 107 GeV

( mS

100 TeV

)( Yθ
100

)
, (2.8)

TMK =

(
45

2π2g∗

mSf
2
a

Yθ

)1
3

(2.9)

≃ 2.8× 106 GeV
( mS

100 TeV

)1
3

(
fa

109 GeV

)2
3
(
100

Yθ

)1
3
(
g∗,SM
g∗

)1
3
, (2.10)

TKR =
3
√
15

2
√
g∗π

fa
Yθ

≃ 1.8× 106 GeV

(
fa

109 GeV

)(
100

Yθ

)(
g∗,SM
g∗

)1
2
. (2.11)

The kination-dominated era exists if TKR < TRM,

Yθ ≳ 37

(
100 TeV

mS

)1
2
(

fa
109 GeV

)1
2
(
g∗,SM
g∗

)1
4
. (2.12)

The scalings of (2.7) imply that these three temperatures are not independent, but are

related by T 3
MK ≃ TRMT

2
KR. The expansion history of the universe is therefore determined

by two combinations of (fa,mS, Yθ) such as (mSfa, Yθ), but other phenomenology depends

also on the third combination. In what follows, according to convenience, we use a variety

of ways of spanning the 3-dimensional parameter space. For discussion of axion physics we

must include the axion mass ma as a fourth parameter. The axion mass is determined by

fa for the QCD axion [37–40].

Note that TRMTKR ∝ mSfa, so one can in principle determine the product mSfa by

a measurement of TRM and TKR through gravitational wave spectra discussed in Sec. 5.

Moreover, additional theoretical considerations such as the baryon asymmetry and/or axion

dark matter abundance from the axion rotation, as discussed in Sec. 4, will help determine

mS and fa individually. If fa and ma are also measured by axion experiments, then the

theory parameters are over-constrained so that the theory can be confirmed or ruled out.
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FIG. 1. Scaling evolution of the energy density ρ with scale factor a (left axis) as well as the equation

of state w (right axis) as a function of temperature in units of TMK, the transition temperature

from matter to kination. The colored curves are for the two-field model (blue) and the logarithmic

potential (orange), whereas the step function (black) is the piecewise approximation we employ in

the remainder of the paper. For the two-field model, we show the blue dotted curves for different

ratios of the soft masses of the two fields P̄ and P , and the blue shading indicates the entire possible

range of the model.

A unique feature of our kination scenario is that matter domination preceding kination

domination ends without creating entropy. This is quite different from usual matter domina-

tion, where matter domination ends by dissipation of matter into radiation creating a huge

amount of entropy. Because of the absence of entropy production in our scenario, matter

and kination domination can occur even after BBN and before recombination.

The precise evolution of the universe differs from the piecewise approximation and de-

pends on the saxion potential. The evolution for the one-field model of Eq. (2.4) is derived

in [35] and reviewed in Appendix A, and is shown by the orange solid line in Fig. 1. Beyond

the piecewise approximation, there is no sharply defined TMK, so we first define TRM and

TKR by the equality of the axion energy density with the radiation energy density and then

define TMK ≡ T
1/3
RMT

2/3
KR . The transition from matter to kination domination is not sharp, but
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still occurs within a temperature change of O(10). The evolution for the two-field model of

Eq. (2.5) is derived in Appendix A and is shown by the blue-dashed lines. The evolution

depends on the ratio mP/mP̄ , but the transition is sharper than the one-field model and

occurs within a temperature change of O(1). As we will see, this difference shows up in

the spectrum of primordial gravitational waves and allows the determination of the saxion

potential.

2.3. Thermalization

As discussed in the previous subsection, the motion of the field P is initiated in both

angular and radial components, and the energy density associated with the radial mode is

comparable to or more than the rotational energy. Since the radial mode also evolves as

matter, if it is thermalized after S reaches fa, no kination-dominated era is present. Thus

earlier thermalization is required. In the simplest case, we consider a Yukawa coupling

between the saxion and fermions ψ and ψ̄ that couple with the thermal bath,

L ⊃ yψSψψ̄. (2.13)

The simplest possibility is a Standard Model gauge charged fermion, but we may also con-

sider a dark sector fermion. The thermalization rate is given by [61],

ΓSψψ̄ = by2ψT, (2.14)

where b is a constant and is O(0.1) when the coupling of the fermion with the thermal bath

is O(1). The fermion is heavy in the early universe because of a large saxion field value,

mψ = yψS, while the fermions themselves need to be populated in the thermal bath in order

to thermalize the saxion at the temperature Tth. Such a requirement, yψSth ≤ Tth, leads to

an upper bound on the Yukawa coupling as well as on the rate

ΓSψψ̄ ≤ bT 3
th

S2
th

. (2.15)

We obtain the same bound for a saxion-scalar coupling. For gauge boson couplings,

which arise after integrating out charged fermions or scalars, the thermalization rate

≃ 10−5T 3/S2 [61], so the constraints on the parameter space for this case can be obtained

by putting b = 10−5 in the following equations.

11



For a fixed Yθ = mSS
2
th/(2π

2g∗T
3
th/45), one can now use Eq. (2.15) to derive the maximal

thermalization temperature as well as the saxion field value at the time,

Tmax
th ≃ 4× 107 GeV

(
b

0.1

)1
2 ( mS

TeV

)1
2

(
103

Yθ

)1
2
(
g∗,SM
g∗(Tth)

) 3
4

(2.16)

≃ 3× 107 GeV

(
b

0.1

)1
2 ( mS

TeV

)1
2

(
TKR

105 GeV

)1
2
(
109 GeV

fa

)1
2
(
g∗,SM
g∗(Tth)

) 3
4
(
g∗(TKR)

g∗,SM

) 1
4

,

Smax
th ≃ 2× 1012 GeV

(
b

0.1

)3
4 ( mS

TeV

)1
4

(
103

Yθ

)1
4
(
g∗,SM
g∗(Tth)

) 5
8

(2.17)

≃ 1× 1012 GeV

(
b

0.1

)3
4 ( mS

TeV

)1
4

(
TKR

105 GeV

)1
4
(
109 GeV

fa

)1
4
(
g∗,SM
g∗(Tth)

) 5
8
(
g∗(TKR)

g∗,SM

) 1
8

.

Here Yθ is determined from a fixed TKR using Eq. (2.11). In this case, the thermalization

constraints can be imposed by the consistency conditions: 1) the saxion field value at ther-

malization must be larger than fa, i.e., S
max
th ≥ fa; otherwise, thermalization would not

occur or the Universe would not be kination-dominated, 2) the radiation energy density

after thermalization is at least that of the saxion, i.e., π2g∗(Tth)T
4
th/30 ≥ m2

S(S
max
th )2, where

the inequality is saturated when the saxion dominates and reheats the universe. In fact,

upon assuming the existence of kination domination, TRM > TKR, condition (2) automati-

cally guarantees that (1) is satisfied. Therefore, only condition (2) is relevant and leads to

the constraint on the saxion mass

mS ≲ 1.5× 105 GeV

(
b

0.1

)(
109 GeV

fa

)3(
TKR

105 GeV

)3(
g∗(TKR)

g∗(Tth)

) 3
2

. (2.18)

This thermalization constraint is shown as the green regions in the figures we will show in the

following sections. For consistency with the assumption of the rotation in the vacuum poten-

tial, the thermal mass ofmS must be subdominant to the vacuum one, yψTth < mS. However,

using condition (2), one finds that this constraint becomes yψ < (π2g∗(Tth)/30)
1/2Tth/Sth,

which is always weaker than the earlier constraint from requiring ψ in thermal equilibrium,

yψ < Tth/Sth.

When the thermalization temperature is much lower than the QCD scale, additional

constraints may become important [57]. For example, the energy density deposited into the

bath (or dark radiation) at late thermalization may contribute to excessive ∆Neff since this

energy deposit cannot be absorbed by the Standard Model bath nor diluted by the change

of g∗ in the Standard Model across the QCD phase transition. Effectively, the constraint
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from condition (2) above is strengthened by replacing g∗(Tth) by 7∆Neff/4. We impose the

limit ∆Neff > 0.17 from the CMB and BBN [62].

In the case when TRM ≪ O(GeV), the saxion has to be very light and is thus subject to

quantum corrections, which require the coupling yψ < 4πmS/msoft where msoft is the soft

mass of ψ’s scalar partner, ψ̃. We do not impose this constraint since one can simply assume

that msoft is generated in the same way as and is of the same order of mS, in which case the

constraint is trivially satisfied.

One may expect additional constraints from the relic density and warmness of ψ especially

when fa is very small and ψ may be very light. However, one may consider a model where

ψ has a sufficiently large vector-like mass and freezes out non-relativistically much before

BBN (see Ref. [57] for details), or ψ is dark gauge-charged and effectively annihilates into

massless dark gauge bosons.

3. COSMOLOGICAL CONSTRAINTS

The axion rotations lead to matter and kination-dominated eras. If these happen close

to BBN or recombination, the modified expansion rate alters primordial light element

abundances or the spectrum of the CMB. Constraints from BBN divide kination into two

paradigms - “early kination” for TKR > O(MeV) and “late kination” with TRM < O(10 keV).

In this section, we discuss the constraints on the axion rotation on both early and late ki-

nation from BBN and the late kination from CMB.

3.1. BBN

When kination domination occurs before BBN, the strongest constraint comes from the

helium abundance, since it is sensitive to the freeze-out of neutron-proton conversions, which

occurs at an early stage of BBN. Using AlterBBN [63, 64], we show the prediction on the

primordial helium abundance as a function of TKR with varying the baryon abundance within

values allowed by Planck 2018 (TT,TE,EE+lowE) [65], together with the constraint on the

abundance [66], in the left panel of Fig. 2. The width of the prediction originates from the

uncertainty in nuclear reaction rates and the neutron lifetime. From this, we obtain the

constraint TKR ≳ 2.5 MeV. This is stronger than the bounds obtained from other more
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TKR and TRM, respectively. The gray bands show the experimental constraints.

simplified approaches in Refs. [4, 67].

Here we use Planck ’s allowed range for the baryon abundance with the BBN consistency

condition imposed on the helium abundance for the following reason: the BBN prediction

for the helium abundance with kination does not deviate from the standard prediction as

much to make the helium abundance a free parameter (see Fig. 40 of [65]). Since BBN

and CMB results for baryon abundance are in excellent agreement, relaxing the consistency

condition and allowing the baryon abundance to range more freely gives very similar results

for the allowed parameter space.

When kination domination occurs after BBN, but before recombination, the strongest

constraint comes from the abundance of deuterium whose destruction freezes out at a late

stage of BBN. We show the prediction on the primordial deuterium abundance as a function

of TRM in the right panel of Fig. 2 from which we obtain TRM ≲ 6 keV.

3.2. CMB

The case of an early kination-dominated era with TKR > 2.5 MeV has no observable

impact on the CMB. On the other hand, in the case with TRM < 6 keV the modified

14



expansion rate of the universe can potentially lead to significant deviations in the evolution

of modes on scales probed by the CMB.

The angular size of the sound horizon at the surface of last scattering, which is precisely

measured, is one quantity that can be altered by a modified cosmic expansion history. We

will develop some intuition for how the sound horizon is changed by assuming a kination-

dominated era with TRM < 6 keV and TKR > Teq, where Teq ≃ 0.8 eV is the approximate

temperature at matter-radiation equality. We will use the piece-wise approximation to

develop our intuition.

The comoving sound horizon can be written as

rs(η) =

∫ η

0

dη
′
cs(η

′
), (3.1)

where η is the comoving horizon and cs =
√

1

3
(
1+

(
3ρb
4ργ

)) . Here for simplicity we will assume

cs =
√

1
3
. We can then rewrite the integral for the comoving sound horizon at matter-

radiation equality as

rs(ηeq) =
ηeq√
3
=

1√
3

∫ aeq

0

da
1

a2H(a)
, (3.2)

where aeq is the scale factor at matter-radiation equality. The ΛCDM comoving sound

horizon at matter-radiation equality can then be written as

rs(ηeq,ΛCDM) =
1√
3

∫ aeq

ai

da
1

a2Hi

(
ai
a

)2 ≃ 1√
3

aeq
a2iHi

, (3.3)

where ai → 0 and Hi denote the scale factor and the Hubble scale deep in radiation domi-

nation and in the last equality we have used ai ≪ aeq. For the comoving sound horizon in

the case of kination cosmology, we can divide the universe into two successive eras, a < aMK

and aMK ≤ a ≤ aeq, where we assume that aeq ≫ aKR ≫ aRM. We consider the energy

density of a scalar field that behaves like matter for a < aMK and kination for a > aMK in

addition to the standard radiation density. The sound horizon in our kination cosmology up
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to matter-radiation equality can then be written as

rs(ηeq, kination) =
1√
3

∫ aMK

ai

da
1

a2HRM

((
aRM

a

)3
+
(
aRM

a

)4)1/2

+
1√
3

∫ aeq

aMK

da
1

a2HRM

((
aRM

aMK

)3 (
aMK

a

)6
+
(
aRM

aMK

)4 (
aMK

a

)4
)1/2

≃ 1√
3

aeq

(
1− aKR

aeq

(
1 +O

(
a
2/3
RM

a
2/3
KR

, aKR

aeq

)))

a2RMHRM

, (3.4)

where in the last approximation we have used ai ≪ aeq and the identity aRM =
a3MK

a2KR
. Here

√
2HRM is the Hubble at the early matter radiation equality. Assuming aeq ≫ aKR and

a2iHi = a2RMHRM in Eq. (3.3), the relative difference between the sound horizons in ΛCDM

and kination cosmology at last scattering is approximated by

∆rs(ηls)

rs(ηls,ΛCDM)
≃ aKR

2.4aeq
= 3× 10−3

(
100 eV

TKR

)
, (3.5)

where ηls is the comoving horizon at the surface of last scattering and we have assumed

als ≃ 3aeq, Teq = 0.8 eV in the last equality. Thus for large enough TKR, the deviation in

the angular scale of the sound horizon at last scattering can be minimal.

The above gives some intuition for how, at fixed values of the other cosmological param-

eters, a kination cosmology changes the sound horizon at last scattering and by implication

the angular scale of the sound horizon θs. However, allowing the remaining cosmological

parameters to vary—in particular H0 or the baryon fraction Ωb, which enters the speed of

sound—can also alter the angular scale of the sound horizon at last scattering and possibly

compensate. Moreover, the enhanced Hubble rate during the early matter-dominated era,

as well as kination, changes the time-temperature relationship and modifies the evolution

of perturbations, which in turn substantially impacts the oscillations in the CMB power

spectrum in detail. To assess the impact of low-scale kination on the CMB in full, we thus

need to solve the coupled Boltzmann equations governing the evolution of gravitational and

matter perturbations in the modified cosmology.

In order to quantify the bounds on the kination parameters TKR and TRM, we modify the

publicly available CMB code, CLASS [68], to include kination cosmology. We also use Monte

Python [69], a Markov Chain Monte Carlo (MCMC) code, along with CLASS to derive the

posterior probability distribution on the cosmological parameters. We use a log potential
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FIG. 3. Posterior distribution for TKR for a late era of kination. We use Planck temperature

and polarization data (highTTTEEE+lowEE+lowTT) to constrain TKR > 50 eV at 95% (vertical

dashed line). See Fig. 16 for the complete 2-dimensional posterior distributions for ΛCDM+ TKR

parameters.

discussed in the first subsection of Appendix A to describe the background cosmology as well

as to derive our perturbation equations of the kination field. We choose our parameters such

that TRM ≃ O(keV), consistent with the BBN bounds. For further details, see Appendix B.

We find that the lower bound on TKR from the CMB is insensitive to TRM, as the CMB

is mainly probing modes that enter the horizon at lower temperatures. We consider the

following cosmological parameters (Ωb, Ωc, ΩΛ, YHe, θs, As, ns, τ, TKR). We use the Planck

2018 CMB data (TT,TE,EE+lowE) to derive our constraints. The posterior distribution

of TKR is shown in Fig. 3, from which we obtain the constraint TKR > 50 eV at 95%. The

posterior distributions of other parameters are shown in Figs. 16 and 17 in Appendix B.

We find that matter perturbation modes that enter the horizon around aMK grow linearly.

This rapid growth can result in an enhancement of the matter power spectrum on scales that

were inside the horizon during the epochs of modified expansion. The excellent constraints

provided by the CMB require that substantial modifications to the matter power spectrum

must occur on scales k ≫ O(0.1) hMpc−1 (see Fig. 4). Probes of the matter power spectrum

at low redshifts (such as Lyman-α) can be used to constrain the non-linear power spectrum

at k ≃ O(10)hMpc−1 and hence raise the lower bound on TKR. However, in order to

accurately derive the constraint one needs to evolve the kination matter power spectrum
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into the non-linear regime and then use hydrodynamical simulations to derive the Lyman-α

flux power spectrum to compare to experiments. This is beyond the scope of the present

publication, but we will return to this in future work.

4. DARK MATTER AND BARYOGENESIS FROM AXION ROTATIONS

In this section, we discuss the production of axion dark matter and baryon asymme-

try from axion rotations by the kinetic misalignment and axiogenesis mechanisms in the

following subsections, respectively. We show the implications of these mechanisms for the

parameter space (fa,mS, Yθ,ma).

4.1. Axion dark matter from kinetic misalignment

Axion rotations can lead to a larger axion abundance today via the kinetic misalignment

mechanism [36] than that from the conventional misalignment mechanism [70–72]. As long

as the axion field velocity is much larger than its mass θ̇ ≫ ma, the axion continues to run

over the potential barriers. If this motion continues past the time when the mass is equal
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to Hubble, then the axion kinetic energy θ̇2f 2
a is much larger than the maximum possible

potential energy θ2im
2
af

2
a in the conventional case and thus the abundance is enhanced.

Even when the axion field velocity is larger than the mass, the axion self-interactions

can cause parametric resonance (PR) [73–77], which fragments the axion rotation into axion

fluctuations [78–80]. The production of fluctuations by PR occurs at an effective rate2 given

by [80]

ΓPR =
m4
a

θ̇3
. (4.1)

In order for kinetic misalignment to be effective, θ̇ must be larger than ma when H ∼ ma.

Before θ̇ would become as small as ma so that the axion field would be trapped by the poten-

tial barrier, ΓPR already becomes larger than H. Therefore, unless the angular momentum

is close to the critical value for kinetic misalignment to occur, parametric resonance always

becomes effective before the trapping by the potential occurs. On the other hand, the axion

momentum kPR generated at the time of PR is of order θ̇/2 due to the resonance condition.

Therefore, the abundance of the axion is estimated as

ρa
s

= maYa = Cma
ρθ/s

kPR
= CmaYθ, (4.2)

where the axion yield Ya is approximately conserved after PR. Here C is a factor that should

be determined by numerical computation. In Ref. [36], C ≃ 2 was derived assuming the

coherence of the axion rotation throughout the evolution. As noted in Ref. [57], the axion

abundance is reduced by an O(1) factor in comparison with the estimation in Ref. [36]

because of the extra energy of axions from non-zero momenta sourced by PR. Just after PR

effectively occurs, the number-changing scattering rate of axion fluctuations is comparable

to the Hubble expansion rate while axion fluctuations are over-occupied, so the number

density may be further reduced by an O(1) factor, which should be determined by lattice

computation; see also the discussion in [81–83]. We use the reference value C = 1 in

this paper and demonstrate the impact of C < 1 on observations by showing results for

C = 0.3. Requiring axion dark matter from the kinetic misalignment mechanism, we obtain

2 The effective rate is much smaller than the PR rate at the center of the first resonance band ∼ m2
a/θ̇

because of the narrow width of the band, the reduction of the axion velocity by the PR production [80],

and the reduction of the axion momentum by cosmic expansion.
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a prediction on TKR,

TKR ≃ 2.4× 106 GeV × C

(
fa

109 GeV

)( ma

6 meV

)( g∗,SM
g∗(TKR)

)1
2

for ALPs

≃ 2.4× 106 GeV × C

(
g∗,SM
g∗(TKR)

)1
2

for the QCD axion. (4.3)

The prediction for an ALP is shown by the purple dashed lines in the left panel of Fig. 5.

To avoid overproduction of axion dark matter by the kinetic misalignment mechanism, this

prediction is also a lower bound on TKR. The bound can be avoided if the rotation is washed

out at T < TKR. This is difficult for the QCD axion with the Standard Model because

of the suppression of the washout rate by the small up Yukawa coupling [35, 84], but is

possible in extensions of the Standard Model. For example, squark mixing in the minimal

supersymmetric standard model can indeed wash out the rotation [85]. We do not pursue

this possibility further. The prediction on ma as a function on fa and TKR is shown in the

right panel of Fig. 5; here the prediction is also an upper bound on ma.

Parametric resonance becomes effective when ΓPR ≃ H. One can obtain θ̇(T ), which

is relevant for ΓPR, by using Eq. (2.3) and requiring the axion abundance in Eq. (4.2) to

reproduce the observed dark matter abundance ρDM/s ≃ 0.44 eV. The temperature TPR

when PR occurs is given by

TPR ≃ 100 MeV

(
fa

109 GeV

) 6
11 ( ma

10−6 eV

) 7
11

(
g∗,SM
g∗(TPR)

) 7
22
C3/11, (4.4)

where we assume that the axion mass at T = TPR, is the same as the one in vacuum,

ma(TPR) = ma, and the saxion is at the minimum of the potential, S(TPR) = fa. As with PR

production from radial motion of the symmetry breaking field [83, 86], the produced axions

are initially relativistic. They may become cold enough to be dark matter by red-shifting,

and will have residual warmness [57, 79]. They become non-relativistic at temperature

TNR ≃ 10 MeV

(
fa

109 GeV

)10
11 ( ma

10−6 eV

) 8
11

(
g∗,SM
g∗(TPR)

) 1
33

C5/11. (4.5)

For sufficiently small ma and/or fa, these axions are too warm to be dark matter based on

the current warmness constraint from the Lyman-α measurements [87], TNR > 5 keV. This

constraint is shown by the red regions of Fig. 5.
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FIG. 5. Axion dark matter and the baryon asymmetry from axion rotation. Left panel: in the

axion parameter space, contours of TKR = 1 GeV (1 TeV) are shown in dashed (dot-dashed) lines

as predicted by dark matter from kinetic misalignment (purple) and for the baryon asymmetry

from minimal ALPgenesis (blue). The contours intersect along the green line where dark matter

and the baryon asymmetry are simultaneously explained as in ALP cogenesis. Right panel: the

purple lines are the contours of the mass of axion dark matter predicted by kinetic misalignment as

a function of fa and TKR. In both panels, the red region is excluded by the warmness of axion dark

matter from kinetic misalignment. The yellow line in either plot shows the prediction assuming

a QCD axion which terminates at fa = 108 GeV since lower fa is disfavored by astrophysical

constraints.

4.2. Baryon asymmetry from axiogenesis

The observed cosmological excess of matter over antimatter can also originate from the

axion rotation. The U(1) charge associated with the rotation defined in Eq. (2.3) can be

transferred to the baryon asymmetry as shown in [35, 60, 88]. In the case of the QCD axion,

the strong anomaly necessarily transfers the rotation into the quark chiral asymmetry, which

is distributed into other particle-antiparticle asymmetry. More generically, the couplings of

the QCD axion or an ALP with the thermal bath can transfer the rotation into particle-

antiparticle asymmetry. The particle-antiparticle asymmetry can be further transferred to
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baryon asymmetry via processes that violate the baryon number. We call this scheme,

applicable to the QCD axion and ALPs, axiogenesis. To specifically refer to the QCD axion

and ALPs, we use QCD axiogenesis and ALPgenesis, respectively.

4.2.1. Minimal axiogenesis

In the minimal scenario, which we call minimal axiogenesis, the particle-antiparticle asym-

metry is reprocessed into the baryon asymmetry via the electroweak sphaleron processes.

If the QCD axion or an ALP has an electroweak anomaly, then the rotation can directly

produce the baryon asymmetry by the electroweak sphaleron processes. The contribution

to the yield of the baryon asymmetry is given by [35]

YB =
nB
s

=
45cB
2g∗π2

θ̇

T

∣∣∣∣∣
T=Tws

≃ 8.2× 10−11
( cB
0.1

)( θ̇(Tws)

5 keV

)(
130 GeV

Tws

)
, (4.6)

where Tws is the temperature at which the electroweak sphaleron processes go out of equi-

librium and is approximately 130 GeV in the Standard Model [89], and cB is a model-

dependent coefficient given in Ref. [88] that parameterizes the anomaly coefficients and the

axion-fermion couplings. When the transfer is dominated by axion-gauge boson couplings,

cB is typicallyO(0.1), while if dominated by axion-fermion couplings, it can be much smaller.

For the QCD axion, to produce sufficient YB and to avoid overproduction of dark matter

by kinetic misalignment requires that fa ≲ 107 GeVcB/C, which is disfavored by astrophys-

ical constraints [90–96] unless cB/C > 10. The baryon asymmetry can be enhanced if the

electroweak phase transition occurs at a higher temperature,

Tws ≥ 1 TeV

(
fa

108 GeV

)1
2
(
0.1

cB

)
C1/2, (4.7)

with both dark matter and baryon asymmetry of the universe explained by the rotation of

the QCD axion when the inequality is saturated.

For an ALP, we may choose sufficiently small ma to avoid the over production without

modifying the electroweak phase transition temperature. Requiring that the baryon yield

of Eq. (4.6) match the observed baryon asymmetry gives a constraint on θ̇(Tws); using

Eq. (2.11) this can be converted to a prediction for TKR

TKR = 3.5 TeV

(
109 GeV

fa

)(
fa

S(Tws)

)2
cB
0.1

(
g∗,SM
g∗

)1
2
, (4.8)
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which is shown by the blue dot-dashed line in the left panel of Fig. 5, assuming S(Tws) = fa.

Note that this is necessarily the case when TMK > Tws. For lower TMK, S(Tws) > fa is

possible. Since θ̇ ≃ mS when S > fa and θ̇ ∝ T 3 after S = fa, we have θ̇(Tws) ≲ mS and

therefore the saxion mass is predicted to be

mS > 5 keV

(
0.1

cB

)
. (4.9)

The bound is saturated when S(Tws) > fa, which is the case if TMK < Tws.

Both dark matter and baryon asymmetry of the universe is explained by the axion rota-

tion, which is called ALP cogenesis [88], when

ma = 8.5 µeV

(
109 GeV

fa

)2(
fa

S(Tws)

)2 ( cB
0.1

)( 1

C

)
. (4.10)

This prediction is shown by the green lines in Fig. 5.

4.2.2. B − L number violation by new physics

In the presence of an operator that violates lepton number and generates Majorana

neutrino masses, the transfer of asymmetries can be more efficient. The operator creates

a non-zero B − L number, which is preserved by Standard Model electroweak sphaleron

processes. Since the production of B − L at high temperatures depends on whether the

lepton number violating interactions are in equilibrium, the determination of the final baryon

number in this scenario is sensitive to the full cosmological evolution. As an example, for

the models studied in Ref. [60], the baryon asymmetry is given by

YB ≃ 8.7× 10−11NDW

( cB
0.1

)(gMSSM

g∗

)3
2
(

m̄2

0.03 eV2

)( mS

30 TeV

)(D
23

)
, (4.11)

where m̄2 = Σim
2
i is the sum of the square of the neutrino masses mi, NDW is the domain

wall number (which is assumed to be unity in other parts of the paper), and the function

D parameterizes the different cosmological scenarios. In particular, D = O(20) for the case

where no entropy is produced after the production of B−L and is logarithmically dependent

on fa as well as the saxion field values at various temperatures. Alternatively, if the saxion

dominates before decaying and reheating the Universe D = 1, and (4.11) yields a sharp

prediction for mS, valid when the saxion is thermalized before settling to fa. For details of

the evaluation of D, one can refer to Ref. [60]. Regardless, the saxion mass is generically
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predicted to be O(30− 104) TeV× (0.1/cB) by this baryogenesis mechanism, named lepto-

axiogenesis generically, QCD lepto-axiogenesis for the QCD axion, and lepto-ALPgenesis

for the ALP. While mS ≪ 30 TeV appears difficult based on Eq. (4.11), the case of TeV

scale supersymmetry is possible in some special cases presented in Ref. [60], using a thermal

potential.

Other axiogenesis scenarios are also considered in the literature [97, 98]. Baryon asym-

metry may be dominantly produced at a temperature Tdec with YB ∼ θ̇/T ×min(1,ΓB/H),

where ΓB is the transfer rate of the axion rotation into baryon asymmetry. For models with

Tdec > Tws, the lower bound on mS is generically stronger than that for ALPgenesis.

4.2.3. Implications to axion kination parameters

In Fig. 6, we show constraints on the parameter space for several reference values of TKR.

The green-shaded regions are excluded because of the failure of thermalization of the initial

radial oscillation, as described in Sec. 2.3. No kination-dominated era arises in the lower

orange-shaded regions. The upper orange-shaded region in the upper-left panel is excluded

by BBN. The orange lines are the contours of TMK. In the gray-shaded region, mS is above

fa and the perturbativity of the potential of the U(1) symmetry breaking field breaks down.

The red-shaded region is excluded by dark radiation produced by the decay of thermalized

saxions into axions. The remaining unshaded regions give the allowed parameter space

where axion rotation leads to realistic cosmologies with early eras of matter and kination

domination. Contours of TMK are shown in these kination regions.

In the lower two panels, the horizontal black dashed lines show the prediction for the

axion mass from requiring that the observed dark matter result from the kinetic misalign-

ment mechanism. In the upper two panels, axion dark matter from kinetic misalignment is

excluded as it is too warm.

In the upper-left panel, no parameter region is consistent with the lower bound on mS

from axiogenesis above the electroweak scale. In the upper-right panel, mS can be above

the keV scale. TMK is below the electroweak scale, so S(Tws) > fa and θ̇ws = mS = 5

keV (0.1/cB) is required. In the lower-left panel, TMK > 100 GeV, so that the condition

for successful minimal ALPgenesis is given by (4.8) with S(Tws) = fa, requiring cB ≪ 1.

Lepto-ALPgenesis is possible to the right of the black solid line. In the lower-right panel,

24



10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

103

mS [GeV]

f a
[G

eV
]

TKR = 150 eV

m S
>
f a

no kination

excluded by BBN

T
RM

> 6 keV

unsuccessful saxion thermalization

S
ϕ aϕ

a

ΔNeff
>

0.17

prob
ed by CMB-S4

ΔNeff
>

0.02

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103
10-2

10-1

1

10

102

103

104

105

106

mS [GeV]

f a
[G

eV
]

TKR = 10 MeV

m S
>

f a

no kination

unsuccessful saxion thermalization

S
ϕ aϕ

a

ΔNeff
>

0.1
7

pro
bed

by
CMB-

S4

ΔNeff
>

0.0
2

↓
A

LP
ge

ne
sis TM

K
=

100 M
eV

T
M

K
=

1 GeV

10-3 10-2 10-1 1 10 102 103 104 105 106
102

103

104

105

106

107

108

109

mS [GeV]

f a
[G

eV
]

TKR = 100 GeV

m S
>

f a

no kination

unsuccessful saxion thermalization

S
ϕ aϕ

a

ΔNeff
>

0.17

pro
bed

by
CMB-

S4

ΔNeff
>

0.02

↓
le

pt
o-

A
LP

ge
ne

sis

ma = 10-4 eV

ma = 10-2 eV
T

M
K
=

1 TeV
T

M
K
=

30 TeV

10 102 103 104 105 106 107 108
105

106

107

108

109

1010

mS [GeV]

f a
[G

eV
]

TKR = 100 TeV

m S
>

f a

no kination

unsuccessful saxion thermalization

ΔNeff
>

0.1
7

pro
bed

by
CMB-

S4

ΔNeff
>

0.0
2

↓
le

pt
o-

A
LP

ge
ne

sis

↓ ALPgenesis

ma = 1 meV

ma = 100 meV

T
M

K
=

1 PeV

3 PeV

FIG. 6. The unshaded regions show the allowed parameter space for axion kination for the fixed

values of TKR labeled in each panel. Contours of TMK are shown in these regions with kination. The

excluded shaded regions are discussed in the text. To achieve minimal ALPgenesis, the parameter

space collapses into mS ≃ 5 keV(0.1/cB) as shown by the black solid line in the upper-right panel,

or into fa given by Eq. (4.8) with S(Tws) = fa as shown by the black solid line in the lower-right

panel, where we take cB = 0.1. On the other hand, lepto-ALPgenesis restricts the parameter space

to mS ≳ 30 TeV. The axion cannot constitute dark matter via kinetic misalignment in the upper

panels due to the warmness constraint in Eq. (4.5).
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where TMK > 100 GeV, minimal ALPgenesis requires fa shown by the vertical black solid

line according to Eq. (4.8) with cB = 0.1. Lower fa is possible if cB < 0.1.

5. GRAVITATIONAL WAVES

In this section, we discuss how the spectrum of primordial gravitational waves is modified

by eras of matter and kination domination generated from axion rotation, as discussed in

Sec. 2. We consider gravitational waves created by quantum fluctuations during inflation and

by local cosmic strings. In both production mechanisms, the spectrum is nearly flat in the

standard cosmology with radiation domination. As we will see, the evolution of a universe

with successive eras dominated by radiation, matter, kination, and back to radiation induces

a triangular peak in the gravitational wave spectrum that can provide a unique signal for

axion rotation and kination cosmology.

5.1. From inflation

We first discuss the primordial gravitational waves produced from quantum fluctuations

during inflation [99]. In the standard cosmology with radiation domination, the spectrum

is nearly flat for the following reason. After inflation, a given mode k is frozen outside the

horizon, k < H. As the mode reenters the horizon, k > H, it begins to oscillate and behaves

as radiation. The energy density of the mode at that point ∼ k2h2(k)M2
Pl, where h is the

metric perturbation, whose spectrum is almost flat for slow-roll inflation. Since k ∼ H at

the beginning of the oscillation, the energy density of the gravitational waves normalized by

the radiation energy density ∼ H2M2
Pl is nearly independent of k up to a correction by the

degree of freedom of the thermal bath3

During matter or kination domination in our scenario, the energy density at the horizon

crossing is still H2h2M2
Pl, but the radiation energy density is now much smaller than H2M2

Pl.

As a result, the energy density of gravitational waves with a mode k is inversely proportional

to the fraction of the radiation energy density to the total energy density when the mode

enters the horizon. This means that the spectrum should feature a triangular peak in axion

kination. The modes that enter the horizon at T > TRM are not affected and remain flat.

3 Free-streaming neutrinos damp the amplitude of the gravitational waves for f ≲ 0.1nHz [100].
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(See, however, a comment below). Therefore, as the horizon-crossing temperature decreases

below TRM, the gravitational waves are enhanced and reach the maximal value at TMK, where

the fraction of the radiation energy is minimized. The gravitational wave strength decreases

again for the horizon crossing temperatures below TMK, and returns to a flat spectrum below

TKR. Note that gravitational waves that enter the horizon during matter domination are also

enhanced because of the absence of entropy production after matter domination. We use

an analytical approximation where each mode begins oscillations suddenly at the horizon

crossing. Also approximating the evolution of H by a piecewise function with kinks at the

three transition, the resultant spectrum of gravitational waves is given by

ΩGWh
2 ≃ 1.4× 10−17

(
V

1/4
inf

1016 GeV

)4(
g∗,SM
g∗(Thc)

)1
3





1 RD : fRM < f
(
fRM

f

)2
MD : fMK < f < fRM

f
fKR

KD : fKR < f < fMK

1 RD : f < fKR

, (5.1)

fRM,KR ≃ 27 µHz

(
TRM,KR

TeV

)(
g∗(TRM,KR)

g∗,SM

)1
6
, (5.2)

fMK = (f 2
RMfKR)

1/3 ≃ 27 µHz

(
TRM

TeV

)2
3
(
TKR

TeV

)1
3
(
g∗(TRM)

g∗,SM

)1
9
(
g∗(TKR)

g∗,SM

) 1
18
, (5.3)

where Vinf is the potential energy during inflation. We normalize the spectrum to match

a full numerical result at f < fKR and f > fRM, which is found to be consistent with the

result of the numerical computation in Ref. [101].

In Fig. 7, we illustrate the spectrum of gravitational waves in axion kination. Through-

out this paper, we use the sensitivity curves derived in Ref. [102] for NANOGrav [103–

106], PPTA [107, 108], EPTA [109–111], IPTA [112–115], SKA [116–118], LISA [119, 120],

BBO [121–123], DECIGO [124–126], CE [127, 128] and ET [129–132], and aLIGO and

aVirgo [133–136]. The black solid and dashed curves are both based on the piecewise ap-

proximation of the ρθ contribution to the Hubble rate, whereas the black solid (dashed) curve

is with the analytical approximation (numerical solution) of the horizon crossing. Here H

is computed by the addition of ρθ and the radiation energy density, so smoothly changes

around TRM and TKR. As the analytic approximation reproduces the numerical result very

well, we use the analytic approximation of the horizon crossing in the remainder of this pa-

per. The blue dotted and orange solid lines show the spectrum for the two-field model and
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FIG. 7. An illustration of the model dependence in the primordial gravitational wave spectrum.

Here we fix TKR = 104 GeV, TRM = 108 GeV (and accordingly TMK ≃ 2 × 105 GeV), and the

inflationary energy scale V
1/4
inf = 1016 GeV. The black lines are for the case where the rotation

energy density ρθ follows a piecewise scaling when T ≶ TMK as shown in Fig. 1. The solid (dashed)

black lines are obtained from an analytic (numerical) derivation of the evolution of the metric

perturbations. The colored curves are for the two-field model (blue) and the logarithmic potential

(orange) with evolution demonstrated in Fig. 1. For the two-field model, we show the blue dotted

curves for different ratios of the soft masses of the two fields P̄ and P , m2
P̄
/m2

P = 1, 2,∞ from top

to bottom.

the log potential, respectively. The spectrum for the two-field model is close to that for the

piecewise approximation, while that for the log potential deviates from them. Remarkably,

the measurement of the gravitational wave spectrum around the peak can reveal the shape

of the potential that spontaneously breaks the U(1) symmetry.

We comment on possible further modification of the spectrum. Axion kination relies on a

nearly quadratic saxion potential, which is natural in supersymmetric theories. The degrees

of freedom of the thermal bath change by about a factor of two across the superpartner

mass threshold, suppressing the gravitational wave signals by a few tens of a percent at

high frequency [137]. This depends on the superpartner masses, and we do not include
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FIG. 8. GW spectra from inflation for inflationary energy scale V
1/4
inf of 1.6× 1016 GeV (left panel)

and 6×1015 GeV (right panel). Each panel contains various choices of (TKR, TRM). The left (right)

vertex of each triangle approximately indicates the choice of TKR (TRM) labeled at the top axis,

while T 3
MK = TRMT 2

KR. The (TKR, TRM) choices are (3 MeV, 3 GeV) for red, (10−2, 107) GeV for

purple, (104, 8×107) GeV for blue, and (105, 3×109) GeV for brown. Finally, for QCD axion dark

matter to be produced by kinetic misalignment with C = 1 and 0.3, TKR is predicted to be 2× 106

and 7×105 GeV as shown in the solid and dotted orange curves with the maximal TRM of 7×1010

and 4× 1010 GeV allowed by the constraints shown in Fig. 9. These curves assume g∗(T ) for the

Standard Model and H with individual energy density contributions including a piecewise ρθ.

this effect for simplicity. We also assume that the radial mode of P does not dominate the

energy density of the universe. If it does, entropy is created by the thermalization of the

radial mode and gravitational waves at f > fRM can be suppressed. If the initial rotation

before thermalization is highly elliptical, after the thermalization the universe is radiation

dominated for a long time because of the radial mode energy much larger than the angular

mode energy, so the suppression occurs at f ≫ fRM. If the initial rotation is close to a

circular one, the universe is radiation dominated only for a short period, so the suppression

occurs right above fRM. In principle, we can learn about the very UV dynamics of axion

rotations through the observations of gravitational waves.

In Fig. 8, we show the gravitational wave spectra for two choices of the inflaton potential

energy scale Vinf . The inflationary energy scales of V
1/4
inf = 1.6× 1016 GeV and 6× 1015 GeV

correspond to the tensor fractions of r = 0.056 near the upper bound from the CMB [65]
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FIG. 9. Parameter space for the QCD axion dark matter produced by kinetic misalignment, which

predicts TKR ≃ C×2×106 GeV as can be seen in Fig. 5. The left (right) panel assumes C = 1 (0.3).

The regions above the thick magenta and orange lines lead to a primordial gravitation wave signal

that can be probed by DECIGO and BBO for the labeled choices of V
1/4
inf , while within the adjacent

transparent shadings, the peak of the spectrum can be detected by each observatory. The signal

is made possible by the kination era; otherwise, V
1/4
inf > 1.2× 1016 GeV is required for DECIGO.

and r = 0.001 near the sensitivity limit of future CMB observations [138], respectively. We

show the spectrum for several sets of (TKR, TRM) in different colored curves.

The spectrum shown in the solid (dotted) orange curve corresponds to the value of TKR

predicted from QCD axion dark matter via the kinetic misalignment mechanism with C = 1

(C = 0.3) according to Eq. (4.3), with the maximal TRM allowed by the constraints shown in

Fig. 9. In Fig. 9, we explore the parameter space for the QCD axion for C = 1 (left panel)

and C = 0.3 (right panel). Most features of Fig. 9 are analogous to those in Fig. 6, whereas

the gray hatched region indicates the range of mS compatible with lepto-axiogenesis based

on Eq. (4.11). If the inflation scale is not much below the present upper bound, DECIGO

and BBO can detect the modification of the spectrum arising from the QCD axion kination

era if the parameters of the theory lie anywhere above the thick magenta and orange lines

in Fig. 9. Inside the transparent shaded regions with TRM lower than the maximum allowed,

BBO and DECIGO can also observe the peak of the spectrum peculiar to axion kination

and identify how the Peccei-Quinn symmetry is spontaneously broken. If C < 1 and TRM
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FIG. 10. Possible ranges of temperatures are shown for ALPgenesis assuming cB = 0.1. Contours of

required fa andmS are shown by the blue and red lines respectively. White and transparent regions

are allowed. Thanks to a kination era, the primordial gravitational waves for V
1/4
inf = 1016 GeV

(left panel) and 6 × 1015 GeV (right panel) become detectable by the experiments specified next

to the colored sensitivity curves. The transparent colored shading for each gravitational wave

observatory indicates the regions where the peak in the gravitational wave spectrum falls within

the experimental sensitivity.

is close to the maximum, CE can also observe the signal, but the inflation scale must be

almost at the present upper bound as seen in Fig. 8.

The parameter space for ALPgenesis is shown in Fig. 10. In the allowed parameter region

at the bottom-left of the figure, TMK is below the electroweak scale and θ̇ws ≃ mS = 5 keV

(0.1/cB). fa is determined according to Eqs. (2.9) and (2.11). In the allowed parameter

region in the upper-right corner, TMK is above the electroweak scale and S(Tws) = fa, so

fa is determined by Eq. (4.8). mS is determined by Eqs. (2.9) and (2.11). Above each

colored line, each experiment can detect the gravitational wave spectrum enhanced by axion

kination. In the transparent shaded region, the triangular peak can be detected. Here we

take cB = 0.1. For smaller cB, the prediction on fa and mS becomes larger, and the allowed

range of (TKR, TMK) expands, as can be seen from the black solid lines in Fig. 6.
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FIG. 11. Possible ranges of temperatures are shown for lepto-ALPgenesis. The left two columns

are for the case with entropy production from saxion domination (D = 1), while the right column

assumes radiation domination (D = O(20)) with degenerated neutrinos. These different cases are

explained in Sec. 4.2 and Ref. [60]. The dark matter abundance is explained by an appropriate

ALP mass determined by fa and TKR using Fig. 5. Thanks to a kination era, the primordial

gravitational waves for V
1/4
inf = 1016 GeV (6 × 1015 GeV) in the upper (lower) panels become

detectable by the experiments labeled next to the colored sensitivity curves. The transparent

colored shadings indicate that the peak of the gravitational wave spectrum due to kination lies

inside the corresponding experimental reach.

The parameter space for lepto-ALPgenesis is shown in Fig. 11. Here mS is fixed so that

the observed baryon asymmetry is explained by lepto-ALPgenesis; see Eq. (4.11). fa is then

fixed by Eqs. (2.9) and (2.11). The meaning of shaded regions and contours are the same as

in Fig. 10.

Lastly, we comment on a potential constraint from high scale inflation. During inflation,

light scalar fields receive quantum fluctuations with a magnitude ∼ Hinf/2π with Hinf the
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Hubble scale during inflation [139–143]. If the axion rotation is responsible for the dark

matter or baryon density, this leads to the matter isocurvature perturbation of order Piso ≃

H2
inf/(2πSinf)

2 with Sinf the saxion field value during inflation. For the high inflation scale

considered in this section, this is in conflict with the CMB observation [144] unless Sinf is

close to the Planck scale, placing constraints in the parameter space. However, since the

PQ symmetry is explicitly broken by higher dimensional operators, the axion field does not

necessarily stay light during inflation. If the axion mass during inflation exceeds Hinf , the

quantum fluctuations are exponentially damped instead [145]. Therefore, we do not impose

the model-dependent constraints from isocurvature perturbations. (The higher dimensional

operator that gives the axion mass during inflation should be different from the one that

initiates the axion rotation, since otherwise the angular kick is suppressed.)

5.2. From cosmic strings

We next discuss gravitational waves emitted from local cosmic strings [146]. Local cos-

mic strings are topological defects produced upon gauge symmetry breaking in the early

universe, such as U(1) symmetry breaking [147]. The breaking of a local U(1) symmetry,

and hence formation of a cosmic string network, arises in many theories beyond the Stan-

dard Model. For example, one of the best motivated cases is U(1)B−L, which is the unique

flavor universal U(1) symmetry that does not have a mixed anomaly with the Standard

Model gauge symmetry. Moreover, U(1)B−L can be embedded into SO(10) together with

the Standard Model gauge group, and whose spontaneous symmetry breaking can provide

the right-handed neutrino masses in the see-saw mechanism [148–151].

After production, the cosmic string network follows a scaling law with approximatelyO(1)

long strings per Hubble volume which is maintained from the balance between conformal ex-

pansion with the universe and losses from self-intercommutation. The self-intercommutation

byproducts of the long string network lead to the formation of a network of string loops with

a new loop forming nearly every Hubble time and with a loop size proportional to the hori-

zon [152]. These subhorizon loops oscillate and redshift like matter before decaying from the

emission of gravitational waves. Because of the specific scaling law of the string network,

the energy density fraction of the cosmic strings is nearly independent of temperature, and

the spectrum of gravitational waves emitted from the local cosmic strings during radiation
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domination is nearly flat.

During kination or matter domination by axion rotation, the size of the horizon for a

given temperature is smaller than it would be in a radiation dominated universe. This

enhances the energy density of strings relative to the radiation density, and the spectrum

of gravitational waves feature a triangular peak in our axion kination cosmology. Since the

production of gravitational waves involves two steps that occur at widely separated times–

the production of string loops and their later decay–the computation is more involved than

the inflation case of Sec. 5.1.

The present day gravitational wave spectrum from a stochastic background of cosmic

string loops is [12, 146]

ΩGW(f) ≡ 1

ρc

dρGW

d ln f
=

8π

3H2
0

f
∞∑

m=1

Gµ2PmCm. (5.4)

Here Gµ2Pm = ΓGµ2m−q/ζ(q) is the power radiated by themth mode of an oscillating string

loop with Γ ≃ 50 being a constant determined from the average power over many types of

string loop configurations [12, 152, 153]. The power index q is 4
3
, 5

3
, or 2, if the gravitational

power is dominated by cusps, kinks, or kink-kink collisions, respectively [12, 146, 154]. We

will take q = 4/3, but for now we keep it as a free parameter. The present day critical

density is ρc, and the factor Cm is given by

Cm =

∫ t

tscl

dt′
(
a(t′)

a(t)

)3
dn

df ′ (t
′, f ′) (5.5)

dn

df ′ (t
′, f ′) =

dn

dtk

dtk
dl

dl

df ′ =

(
FCeff(tk)

αt4k

a(tk)
3

a(t′)3

)(
1

α + ΓGµ

)(
2m

f 2

a(t′)2

a(t)2

)
. (5.6)

Here tk(t
′, f) =

(
2m
f
a(t′)
a(t)

+ ΓGµt′
)
(α + ΓGµ)−1 denotes the formation time of a string loop

of length l that emits gravitational waves at frequency f ′ = 2m/l at time t′. The lower

integration time, tscl, is the time the infinite string network reaches scaling. F ≈ 0.1 [155]

characterizes the fraction of energy that is transferred by the infinite string network into

loops of size lk = αtk
4 , and Ceff characterizes the loop formation efficiency which depends

on the equation of state of the universe at loop formation time tk. Ceff can be estimated

4 Simulations suggest that roughly 90% of the energy transferred by the infinite string network into loops

goes into loops smaller than lk which are short lived and subdominantly contribute to ΩGW, or into

translational kinetic energy which redshifts away [155, 156]
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from the velocity-one-scale model of the infinite string network and is found to be [8, 157]

Ceff(tk) ≈





5.4 tk during RD

0.39 tk during MD

30 tk during KD.

(5.7)

The effect of the equation of state of the universe on the frequency dependence of

ΩGW(f) can be seen by piecewise integrating Cm in two regions: one where tk ≈ (2/f)(α+

ΓGµ)−1a(t′)/a(t) and the other where tk ≈ (ΓGµt′)(α + ΓGµ)−1 [9]. The split occurs at

time tΓ when the length of string lost to gravitational radiation, ΓGµtΓ, equals the original

loop formation length, (2m/f)a(tΓ)/a(t). The integral over Cm is easily computed in either

integration region by considering string loops that form when the equation of state of the

universe is w1, (a(tk) ∝ t
−3(1+w1)
k ), and emit gravitational radiation when the equation of

state is w2 (a(t′) ∝ t′−3(1+w2)). The spectral frequency dependence of the m = 1 mode of

oscillation is then [9]

Ω
(1)
GW(f) ∝ fλ λ =





w1(6w2 + 4)− 2

(w1 + 1)(3w2 + 1)
tΓ < t, p < 0

−1 tΓ < t, p ≥ 0

3− 2

w1 + 1
tΓ > t

(5.8)

where p = −3+2/(1+w1)+4/(3(1+w2)) characterizes whether the integral (5.5) is dominated

at tΓ (p < 0) or the latest possible emission time t′ in that cosmological era (p ≥ 0) [9].5

The frequency dependence of Ω
(1)
GW(f) according to Eq. (5.8) is shown in Table I. In the

modified cosmology under consideration, the universe transitions from being dominated by

radiation to matter at TRM, to kination at TMK, and back to radiation upon merging with

the standard cosmology at TKR. From Table I, we may therefore expect for sufficiently long

eras of radiation, matter, and kination that Ω
(1)
GW ∝ f 0 TRM−−→ f−1 TMK−−→ f 1 TKR−−→ f 0 as f drops

from high to low frequencies. That is, a triangular shaped peak in spectrum.

Although the first mode dominates the total power emitted by a string loop, the sum of

the contributions from all higher modes can appreciably change this power dependence of

5 In a standard radiation dominated era, ΩGW is dominantly sourced by the smallest loops in the horizon

due to their greater population and the independence of gravitational wave power, ΓGµ2, on loop size.

The smallest loops are those about to decay and hence for the standard cosmology, p < 0. However, this

is not the case in more general cosmologies.
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Loop Formation Era

Radiation Matter Kination

Radiation f0 f−1 f

L
o
op

D
ec
ay

E
ra

Matter f−1/2 f−1 f

Kination f1/4 f−1/2 f

TABLE I. Frequency dependence of the m = 1 mode amplitude, Ω(1)(f), for loops that form and

decay in a radiation, matter, or kination-dominated universe.

the total spectrum [14, 45]. The effect of the higher modes can be analytically estimated

by noting that Ω
(m)
GW = m−qΩ

(1)
GW(f/m) [45]. For example, assuming that Ω

(1)
GW is a broken

power law proportional to fα for f < f0 and f
β for f ≥ f0, we may write the total spectrum

as

ΩGW(f) =
∞∑

m=1

m−q Ω
(1)
GW(f/m) ≈

f/f0∑

m=1

m−q−β Ω0

(
f

f0

)β
+

∞∑

m=f/f0+1

m−q−αΩ0

(
f

f0

)α
(5.9)

where Ω0 = Ω
(1)
GW(f0). In the limit f ≫ f0, (5.9) reduces to

ΩGW(f)
f≫f0−−−→ Ω0

[
ζ(q + β)

(
f

f0

)β
+

(
1

q + α− 1
− 1

q + β − 1

)(
f

f0

)−q+1
]
. (5.10)

Consequently, if 1 − q > β, the high frequency contribution from the sum over all string

modes can make a steeply decaying spectrum shallower. Eq. (5.10) shows that the f 1 power

law during the kination era induced by axion rotations remains unchanged from summing

all string modes, but the f−1 power law during the preceding matter-dominated era becomes

f 1−q = f−1/3 for cusp dominated strings [157], f−2/3 for kink dominated strings, and un-

changed for kink-kink collision dominated strings. In this work, we focus on cusp dominated

strings which are common on string trajectories [152]. Interestingly, the determination of

the spectral slope during this early matter-dominated era can potentially indicate the value

of q.

The peak amplitude and frequency of the stochastic string spectrum can be estimated an-

alytically in terms of the key temperatures associated with axion kination, namely TKR, TMK,

and TRM. From Table I, we see that loops forming in the matter dominated era and decaying
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in the late radiation dominated era enjoy an f−1 growth, while loops that form in the kina-

tion era and decay in the late radiation dominated era experience an f 1 decay. Consequently,

loops that form at time tk = tMK are responsible for the peak amplitude and frequency of

the triangular peak spectrum when decaying. For example, the energy density of these loops

immediately prior to decaying is ρ(tΓ) ≈ µ l(tMK)n(tMK)a(tMK/a(tΓ))
3 where l(tMK) = αtMK,

n(tMK) ≈ FCeff/3αt
3
MK, and the decay time tΓ = µl(tMK)/ΓGµ

2. The resultant spectrum of

gravitational waves is then given by

ΩGWh
2
∣∣
peak

≈ 10−8

(
100MeV

TKR

)3
2
(
TMK

2GeV

)3
2
(

Gµ

6× 10−11

)1
2 ( α

0.1

)1
2

(
50

Γ

)1
2

(5.11)

fpeak ≈ 0.1Hz

(
100MeV

TKR

)1
2
(
TMK

2GeV

)3
2
(
6× 10−11

Gµ

)1
2
(
0.1

α

)1
2
(
50

Γ

)1
2

(5.12)

fKR ≈ 1mHz

(
TKR

100MeV

)(
6× 10−11

Gµ

)1
2
(
0.1

α

)1
2
(
50

Γ

)1
2
. (5.13)

where the peak amplitude of the triangular spectrum, ΩGWh
2|peak, and the peak frequency

fpeak, can be thought of as ΩGWh
2|MK and fMK, since the peak is associated with loops

formed at TMK. The frequency of the peak, Eq. (5.12), is set by the invariant size of the

loop at the formation time tMK with the emission frequency at decay 2/l(tMK) redshifted to

the present. Similarly, from Table I, we can see that the loops that form at the transition

from matter to late era radiation, tKR, are responsible for the amplitude of the lower left

vertex of the axion kination triangle. Again, the frequency of these loops is the emission

frequency at decay, 2/l(tKR) redshifted to the present as given by Eq. (5.13). Last, note that

the fiducial values of TKR = 100MeV and TMK = 2GeV, correspond to TRM ≈ 100GeV,

which corresponds to the dark purple curve of Fig. 13.

In general, for brief eras of kination and matter domination, the gravitational wave spec-

trum will not reach its asymptotic dependence, Ωtot
GW ∝ f 0 TRM−−→ f−1/3 TKM−−→ f 1 TKR−−→ f 0;

nor will the kination era peak be sharply defined. Consequently, we numerically evaluate

Eq. (5.4) to precisely determine ΩGW over a wide range of {TKR, TRM, TMK}. In doing so,

we numerically compute the time evolution of the scale factor from the Friedmann equation

ȧ(t)

a(t)
= H0

[
ΩΛ + Ωr

(
a(t0)

a(t)

)4

+ Ωm

(
a(t0)

a(t)

)3

+ Ωk,θ

(
aKR

a(t)

)6

+ Ωm,θ

(
aMK

a(t)

)3]1
2

(5.14)

where Ωk,θ = Ωr

(
a(t0)
aKR

)4
Θ(a(t) − aMK) and Ωm,θ = Ωk,θ

(
aKR

aMK

)6
Θ(a(t) − aRM) are the

critical densities of the axion induced kination and matter dominated eras, respectively,
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FIG. 12. Left: An illustration of the model dependence in the stochastic string gravitational

wave spectrum. The solid black line is the case where the rotation energy density ρθ follows a

piecewise scaling T ≶ TMK as shown in Fig. 1. The colored curves are for the two-field model

(blue) and the logarithmic potential (orange) with evolution demonstrated in Fig. 1. For the two-

field model, we show the blue dotted curves for different ratios of the soft masses of the two fields

P̄ and P , mP̄ /mP = 1, 100. The dashed black curve shows the standard string spectrum in a

ΛCDM cosmology. We fix (TKR, TRM) = (1GeV, 100GeV). Right: An illustration of the difference

between the m = 1 amplitude (purple) and the total amplitude summed over 104 harmonics (red).

The sum over high modes partially flattens the right side of the kination induced peak, shifting the

spectral dependence from f−1 to f−1/3. We fix (TKR, TRM) = (1 GeV, 10 TeV). In both panels, the

second, smaller triangle at high frequencies is an additional fingerprint of axion kination and arises

from loops that form in the early radiation dominated era and decay in the subsequent matter or

kination dominated eras (see Table I). Both panels assume Gµ = 5×10−15, and α = 0.1. The drop

in the spectrum above f ∼ 1012 Hz arises from only considering loops that form after the string

network reaches scaling, tk > tscl. We take scaling to be reached shortly after string formation,

tk ∼ 1/H(T =
√
µ). However, string friction with the thermal bath can delay scaling and shift

this high frequency cutoff to lower frequencies [14, 152, 158, 159]. We do not include this model

dependent effect in this work.

while Ωr = 9.038 × 10−5, Ωm = 0.315, and ΩΛ = 1 − Ωr − Ωm [65] are the critical energy

densities of radiation, matter and vacuum energy in the standard ΛCDM cosmology. H0 ≃

67.4 km s−1Mpc−1 is the present-day Hubble constant [65].

The left panel of Fig. 12 shows the imprint of the saxion potential on the stochastic string
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gravitational wave background. The black curve corresponds to the piecewise approximation

of the ρθ contribution to the Hubble rate as used in Eq. (5.14). The blue dotted and orange

solid lines show the spectrum for the two-field model and the log potential, respectively.

Similar to the gravitational wave spectrum of Fig. 7 for inflation, the spectrum for the two-

field model is close to that for the piecewise approximation, while that for the log potential

deviates from them. In what follows, we use the piecewise approximation of ρθ.

The right panel of Fig. 12 illustrates two key features that axion kination imparts to

the stochastic string gravitational wave background. First, the purple curves show the

m = 1 contribution to the spectrum, Ω
(1)
GW, while the red curves shows ΩGW after summing

over 104 harmonics. For the m = 1 amplitude, the triangular shaped peak approaches

the expected f−1 rise and f 1 fall as shown in Table I. The amplitude summed over 104

modes, however, demonstrates how the total amplitude deviates from the m = 1 amplitude.

Summing over higher harmonics increases the amplitude roughly by a factor of ζ(4/3), and

most importantly, the contribution from the higher harmonics changes the f−1 tail on the

right side of the kination induced triangle into a much shallower f−1/3 tail while leaving the

f 1 decay on the left side the triangle the same. Such a long and shallow UV tail allows high

frequency gravitational wave detectors to discern axion kination from the standard ΛCDM

spectrum even when the triangular kination peak is at much lower frequencies. In addition,

a second key feature of axion kination is shown in the second, smaller triangle at higher

frequencies compared to the main triangle. The second triangular bump in the spectrum

arises from loops that form in the early radiation dominated era prior to kination, and decay

in the matter, kination, or late radiation era. As seen from Table I, loops that form in the

early radiation era and decay in these other eras are expected to exhibit a shallower rise and

fall in amplitude akin to the main triangular shaped enhancement from loops that form in

the matter or kination eras. For sufficiently short eras of kination and matter domination,

the smaller, second bump is visible even after summing over higher harmonics. For long

eras of kination, the sum over higher harmonics can merge the main kination induced peak

with this smaller second peak, as shown for instance, in the purple curves in the left panel

of Fig. 13. Nevertheless, the slightly broken power law near 103 Hz for the solid purple and

105 Hz for the lighter purple contour is a remnant left over from this second triangular peak.

The observation of a broken decaying power law or the second triangular bump itself may

provide a unique gravitational wave fingerprint for axion induced kination.

39



10-10 10-8 10-6 10-4 10-2 1 102 104 106 108
10-18
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6

f (Hz)

Ω
G

W
h2

EP
TA

N
A

N
O

G
ra

v

PP
TA

IP
TA

SK
A

LISA

DE
CI

GO

BBO

aL
IG

O
/a

V
irg

o
aL

IG
O

(d
es

ig
n)

ET
CE

Gμ = 610-11
TKR

=
100

MeV TRM = 100 TeV
TRM = 100 GeV

Gμ
=

5
10

-
15

TKR = 3 MeV
TRM = 100 MeV

Gμ
=

5
10

-
20

TKR
=

3 MeV TRM = 100 MeV

10-10 10-8 10-6 10-4 10-2 1 102 104
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

f (Hz)

Ω
G

W
h2

EP
TA

N
A

N
O

G
ra

v

PP
TA

IP
TA

SK
A

LISA

BB
O

D
EC

IG
O

D
EC

IG
O

,B
BO

aL
IG

O
/a

V
irg

o
aL

IG
O

(d
es

ig
n)

ET
CE

Gμ = 3.510 -11Gμ = 410-11

Gμ = 610-11
TKR

=
150

eV

TRM = 6 keV
TRM = 1 keV

FIG. 13. Representative spectra of primordial gravitational waves emitted from local cosmic strings

experiencing axion kination (solid) and the standard ΛCDM cosmology (dashed). Long eras of ki-

nation exhibit greater amplitudes in the triangular shaped peak of ΩGWh2, which is a key signature

of axion kination. Of crucial importance is the slowly decaying high frequency tail arising from the

sum over high mode numbers which enables detectors like BBO, DECIGO, and CE to detect devi-

ations from the ΛCDM spectrum even when the kination peak is not located within their frequency

domain. Left: Early axion kination cosmology where kination occurs before BBN. The top most

contour shows the gravitational wave amplitude when Gµ is fixed to pass through the NANOGrav

signal. Right: Late axion kination cosmology where kination occurs in the epoch between CMB

and BBN. For each contour, we plot the required Gµ to pass through the NANOGrav signal.

Fig. 13 shows the typical gravitational wave spectrum for a stochastic string background

experiencing axion kination. Here, we numerically compute (5.4) up to 104 modes and fix

α = 0.1 in accordance with simulations [153, 155]. The solid contours show ΩGWh
2 in

the modified axion kination cosmology for a variety of {TKR, TMK, TRM}, while the dashed

contours show the amplitude in the standard ΛCDM cosmology. The left and right panels

of Fig. 13 represent the expected spectral shape for early and late axion kination eras,

respectively. We define early (late) axion kination cosmologies as those that end before

(after) BBN. To be consistent with BBN and CMB bounds, this entails that TKR ≳ 2.5MeV

for early axion kination cosmologies and that 130 eV ≲ TKR ≤ TRM ≲ 6 keV for late kination

cosmologies as discussed in Sec. 3.

The free parameters {Gµ, α, TKR, TMK} set the spectral shape of the stochastic back-

ground. Independent of the axion kination cosmology, larger Gµ and α elevate the overall
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amplitude of the spectrum such that the base amplitude of the kination induced triangle

scales as ΩGW,baseh
2 ≃ 2 × 10−4

√
Gµα for α ≳ ΓGµ [157]. On the other hand, the param-

eters TKR and TMK determine the size and location of the triangular ‘bump’ with a larger

peak corresponding to longer duration of kination 6 and occurring at a higher frequency the

greater TMK is. For example, the solid and light purple contours on the left panel of Fig. 13

illustrate the growth and blueshift of the kination induced peak when the duration of the

kination era increases for fixed Gµ and TKR. The red and blue contours in the same panel

illustrate the overall decrease in amplitude and the blueshift of the spectrum when lowering

Gµ for a fixed duration of kination. In addition, the purple and red contours (Gµ = 6×10−11

and 5× 10−15, respectively) illustrate that an era of axion induced kination provides future

detectors such as LISA with an excellent opportunity to measure the significant deviation

from the standard string spectrum (dashed) over a wide range of Gµ and (TKR, TMK). More-

over, an axion induced kination cosmology may provide the only way to detect extremely

small string tensions in future detectors like BBO and CE as shown by the blue contour

(Gµ = 5× 10−20).

Similarly, the right panel of Fig. 13 shows the modified gravitational wave spectrum

for late kination cosmologies. Here we show a collection of spectra that pass through the

observed NANOGrav signal [41] that are consistent with CMB and BBN constraints. The

dashed black contour shows ΩGWh
2 for the standard ΛCDM cosmology [44, 45] while the

gray contour (Gµ = 3.5 × 10−11) shows ΩGWh
2 for the maximum allowed TRM (6 keV)

and near the minimum allowed TKR (130 eV), producing the largest kination peak passing

through NANOGrav that is consistent with CMB and BBN. As TKR and TRM converge and

the kination era decreases in duration, ΩGWh
2 converges with the standard result, shown, for

example, by the magenta contour (Gµ = 4.0× 10−11). Fig. 13 demonstrates that a striking

difference can exist between ΩGWh
2 in the axion kination cosmologies and the standard

ΛCDM cosmology.

To understand the connection between the experimental detection of axion kination via

string gravitational waves and axion kination parameters, we first reduce the four dimen-

sional parameter space {Gµ, α, TKR, TMK} into a simpler two dimensional space of TKR and

TMK. This is achieved by fixing Gµ so that the gravitational wave amplitude in the mod-

6 Equivalently, the greater the duration of the matter-dominated era. This follows from the temperature

relationship T 3
MK = TRMT 2

KRg∗(TRM)/g∗(TKR).
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ified cosmology passes through the NANOGrav signal (ΩGWh
2, f) ≃ (7.5 × 10−10, 5.2 ×

10−9Hz)) [41] 7 , and fixing α = 0.1 which best matches simulations. For early kination

cosmologies (left panel of Fig. 13), this requires Gµ ≃ 6× 10−11. For late kination cosmolo-

gies (right panel Fig. 13), which generally exhibit a ‘bump’ in the spectrum at nanohertz

frequencies, we decrease Gµ for a given (TKR, TMK) so that ΩGWh
2 still crosses through

the NANOGrav signal. The left panel of Fig. 14 demonstrates this effect by showing the

necessary Gµ to match the NANOGrav signal in the (TKR TRM) plane. For relative long

durations of kination (TRM ≫ TKR), the necessary Gµ decreases by a factor of a few to

near Gµ = 3 × 10−11 (blue region) whereas in the limit of no kination (TRM ≪ TKR), the

necessary Gµ asymptotes to its ΛCDM value of 6× 10−11 (red region).

For a given (TKR, TMK), we register a detection of axion kination in a similar manner to

the “turning-point” prescription of [14]: First, ΩGWh
2 must be greater than the threshold

for detection in a given experiment. Second, to actually distinguish between ΩGWh
2 in the

axion cosmology and the ΛCDM cosmology, we require that their percent relative differ-

ence be greater than a certain threshold within the frequency domain of the experiment.

Following [14], we take this threshold at a realistic 10% and a more conservative 100% rel-

ative difference. For more rigorous approaches in distinguishing similar gravitational wave

spectra, see [27, 160].

The right panel of Fig. 14 shows the parameter space in the (TKR, TRM) plane where

late axion kination can be detected and distinguished from the standard cosmology with

difference of 10% (solid) and 100% (dashed) in ΩGWh
2. Here we choose Gµ for each point

according to the left panel for axion kination cosmology and take Gµ = 6 × 10−11 for the

standard cosmology. For most of the parameter space consistent with CMB and BBN, an

era of kination can be detected and distinguished from the standard cosmological stochastic

string background. In addition to the change of the required value of Gµ, remarkably, the

slowly decaying f−1/3 tail originating from the sum over high frequency harmonics, as shown

for example by the right panel of Fig. 13, allows detectors like LISA, BBO, DECIGO, and CE

to detect late axion kination cosmology. Future detectors like SKA can probe the nanohertz

triangular bump. For sufficiently low TKR and high TRM, a kination signal may already be

7 In this work, we do not fit the spectral index to NANOGrav. For early kination cosmologies, the nanohertz

region of ΩGWh2 is effectively identical to the standard cosmology result and the best fit results of [44, 45]

apply. For the late kination cosmologies, the slope of the signal through NANOGrav can increase compared

to the relatively flat slope of ΛCDM spectrum. It is possible a larger spectral index provides a better fit,

but we leave that for future work.
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FIG. 14. Left: Required Gµ for ΩGWh2 to pass through the NANOGrav signal [41, 44, 45]. For

long kination eras, which occur when TRM ≫ TKR, Gµ decreases with respect to the standard

ΛCDM cosmology so that the kination peak does not exceed the NANOGrav signal. Right :

The parameter region of axion kination whose imprints on the gravitational wave spectrum from

cosmic strings can be detected. For each (TRM, TKR), we fix Gµ according to the left panel so

that spectrum passes through the NANOGrav signal. For the reference ΛCDM cosmology, we fix

Gµ and α to 6 × 10−11 and 0.1, respectively, to also fit NANOGrav. For a given (TKR, TMK), a

detection is registered when the difference in amplitudes, ΩGW−ΩGW,0 is greater than 10% (solid)

or 100% (dashed) of the standard cosmological amplitude, ΩGW,0, within the sensitivity curve of

the detector.

observable or excluded at NANOGrav.

Early axion kination is consistent with axiogenesis above the electroweak scale, and can be

probed by laser interferometers. We show the constraints on the parameter space of minimal

ALPgenesis together with the detection prospects in the upper panels of Fig. 15. The top-

right panel zooms in on the bottom-left part of the top-left panel. The slowly decaying

f−1/3 tail allows detectors like LISA, BBO, DECIGO, and CE to distinguish an early era

of axion cosmology for most TKR ∈ (10−3GeV, 5 × 104GeV). For TKR ≳ 5 × 104GeV,

the kination spectrum merges with the standard spectrum at frequencies above f ≳ 103

Hz, thereby evading detection. Still, a good portion of the parameter space with fa ≲ 108
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FIG. 15. Detector reach of the kination cosmic string gravitational wave spectrum for a range of

TKR and TMK consistent with minimal ALPgenesis (top) and lepto-ALPgenesis (bottom). The top-

right panel zooms in on the bottom-left part of the top-left panel. Gµ and α are fixed at 6× 10−11

and 0.1, respectively, to fit the NANOGrav data [41]. For a given (TKR, TMK), a detection is

registered when the difference in amplitudes, ΩGW − ΩGW,0 is greater than 10% (solid) or 100%

(dashed) of the standard cosmological amplitude, ΩGW,0, within the sensitivity curve the detector.

In the transparent shared regions, the peak of the spectrum originated from axion kination can be

detected.
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GeV can imprint signals that are detectable by future observations. Future gravitational

wave detectors that can observe super-kilohertz frequencies can potentially probe earlier eras

of axion kination and hence larger fa. In the transparent shaded region, the peak of the

spectrum produced by axion kination can be detected. As we argued, this is a smoking-gun

signature of axion kination and the detailed shape of the peak contains information about

the shape of the potential of the complex field that breaks the U(1) symmetry. The lower

two panels of Fig. 15 show the constraints and prospects for lepto-ALPgenesis, for values of

mS used in Fig. 11. Future laser interferometers can probe much of the parameter region

with low fa ≲ 108 GeV.

6. SUMMARY AND DISCUSSION

Axion fields, due to their lightness, may have rich dynamics in the early universe. In

this paper, we considered rotations of an axion in field space that naturally provide kination

domination preceded by matter domination, which we call axion kination. This non-standard

evolution affects the spectrum of possible gravitational waves produced in the early universe.

To be concrete, we investigated gravitational waves from inflation and local cosmic strings,

which have a nearly flat spectrum when they begin oscillations or are produced during

radiation domination. We found that kination domination preceded by matter domination

induces a triangular peak in the gravitational wave spectrum.

We studied the theory for axion kination, which involves an approximately quadratic

potential for the radial mode and has three parameters: the mass of the radial mode, the

axion decay constant, and the comoving charge density. We derived constraints on this

parameter space from successful thermalization of the radial mode, BBN, and the CMB. We

found large areas of fully realistic parameter space where the theory yields axion kination.

The allowed region splits into two pieces, one having early kination domination before BBN

and the other having late kination after BBN but well before the CMB last scattering.

Introducing a mass for the axion, we found that part of the axion kination parameter

space is consistent with axion dark matter by the kinetic misalignment mechanism while

part is not, due to the warmness constraint on dark matter. Similarly, we showed that part

of the axion kination parameter space is consistent with generating the baryon asymmetry

by ALPgenesis. Furthermore, there are constrained regions with ALP cogenesis yielding
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both dark matter and the baryon asymmetry, and also regions with the baryon asymmetry

successfully generated by lepto-ALPgenesis.

As demonstrated in Sec. 5, axion kination modifies the spectrum of possible primordial

gravitational waves through the modification of the expansion history of the universe. By

analyzing the spectrum, we can in principle determine the product of the radial mode mass

mS and the decay constant fa using the relations given in Eqs. (2.8), (2.9), and (2.11). By

further determining fa from axion searches, we may obtain mS. In the simplest scenario

of gravity mediation in supersymmetry, mS is as large as the masses of the gravitino and

scalar partners of Standard Model particles; in other words, we can determine the scale of

supersymmetry breaking.

We can further narrow down the parameter space by requiring that the baryon asymmetry

of the universe be created from the axion rotation. As shown in Sec. 4.2, this imposes an

extra relation on (mS, fa), and in conjunction with the gravitational wave spectrum, we may

make a prediction on both fa and mS, which could be confirmed or excluded by measuring

fa in axion experiments ormS in collider experiments assuming thatmS is tied to the masses

of the scalar partners of Standard Model particles.

If the inflation scale is not much below the current upper bound, future observation of

gravitational waves can detect the spectrum modified by axion kination, or even the peak of

the spectrum that contains information on the shape of the potential of the U(1) symmetry

breaking field. In particular, if the QCD axion accounts for dark matter via the kinetic

misalignment mechanism, a modification of the gravitational wave spectrum is predicted at

high frequencies, f ≳ 10−2 Hz, as shown in Fig. 8. In this case it is very interesting that this

gravitational wave signal can be detected by DECIGO and BBO over most of the allowed

parameter space, as shown in Fig. 9; in a significant fraction of the parameter space the

gravitational wave peak will be probed. Furthermore, a signal may also be seen at CE if the

inflation scale is very near the current upper bound or the sensitivity of CE is improved.

For gravitational waves from cosmic strings, for fixed axion kination cosmology parame-

ters, the modification of the spectrum is predicted at higher frequency, so the QCD axion

will not affect the spectrum observable by near future planned experiments. ALPs can affect

the spectrum in an observable frequency range.

Gravitational waves from cosmic strings provide signals that can probe axion kination

over a wide range of Gµ, TRM and TKR, as illustrated in Fig. 13. We examined cosmic
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strings with a tension suggested by NANOGrav in detail. If axion kination occurs before

BBN, the NANOGrav signal can be fitted by the same cosmic strings parameters as in stan-

dard cosmology. Importantly, axion kination enhances the spectrum at higher frequencies,

allowing laser interferometers to probe the kination era. The enhancement can occur in

the parameter region consistent with axiogenesis scenarios, as shown in Fig. 15. If axion

kination occurs after BBN, the NANOGrav signal is fitted by a smaller string tension, as

shown in the left panel of Fig. 14, and a detailed examination of the spectrum will determine

if axion kination is involved. The spectrum at higher frequencies is suppressed, which can

be detected by laser interferometers in the parameter region shown in the right panel of

Fig. 14.

Our kination era is preceded by an epoch of matter domination that ends without cre-

ating entropy. Therefore, matter and kination domination can occur even after BBN. This

allows for enhancements to the matter spectrum on small scales that may be probed by ob-

servations of Lyman-α and 21 cm lines. Evolving the enhanced matter power spectrum into

the non-linear regime and understanding its effects on the Lyman-α flux spectrum as well as

hierarchical galaxy formation, and constraints arising from corresponding observations will

be discussed in future work.

In this paper, we concentrated on gravitational waves produced by inflation or local cosmic

strings and modified by axion kination. At any temperature with early matter or kination

domination, the Hubble scale is larger than with radiation domination, and hence, quite

generally, primordial gravitational waves are enhanced by axion kination. Furthermore, a

distinctive feature appears in the spectrum, a peak or bump depending on the field potential,

containing information that probes in detail the era of kination and its origin. It will be

interesting to investigate other sources of primordial gravitational waves.

Note added. Soon after the current manuscript was announced on the arXiv, Ref. [161]

appeared as well. While our analyses have been conducted independently, Ref. [161] also

discovered the triangular peak signature of axion kination in the spectrum of the primordial

gravitational waves from inflation.
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Appendix A: Evolution of the energy density of axion rotations

In this appendix, we derive the evolution of the axion rotations for the nearly quadratic

potentials.

1. Logarithmic potential

We first consider the logarithmic potential in Eq. (2.4). The evolution of the axion

rotations for this potential is derived in Ref. [35].

We are interested in the rotation dynamics when the Hubble expansion is negligible,

mS ≫ H. In this case, we may obtain short-time scale dynamics ignoring the Hubble

expansion and include it when we derive the scaling in a long cosmic time scale. We are also

interested in the circular motion after thermalization. Under these assumptions, we may

put S̈ = Ṡ = 0, and the equation of motion of S requires that

θ̇2 =
V ′(S)

S
=
m2
S

2
ln
S2

f 2
a

. (A.1)

The equation of motion of θ gives a conservation law of the angular momentum in the field

space up to cosmic expansion,

nθ = θ̇S2 = mSS
2

(
ln
S

fa

)1/2

∝ a−3. (A.2)
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Using these two equations, we may obtain the dependence of S and θ̇ on the scale factor a,

S2 = S2
i

a3i
a3

2

√√√√ lnSi/fa

W (
4a6iS

4
i ln(Si/fa)

a6f4a
)
,

θ̇2 =
1

2
m2
SW (

4a6iS
4
i ln(Si/fa)

a6f 4
a

), (A.3)

where W is the Lambert W function and Si is an initial field value at a scale factor of ai.

When Si ≫ fa and a is not much above ai, S
2 ∝ a−3 and θ̇ is nearly a constant. For a≫ ai,

S ≃ fa and θ̇ ∝ a−3.

The dependence of the energy density

ρθ =
1

2
θ̇2S2 +

1

4
m2
SS

2

(
ln
S2

f 2
a

− 1

)
+

1

4
m2
Sf

2
a (A.4)

can be obtained by using Eq. (A.3). One can then show that the dependence of ρθ on the

scale factor a is

d ln ρθ
d ln a

=
−6
(
S
fa

)2
ln
(
S2

f2a

)

1−
(
S
fa

)2
+ 2

(
S
fa

)2
ln
(
S2

f2a

) =




−3 : S ≫ fa

−6 : S ≃ fa.
, (A.5)

so at early times, S ≫ fa, the rotation behaves as matter ρθ ∝ a−3, while at late times,

S ≃ fa, the rotation behaves as kination ρθ ∝ a−6. This behavior is seen in the orange curve

of Fig. 1.

2. Two-field model

We next consider the two-field model in Eq. (2.5). We assume that the saxion field value

is much larger than the soft masses, so that we may integrate out a linear combination of P

and P̄ that is paired with X and obtain a mass ∼ S. Using the constraint P̄ = v2P/P , from

the kinetic and mass terms of P and P̄ , we obtain an effective Lagrangian

L =

(
1 +

v4P
|P |4

)
|∂P |2 −m2

P |P |2
(
1 + r2P

v4P
|P |4

)
, rP ≡ mP̄

mP

. (A.6)

The potential has a minimum at |P | = √
rPvP when both m2

P and m2
P̄
are positive.

The equation of motion of S ≡
√
2|P | with S̈ = Ṡ = 0 requires that

θ̇2
(
1− 4v4P

S4

)
−m2

P

(
1− 4r2Pv

4
P

S4

)
= 0. (A.7)
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The equation of motion of θ gives a conservation of the angular momentum,

nθ = θ̇S2

(
1 +

4v4P
S4

)
∝ a−3. (A.8)

Without loss of generality, we assume that P ≫ vP , i.e., S ≫ vP initially. We first

consider rP > 1 (mP < mP̄ ). Eq. (A.7) means

θ̇2 =
1− 4r2Pv

4
P/S

4

1− 4v4P/S
4
m2
P . (A.9)

When S ≫ vP , we obtain θ̇2 ≃ m2
P . As S approaches the minimum

√
2rPvP , θ̇ approaches

0. The scaling of S can be derived from charge conservation,

nθ = θ̇S2

(
1 +

4v4P
S4

)
= mPS

2

(
1 +

4v4P
S4

)(
1− 4v4P

S4

)−1/2(
1− 4r2Pv

4
P

S4

)1/2

∝ a−3. (A.10)

The scaling of the energy density

ρθ =
1

2
S2θ̇2

(
1 +

4v4P
S4

)
+

1

2
m2
PS

2

(
1 +

4r2Pv
4
P

S4

)
− 2rPm

2
Pv

2
P (A.11)

can be derived from these two equations. Here a constant term is subtracted from the energy

density so that the energy density vanishes at the minimum. The dependence of ρθ on the

scale factor a is

d ln ρθ
d ln a

=

−3

(
1 +

(
S√

2rP vP

)2)(
1 + r2P

(
S√

2rP vP

)4)

1 + r2P

(
S√

2rP vP

)6 =




−3 : S ≫

√
2rPvP

−6 : S ≃
√
2rPvP

, (A.12)

from which we again observe that at early times, S ≫
√
2rPvP , the rotation behaves as

matter ρθ ∝ a−3, whereas at late times, S ≃
√
2rPvP , the rotation behaves as kination

ρθ ∝ a−6. This evolution is illustrated by the blue curves of Fig. 1 for various values of rP .

We next consider rP = 1. Eq. (A.7) has two solutions, 1) θ̇2 = m2
P with S ̸=

√
2vP and 2)

S =
√
2vP with unrestricted θ̇. For S ≫ vP , the solution is in the branch 1) and gives matter

scaling. Charge conservation implies S2(1 + 4v4P/S
4) ∝ a−3. As S decreases according to

this scaling and reaches
√
2vP , the branch 2) should be used and charge conservation implies

θ̇ ∝ a−3, giving kination scaling.

Finally, consider rP < 1. When S ≫ vP , we again obtain θ̇2 ≃ m2
P . However, as S

approaches
√
2vP (before reaching the minimum at

√
2rPvP ), θ̇

2 derived from Eq. (A.9)

diverges. This is the point at which the solution becomes unstable. Indeed, when rP < 1,
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FIG. 16. Corner plot for the posterior distributions for the ΛCDM independent parameters and

for the axion kination model. We use the highTTTEEE+lowEE+lowTT likelihood combination

from Planck 2018. Contours contain 68% and 95% of the probability.

for a fixed charge, it is energetically favored to have rotations in P̄ rather than in P , so the

rotation dominantly in P is at the most a meta-stable solution. When S reaches
√
2vP , the

solution becomes unstable. Quantum tunneling may occur before the instability is reached.

We leave the investigation of this scenario to future work and assume rP ≥ 1.
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Appendix B: CMB cosmological constraints from Planck

1. Perturbation equations of the P field

In order to consistently take into account the growth of perturbations in our axion kina-

tion cosmology, we need to account correctly for the perturbation equations of the complex

scalar field. We focus on the model in Eq. (2.4), where the kinetic term of P is canonical.

The complex scalar field can be written as

P = X + iY. (B.1)

We follow Ref. [162] in deriving our perturbation equations and will separate the equations

of motion for the zero modes of X and Y as

X ′′(τ) +
2a′(τ)

a(τ)
X ′(τ) + a2(τ)VX = 0, (B.2)

Y ′′(τ) +
2a′(τ)

a(τ)
Y ′(τ) + a2(τ)VY = 0, (B.3)

where VX = ∂V
∂X

and VY = ∂V
∂Y

, and primes denote derivatives with respect to the conformal

time τ . In what follows, we will drop the explicit τ dependence for brevity. The zeroth-order

energy density and pressure can be written as

ρ =
1

2a2
X ′2 +

1

2a2
Y ′2 + V, (B.4)

p =
1

2a2
X ′2 +

1

2a2
Y ′2 − V. (B.5)

The equations for the field perturbations δX = x and δY = y are given by

x′′ +
2a′

a
x′ +

(
k2x+ a2xVX,X + a2yVX,Y

)
− (h′v − 3h′δ)X

′ + 2a2hvVX = 0, (B.6)

y′′ +
2a′

a
y′ +

(
k2y + a2yVY,Y + a2xVX,Y

)
− (h′v − 3h′δ)Y

′ + 2a2hvVY = 0, (B.7)

where hv, hδ are gravitational potential perturbations. In synchronous gauge, which we will

use for our end result, hδ =
h
6
and hv = 0 in notation of Ref. [162]. The perturbations of ρ

and p, and the fluid velocity v are

δρ =
1

a2
(
X ′x′ + Y ′y′ −

(
X ′2 + Y ′2)hv

)
+ xVX + yVY , (B.8)

δp = δρ− 2 (xVX + yVY ) , (B.9)

(ρ+ p) v =
k

a2
(xX ′ + yY ′) . (B.10)
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Differentiating δρ with respect to the conformal time and using the above equations, we

obtain

δρ′ = − (ρ+ p) (kv + 3h′δ)− 6
a′

a
δρ+ 6

a′

a
(xVX + yVY ) , (B.11)

((ρ+ p) v/k)′ = δρ− 2 (xVX + yVY )− 4
a′

a
(ρ+ p) v/k. (B.12)

We can now transform from X, Y to radial and angular degree of freedom. We can write

X = R cos θ, Y = R sin θ, (B.13)

x = δR cos θ −R sin θδθ, y = δR sin θ +R cos θδθ. (B.14)

Assuming radial symmetry for our potential, the derivatives of the potential are

VX = VR
X

R
, VY = VR

Y

R
, (B.15)

leading to a simple expression

xVX + yVY = VRδR. (B.16)

Also,

xX ′ + yY ′ = δRR′ + δθR2θ′,

x′X ′ + y′Y ′ = δR′R′ + δRRθ′2 + δθ′θ′R2. (B.17)

There generically exist two perturbation modes from δR and δθ. However, for k/a≪ mS,

we may integrate out the heavy degree of freedom (equivalently, the mode with a high

frequency) that is nearly δR. The process goes as follows. We can use Eq. (5) in Ref. [163]

to write the corresponding equation for the evolution of δR in synchronous gauge,

δR′′ + 2
a′

a
δR′ + (k2 + a2VR,R − θ′2)δR = 2Rδθ′θ′, (B.18)

and we have used the fact that R′ is small to derive the above. Note that for a logarithmic

potential8 in Eq. (2.4),

a2VR,R − θ′2 = a2
(
VR,R − VR

R

)
= a2m2

S. (B.19)

8 The exact shape of the potential is crucial here. For a quadratic potential Eq. (B.19) would be zero,

prohibiting us from making simplifying approximations in what follows.
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Since mS ≫ H, the coefficient of δR in Eq. (B.18) dominates. For k/a≪ mS we can write

δR

R
=

2θ′δθ′

a2m2
S

. (B.20)

Using Eqs. (B.8) and (B.17) and the fact that R′ is small and θ′2 = a2VR/R we can also

write

δρ = 2VRδR +
1

a2
R2θ′δθ′. (B.21)

Then using Eqs. (B.20) and (B.21) we get

δR =
2δρ

4VR +Rm2
S

. (B.22)

The modified equations then become

δ′ϕ + (1 + w)

(
Θ+

h′

2

)
+

3a′

a

(
1− 4VR

4VR +m2
SR

− w

)
δϕ = 0, (B.23)

Θ′ +
a′

a
Θ
(
1− 3c2ϕ

)
− k2

δϕ

(
1− 4VR

4VR+m2
SR

)

1 + w
= 0, (B.24)

where c2ϕ = w − w′

3(1+w)a
′
a

is the adiabatic speed of sound of the fluid.

Note that the above equations approach to matter perturbation equations as w → 0

and kination perturbation equations as w → 1. This is consistent with the fact that ra-

dial perturbations do not grow in a logarithmic potential. The above equations are then

implemented in CLASS.

2. Implementation in CLASS

We use a modified version of CLASS [68] to solve the coupled Boltzmann equations and

Monte Python [69] and perform a parameter estimation with the Planck 2018 likelihoods

(TT,TE,EE+lowE) data [164].

We take inspiration from the fluid module already present in CLASS to define our own

“kination” module to take into account the perturbations of the ϕ fluid given in Eqs. (B.23)

and (B.24). Along with the perturbation equations listed above, we need to provide CLASS

with the equation of state of the ϕ fluid. This can be derived by noting that d ln ρθ
d log a

=

−3(1 + ω(a)) and using Eqs. (A.5) and (A.3).

Fig. 16 shows the posterior distributions of the six cosmological input parameters for

ΛCDM and the axion kination model: baryon density Ωbh
2, cold DM density Ωch

2, spectral
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FIG. 17. Corner plot for the posterior distributions for the calculated values ΛCDM parameters

and axion kination cosmology. Contours contain 68% and 95% of the probability.

index ns, primordial amplitude As, optical depth at reionization τ and the temperature

at kination-radiation equality TKR. We fix Neff = 3.046 and assume log flat prior for TKR

between 1 eV ≤ TKR ≤ 5 keV. We fix TRM = O(1) keV, obtaining TKR > 50 eV at 95%.

For completeness, Fig. 17 shows the derived parameters: the effective redshift at reioniza-

tion zreio, dark energy density ΩΛ, Hubble expansion rate todayH0 in units of km s−1 Mpc−1,

and matter fluctuation amplitude σ8.
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