
Computer Physics Communications 267 (2021) 108069
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Caravel: A C++ framework for the computation of multi-loop

amplitudes with numerical unitarity ✩,✩✩

S. Abreu a, J. Dormans b, F. Febres Cordero c,∗, H. Ita b, M. Kraus c, B. Page d,∗, E. Pascual b,
M.S. Ruf b, V. Sotnikov e,∗
a Center for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
b Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
c Physics Department, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
d Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette cedex, France
e Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 October 2020
Received in revised form 12 April 2021
Accepted 1 June 2021
Available online 17 June 2021

Keywords:
Numerical unitarity
Multi-loop scattering amplitudes
Gauge theories
Automated tools
QCD
LHC
Gravity

We present the first public version of Caravel, a C++17 framework for the computation of multi-loop
scattering amplitudes in quantum field theory, based on the numerical unitarity method. Caravel is
composed of modules for the D-dimensional decomposition of integrands of scattering amplitudes into
master and surface terms, the computation of tree-level amplitudes in floating point or finite-field
arithmetic, the numerical computation of one- and two-loop amplitudes in QCD and Einstein gravity,
and functional reconstruction tools. We provide programs that showcase Caravel’s main functionalities
and allow to compute selected one- and two-loop amplitudes.

Program summary
Program Title: Caravel

CPC Library link to program files: https://doi .org /10 .17632 /rfjrxrb3rk.1
Developer’s repository link: https://gitlab .com /caravel -public /caravel .git
Licensing provisions: GPLv3
Programming language: C++
External dependencies:
• Required: Python3 [1], meson [2]
• Optional: Doxygen [3], Eigen [4], GiNaC [5], GMP [6], Lapack [7], MPFR [8], MPI [9], Pentagon-
Library [10, 11], QD [12]
Nature of problem: The computation of multi-loop multi-particle scattering amplitudes in quantum field
theory
Solution method: The multi-loop numerical unitarity method, functional reconstruction algorithms
Additional comments including restrictions and unusual features: Current version includes tools employed in
previous calculations, with the aim of showcasing details of the algorithms employed. Computations are
organized by provided data files.

References
[1] http://www.python .org/
[2] https://mesonbuild .com/
[3] http://www.doxygen .nl/
[4] http://eigen .tuxfamily.org/
[5] https://ginac .de/
[6] https://gmplib .org/
[7] http://www.netlib .org /lapack/
[8] https://www.mpfr.org/
[9] https://www.open -mpi .org/

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding authors.
E-mail addresses: ffebres@hep.fsu.edu (F. Febres Cordero), bpage@ipht.fr (B. Page), sotnikov@mpp.mpg.de (V. Sotnikov).
https://doi.org/10.1016/j.cpc.2021.108069
0010-4655/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2021.108069
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108069&domain=pdf
https://doi.org/10.17632/rfjrxrb3rk.1
https://gitlab.com/caravel-public/caravel.git
http://www.python.org/
https://mesonbuild.com/
http://www.doxygen.nl/
http://eigen.tuxfamily.org/
https://ginac.de/
https://gmplib.org/
http://www.netlib.org/lapack/
https://www.mpfr.org/
https://www.open-mpi.org/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:ffebres@hep.fsu.edu
mailto:bpage@ipht.fr
mailto:sotnikov@mpp.mpg.de
https://doi.org/10.1016/j.cpc.2021.108069
http://creativecommons.org/licenses/by/4.0/

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
[10] T. Gehrmann, J. M. Henn and N. A. Lo Presti, JHEP 1810 (2018) 103, arXiv:1807.09812 [hep -ph]
[11] https://gitlab .com /caravel -public /pentagon -library
[12] QD: A double-double and quad-double package for Fortran and C++, https://www.davidhbailey.com /

dhbsoftware/

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . 2
2. Computational methodology . 3

2.1. Integrand parametrization . 3
2.2. Integrand factorization and cut equations . 4
2.3. Special functions . 4
2.4. Analytic structure in the dimensional regulators . 5
2.5. Finite fields and functional reconstruction . 6
2.6. Numerical evaluation of scattering amplitudes . 6

3. Internal modules . 6
4. Installation and setup . 7
5. Example programs . 9

5.1. Helicity amplitudes . 9
5.2. Specifying program input . 9
5.3. Numerical amplitude evaluation . 11

5.3.1. Tree level . 11
5.3.2. One-loop amplitude to O(ε2) . 12
5.3.3. Leading-color two-loop amplitude . 12
5.3.4. Leading-color five-point two-loop finite remainder . 12

5.4. Analytic reconstruction of amplitudes . 13
5.4.1. Program output . 13
5.4.2. Univariate amplitude reconstruction . 14
5.4.3. Multivariate amplitude reconstruction . 14

6. Conclusions . 14
Declaration of competing interest . 14
Acknowledgements . 14
Appendix A. Helicity amplitudes in Caravel . 15

A.1. Color decomposition . 15
A.2. External helicity states . 15
A.3. Spinor weights of helicity amplitudes . 16

Appendix B. Momentum-twistor parametrizations . 17
References . 17

1. Introduction

The computation of scattering amplitudes in quantum field theory is crucial in our quest to describe high-energy particle interactions.
Indeed, these objects allow one to make theoretical predictions which can then be compared with experimental measurements, be it at
particle colliders such as the Large Hadron Collider (LHC), which are testing the Standard Model of particle physics, or at experiments such
as LIGO or VIRGO, which are testing our understanding of gravity. Computing these amplitudes remains a challenge, in particular when
they contain many external particles and when higher-order corrections in their perturbative expansion are necessary. The former implies
a dependence on a large number of physical scales, and the latter a number of unconstrained loop momenta which must be integrated over.
Combined, these two aspects lead to a considerable level of complexity in the computation of these amplitudes. This is nevertheless a very
timely and important problem to tackle. For example, two-loop five-particle amplitudes as well as three-loop four-particle amplitudes are
already relevant for phenomenological studies at the LHC, and will become even more so over the next years.

A major obstacle to overcome when evaluating loop amplitudes is the complexity of intermediate computational steps. In order to
bypass this issue, it has proven fruitful to consider numerical approaches. An outstanding example of this is the current possibility to
compute general one-loop amplitudes, which has been powered by the introduction of robust numerical techniques. Among many other
developments, these techniques are based on integrand reduction approaches [1,2], on the one-loop numerical unitarity method [3–5], and
on recursive approaches [6,7]. More recently, there has been great progress in the numerical computation of two-loop amplitudes at high
multiplicities. By now, all five-parton amplitudes [8–11] and the amplitudes for four partons and a W boson [12] have been computed
numerically at leading color. Through the use of finite fields and multivariate functional reconstruction techniques [13,14], the frameworks
powering these numerical computations have furthermore allowed the calculation of the analytic form of all five-parton leading-color
amplitudes [15–17], the five-point all-plus amplitude at full color [18] and the four-graviton amplitude in Einstein gravity [19]. In related
work, the amplitudes for three-photon production at the LHC have also been computed [20].

In this article we present the Caravel C++ framework. It provides an implementation of many algorithms necessary to perform com-
putations of multi-loop scattering amplitudes within the multi-loop numerical unitarity method. This is the first publicly available code
of its kind. It is based on the (generalized) unitarity approach, which was first developed for the analytic computation of one-loop am-
2

https://gitlab.com/caravel-public/pentagon-library
https://www.davidhbailey.com/dhbsoftware/
https://www.davidhbailey.com/dhbsoftware/
http://creativecommons.org/licenses/by/4.0/

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
plitudes [21–24] and later adapted for numeric calculations [3–5]. An extension of the method beyond one loop has been developed
recently [25–27]. In a nutshell, in this framework the amplitude is computed starting from a parametrization of its integrand. The corre-
sponding free parameters are numerically computed at each phase-space point by constructing systems of linear equations in which the
parameters are the unknowns and the numerical entries are associated to products of tree-level amplitudes. With a suitable choice of
integrand parametrization [25], this directly gives a decomposition of the amplitude in terms of master integrals. Finally, after inserting
the value of the integrals at the required phase-space point we obtain the value of the amplitude.

The current release of Caravel includes a module for computing products of tree-level amplitudes in several theories through off-shell
recursion relations [28], and tools that allow the efficient construction and solution of the systems of linear equations that determine
the integrand. Whilst these components work for generic multi-loop amplitudes, other components such as the construction of the
parametrization are required as input. In this release we showcase the different available tools by providing a series of example pro-
grams. Discussions regarding full automation of the calculation of two-loop massless amplitudes, computations beyond two-loop, as well
as the treatment of massive particles, are left to future work. The example programs give a first-hand account of the procedures employed
for the calculations presented in refs. [8,10,16,17,19,27].

The rest of this article is organized as follows. Section 2 provides a brief description of our computational methodology, section 3
gives a description of the organization of the internal modules in the Caravel framework, section 4 describes the procedure of installation
and setup of the libraries. In section 5 we give details on how to run the example programs that we provide and we conclude in
section 6. Appendix A and Appendix B contain technical details about our conventions for color-ordered helicity amplitudes and phase-
space parametrizations.

2. Computational methodology

In this section we briefly review the main features of the multi-loop numerical unitarity method. This framework allows for the numer-
ical evaluation as well as the analytical reconstruction of multi-loop scattering amplitudes. Our approach is generic, in that it facilitates
the computation of amplitudes in different quantum field theories. When dealing with QCD amplitudes, we consider the amplitudes to be
vectors M in a generic color space. In this section we will mostly be concerned with the components of these vectors, that is with the
A(σ) defined as

M =
∑
σ

C(σ)A(σ) , (1)

where the C(σ) span the relevant color space. For QCD amplitudes, this is the usual SU (Nc) color space, which can be specialized to
Nc = 3. For pure gravity processes, no color is present and in eq. (1) there is a single σ with C(σ) = 1. In the remaining of this section,
we will always discuss the A(σ) defined in eq. (1), which for brevity we will call amplitudes, and for simplicity we will drop the σ
dependence. In later sections, when discussing the calculation of amplitudes in specific theories, we will be more explicit about the C(σ).
As is standard in perturbative quantum field theory, we will consider the expansion of A around a small coupling constant, which is
associated to an expansion in the number of loops of the contributing Feynman integrals. We refer the reader to Appendix A for more
details on the definition of the objects we compute. For more details on the techniques outlined in this section we refer to previous
publications [8,10,16,17,19,27].

2.1. Integrand parametrization

In full generality, an L-loop amplitude A(L) can be decomposed as a linear combination of master integrals according to

A(L) =
∑
�∈�

∑
i∈M�

c�,i I�,i . (2)

Here, � defines a propagator structure associated with the amplitude, and we will often refer to it as a diagram (indeed, they are in one-
to-one correspondence with scalar Feynman integrals). The set � contains all propagator structures �, and can be organized hierarchically
according to whether a propagator structure �1 ∈ � can be obtained from another �2 ∈ � by removing some propagators in the latter.
In this case we write �1 < �2. The set M� denotes the full set of master integrals associated to �. Each master integral I�,i is usually
expressed as a Laurent series in the dimensional-regularization parameter ε = (4 − D)/2. The coefficients in the Laurent expansion involve
multi-valued functions with non-trivial branch-cut structures, such as multiple polylogarithms. The coefficients c�,i are algebraic functions
of the kinematic invariants and rational functions of ε .

At its core, the unitarity method is a way to compute the integrand of an amplitude. We therefore start with a parametrization of the
integrand A(L)(�l), where �l represents the set of L loop momenta, of the form

A(L)(�l) =
∑
�∈�

∑
k∈Q �

c�,k
m�,k(�l)∏
j∈P�

ρ j(�l)
. (3)

The multiset P� labels all inverse propagators ρ j in the diagram �, and the basis of numerators Q� = {m�,k(�l)|k ∈ Q �} parametrizes
every possible integrand up to the maximum allowed power of loop momenta, which is theory specific.

The numerator basis Q� is not unique. Let us highlight two natural classes of bases. First, the simplest choice is what we call a
tensor basis, denoted by T� . It can be built out of independent monomials in a set of variables α j , which parametrize the loop momenta
�l(�α) [29–32]. This type of basis is straightforward to build for generic � ∈ �. However, with this choice, the relation between eqs. (2)
and (3) is not explicit, as it would require solving large systems of integration-by-part (IBP) relations (see e.g. [13,33–41]). A second
class of bases is what we call a master-surface basis M� , and it is crucial to our multi-loop numerical unitarity method. It was observed
3

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
in ref. [25] that one can parametrize the integrand of a multi-loop amplitude by functions M� = {m�,i(�l)|i ∈ M� ∪ S�} such that the
associated integrands either integrate to zero or correspond to the integrand of a master integral:

∫ ⎛
⎝ L∏

j=1

dD� j

(2π)D

⎞
⎠ m�,i(�l)∏

k∈P�
ρk(�l)

=
{
I�,i for i ∈ M� ,

0 for i ∈ S� .
(4)

The numerators m�,i(�l) with i ∈ M� are called master integrands and the ones with i ∈ S� surface terms. A master-surface basis of functions
thus makes the relation between eqs. (2) and (3) explicit. As discussed in [25–27] the construction of master-surface bases of integrands
can be efficiently performed by using unitarity-compatible IBP relations [42,43], employing computational algebraic geometry techniques.
Notice that the D-dependence of the master/surface terms generates the aforementioned D-dependence of the master-integral coefficients
in eq. (2).

2.2. Integrand factorization and cut equations

In order to compute the coefficients c�,k in eq. (3) we exploit the factorization properties of multi-loop integrands for on-shell config-
urations ��

l of the loop momenta. For a given propagator structure P� , these are defined by

ρ j(�
�
l) = 0 iff j ∈ P� . (5)

In most cases, this does not fix the ��
l completely, and there is some residual degree of freedom. In this limit, the leading pole of eq. (3)

is given by

∑
states

∏
i∈T�

Atree
i (��

l) =
∑
�′≥�

k∈Q �′

c�′,km�′,k(��
l)∏

j∈(P�′/P�) ρ j(�
�
l)

, (6)

where T� represents the set of all tree-level amplitudes corresponding to the vertices of the diagram �, and the state sum runs over all
Ds-dimensional particle states that can appear in the loop. On the right-hand side the sum runs over all propagator structures �′ with
equal or more propagators than � (hence P� ⊆ P�′). Eq. (6) is a so-called cut equation.

The cut equations allow one to numerically compute the coefficients c�,k in eq. (3) by sampling a sufficient set of on-shell momenta
��

l and solving the resulting system of linear equations. Importantly, some of these coefficients may be identically zero for all phase-
space points. To account for this, we identify zero coefficients during a “warm-up run” on a single phase-space point, and remove the
corresponding terms from the ansatz for all subsequent evaluations. In order to construct this system of equations we must have an
efficient way to evaluate the tree amplitudes on the left-hand side of the cut equations. This is achieved with an implementation of the
Berends-Giele off-shell recursion relations [28], which allows one to recursively compute tree amplitudes with an arbitrary number of
legs, and where the particles have Ds-dimensional states. Being a very general approach, it provides a straightforward way to add new
types of fields. Beyond one-loop we also need to consider subleading singular contributions for certain propagator structures for which no
generic integrand factorization is known (at two loops, this happens for propagator structures where the same propagator appears twice).
To address these cases, we employ cut equations with fewer on-shell constraints and then solve for the corresponding coefficients [26].

Another important aspect in sampling the cut equations is the construction of the on-shell momenta �� . These configurations of loop
momenta are constructed by solving the quadratic equations in eq. (5), and depending on which number field we use they might not
have solutions. To be more precise, we will often do calculations in a field F that is not algebraically closed, such as the field of rational
numbers or a finite field (see section 2.5 below), which makes the construction of on-shell momenta with components in F a non-trivial
problem. However, it turns out that the square roots originating from the solutions of eq. (5) are only present at intermediate steps of the
calculation, and any D-dimensional Lorentz-invariant scalar product of the loop momenta lives in F . In particular, the product of trees
in eq. (6) is free of square roots and representable in F . Therefore, we (temporarily) employ an algebraic extension of F for evaluating
off-shell currents contributing to the left-hand side of eq. (6). We refer to refs. [10,17,44] for details. In some cases, e.g. for Yang-Mills
theory, it is possible to avoid the appearance of square roots altogether [16]. In this case we compute cuts directly in F .

Solving for all coefficients in an amplitude can be efficiently organized in a block-triangular way, using the hierarchical structure of
the set �. In two-loop five-particle QCD amplitudes each block of equations can have up to a few hundreds of unknowns [8,10], while
in Einstein gravity this number is typically an order of magnitude larger. We solve these equations by employing standard linear algebra
techniques, such as PLU or QR factorization. Through this procedure, we can compute the coefficients c�,i in eq. (2) at a numerical
phase-space point, and for numerical values of D and Ds .

2.3. Special functions

As stated below eq. (2), the master integrals have a Laurent expansion around ε = 0, whose coefficients can be written as linear combi-
nations of multivalued special functions. For all the cases currently implemented in Caravel, the special functions are (linear combinations
of) multiple polylogarithms. Using modern mathematical techniques [45,46], we can find a basis B for this space of functions, and find an
alternative decomposition of the amplitude in terms of the elements hi ∈ B . That is, up to a given order k in the ε expansion we can write

A(L) =
k∑

j=−2L

∑
i∈B

ri, j hi ε
j +O(εk+1), (7)

where the functions ri, j do not depend on ε . This decomposition presents a major difference compared to the one of eq. (2): it allows
one to write one- and two-loop amplitudes as a linear combination of the same basis of functions. In turn, this then makes it possible to
4

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
Fig. 1. Illustration of the interplay of the different modules in Caravel in generic calculations of scattering amplitudes. A black arrow indicates a dependence, a blue arrow
means input for a module, and a red arrow the capacity of a module to deliver a given component of the calculation. Modules surrounded by a red box rely on external
input to operate. All modules depend on the Core module. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

write quantities derived from amplitudes, such as finite remainders, in terms of this basis of functions. This observation was fundamental
in reconstructing two-loop five-parton QCD amplitudes [16,17], using the basis of ref. [47], as the coefficients in a decomposition of the
form of eq. (7) are much simpler for a two-loop finite remainder than for a two-loop amplitude.

2.4. Analytic structure in the dimensional regulators

The cut equation in eq. (6) depends on dimensional regulators, namely on D , the dimension of the loop momenta, and Ds , the
dimension of the states of loop particles. For convenience, we keep these quantities separate until the final stages of the computation. The
coefficient functions c�,i in eq. (2) are rational functions in D and polynomials in Ds (in some very special cases, this dependence can
also be rational, see e.g. [19]).

We evaluate the products of tree-level amplitudes in eq. (6) in integer Ds dimensions. To reconstruct the analytic Ds dependence
we can employ two different approaches. In the first approach, known as dimensional reconstruction [4,8,10,27,48,49], we extract the
polynomial dependence by evaluating the tree-level amplitudes for various integer dimensions Ds and fit the resulting coefficients of the
Ds polynomial. This procedure is conceptually straightforward. However, its numerical inefficiency can become a bottleneck for amplitudes
with external fermions due to the exponential scaling of the dimension of spinor representations with Ds [10,50]. To address this issue,
we employ a second approach, which bypasses the dimensional reconstruction method and provides a diagrammatic representation of the
coefficients of the Ds polynomial [17,44,50]. As an example, this strategy reduces the evaluation time of two-loop five-parton amplitudes
with two external fermion lines by about two orders of magnitude.

Regarding the dependence on D , we sample at a sufficient number of values of D in order to reconstruct the rational dependence
of each master-integral coefficient using Thiele’s formula [14,51]. This procedure can be computationally intensive. We note nevertheless
that the D-dependence in the denominator of the coefficients is rather simple and independent of the phase-space point. When evaluat-
ing the same amplitude over several phase-space points, we thus usually perform a warm-up evaluation, dedicated to determining this
dependence for each c�,k in eq. (3).

The l.h.s. of eq. (6) is evaluated as many times as there are unknowns on the r.h.s. (typically O(100) in massless two-loop QCD
amplitudes and O(1000) in two-loop gravity amplitudes). On the other hand, the basis of integrands on the r.h.s. is evaluated over O(10)

values of D . It is worth noting that since the l.h.s. of eq. (6) does not depend on D and the r.h.s. of eq. (6) does not depend on Ds , we
5

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
reconstruct the dependence of each c�,k on both D and Ds by sampling the sides of the equation independently.1 In particular, this allows
us to significantly reduce the number of tree-amplitude evaluations in cut equations.

2.5. Finite fields and functional reconstruction

In ref. [13] it was shown that finite fields can be applied to the Laporta algorithm [34] for the IBP reduction of multi-loop Feynman
integrals. The authors were able to not only efficiently perform numerical IBP reductions of integrals, but also to reconstruct the analytic
rational dependence of the master integral coefficients in the dimensional regularization parameter ε from those numerical reductions.
It was later shown in ref. [14] that through a recursive approach one could more generically reconstruct multivariate rational functions.
In the same paper, this idea was applied to the computation of scattering amplitudes in generalized unitarity methods. In Caravel, we
apply the reconstruction approach to rational coefficient functions in the numerical unitarity method. To do this, we evaluate the ampli-
tudes at rational phase-space points and perform all calculations in a finite field, obtaining exact numerical values for the coefficients.
These evaluations can then be used to reconstruct the analytic dependence on the kinematic variables which parametrize the appropriate
Lorentz-invariant phase space associated to the amplitude. Caravel contains all the functionalities for the numerical evaluation of scatter-
ing amplitudes in a finite field, as well as for the reconstruction of generic rational functions [16,17].2 These tools have been fundamental
for the computation of the planar two-loop five-parton amplitudes [8,10,16,17], as well as the two-loop four-graviton amplitudes [19].

2.6. Numerical evaluation of scattering amplitudes

Here we summarize the steps involved in the numerical evaluation of a typical two-loop amplitude with Caravel. As input, Caravel
requires a set of analytic information specific to the kinematics/process at hand:

1. A hierarchical organization of diagrams � of the color-decomposed amplitude (see. Eq. (1)), the “Process Library”.
2. Master-surface integrand parametrizations for all topologically inequivalent diagrams in the process library (see Eqs. (3) and (4)).
3. The relevant master integrals for the process.

This preparatory analytic work is not automated and relies on private computer-algebra programs or explicit calculations. For the processes
considered by the example programmes of section 5, this information is provided in the current release of Caravel. Caravel then undertakes
the following, two-phase numerical procedure.

A. Warm-up phase
1. Load the process library and construct the hierarchy of cut equations.
2. Employ finite fields and a random phase-space point, traverse the hierarchy and perform the following for each entry �:

a. Solve for coefficients c�,k , maintaining full Ds dependence on the l.h.s. of eq. (6) and a fixed value of D in the r.h.s. of eq. (6).
Record the set of vanishing integrand coefficients.

b. If c�,k is a master integral coefficient, use Thiele’s formula to compute the degree of D-dependence.
c. Store this information in a warmup file.

B. Numerical Evaluation
1. Load process library and construct all cut equations according to the warmup file.
2. With the requested phase-space point, traverse the hierarchy and determine the c�,k . As described in section 2.4, sample the l.h.s.

of eq. (6) for as many times as there are non-zero coefficients on the r.h.s.. Evaluate the r.h.s. on as many values of D as required
to obtain all master integral coefficients.

3. If evaluation is performed using finite field arithmetic, proceed with rational reconstruction of coefficients.
4. Having determined master integral coefficients, evaluate master integrals and combine with coefficients. Taylor expand in ε =

(4 − D)/2 and return the value of the amplitude as a Laurent series.

3. Internal modules

The Caravel framework is organized in a modular fashion. The structure of the multi-loop numerical unitarity method outlined in the
previous section naturally lends itself to this modular implementation. In Fig. 1 we show how the different modules of Caravel relate to
the main equations of the numerical unitarity method as well as to each other. The red arrows show which module constructs each of
the different components of these equations. A black arrow from A to B represents a dependence of B on A. The blue arrows highlight
an input that a module receives. The modules highlighted with red boxes receive external input to operate, either in the form of data files
or as machine-generated source code.

In the following we list the modules of Caravel, such that the reader gets a general view of the source code of the library. We do not
give details on application programming interfaces, as in this release we only include specific example programs for the user, as presented
in section 5. The modules are:

• Core: This module implements general tools for debugging, arithmetic, kinematics, as well as utilities for linear algebra, rational
reconstruction, type traits, and more general operations such as Laurent expansions. Among the arithmetic tools, we include interfaces
to the QD [55] library for double-double and quad-double precision floating-point, and the GMP [56] library for arbitrary precision
floating-point as well as arbitrary size rational numbers. Furthermore, we use an in-house implementation of 32-bit finite fields based

1 We do not sample Ds when we compute the coefficients of the Ds polynomial directly.
2 Two publicly available packages for functional reconstruction are Firefly [52,53] and FiniteFlow [54].
6

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
on Barrett reduction [57] which allows finite fields of cardinality in the range (230, 231 − 1]. The module also provides linear algebra
facilities for solving the cut equations. These include in-house implementations of linear algebra algorithms for finite fields, as well
as interfaces to Lapack [58] (for double precision) and to Eigen [59] (for the double and the high-precision floating-point numbers
provided by QD and GMP). Furthermore, the module contains implementations of D-dimensional vector and spinor representations,
designed to work with both floating-point and exact number types. There is also a parser to process headed lists like those employed
in Mathematica [60].

• GraphLibrary: A module for the classification and canonicalization of multi-loop graphs. In Caravel, many objects can naturally be
associated to graphs, such as the propagator structures � in eq. (2). Graph isomorphisms are identified by building a partial order in
the representation of the graph (which is ultimately based on the standard C++ function std::lexicographical_compare).

• FunctionalReconstruction: Implementations of algorithms for analytic reconstruction of univariate and multivariate rational functions
from exact numerical evaluations (see section 2.5). The reconstruction algorithms are parallelized using either native C++ threads or
using MPI. The latter is useful for use on computer clusters.

• OnShellStrategies: Tools to generate on-shell loop momenta for one- and two-loop diagrams, as required for the construction of the
linear system of equations in eq. (6).

• Forest: Implementation of the Berends-Giele off-shell recursion [28] for the computation of general tree-level amplitudes and the
products of trees on the left-hand side of eq. (6) in arbitrary Ds dimensions. The recursions can be constructed from any given set
of Feynman rules3 and can be evaluated over an arbitrary numerical type (e.g. floating point of different sizes, finite fields, etc.). This
release of Caravel includes the Feynman rules for massless QCD and Einstein gravity.

• FunctionSpace: Module for the construction of the integrand ansätze of eq. (3), both for tensor bases T� and master-surface bases
M� . The former can be constructed for an arbitrary two-loop diagram � and are used for development/testing purposes. The latter
are provided for arbitrary one-loop diagrams and only for the two-loop diagrams required for the calculations in [8,10,16,17,19,27].
Master-surface bases have been produced with private computer-algebra programs, and transformed into C++ code to be handled by
this module.

• Integral providers: Two separate modules are included to handle analytic expressions of master integrals. The main module is the
IntegralLibrary, which provides access to the master integrals associated to four- and five-point one- and two-loop planar massless
master integrals. In the five-point case, integrals are written in terms of pentagon functions [47]. Internally, all master integrals are
normalized as

I�,i =
(

eγEε

iπ D/2

)L ∫ L∏
j=1

dD� j
m�,i(�l)∏
k∈P�

ρk(�l)
(8)

where γE is the Euler-Mascheroni constant. In the four-point case, master integrals are evaluated with GiNaC [61–63] and CLN [64].
In the five-point case, we currently employ a modified version of the library provided in [47]. All master integrals are stored in a
format that allows on-the-fly expression of an amplitude in terms of a set of basis functions as described in section 2.3, see eq. (7).
In the current version all master integrals are implemented in the Euclidean region. Additionally, Caravel contains the IntegralsBH
module, which provides a large collection of one-loop integrals up to O (ε0) (including massive and massless propagators) which can
be evaluated in up-to quad-double precision using the QD [55] package. This library has been adapted from the BHlibMassive
library employed in [65].

• Coefficient providers: Two different modules perform the hierarchical extraction of master-integrand coefficients via the cut equations
(see section 2.2). The AmpEng provider computes general one-loop integral coefficients, building up the hierarchy of diagrams � in
an automated fashion. For two-loop calculations, the AmplitudeCoefficients module is employed. For a given amplitude, it requires
an input data file, which we call the process library. These process libraries contain all hierarchical relations between the propagator
structures in the amplitude, as well as information about the color decomposition [66,67] and the Ds-dependence based on the
particle content [17,44,50]. In this release, we provide the process libraries employed for the calculations in [8,10,16,17,19,27], which
were produced with private computer-algebra code.

• Other modules: further minor modules include miscellaneous functionalities, for example some phase-space generators (including
momentum twistor parametrizations [68]) and information on the pole structure of relevant amplitudes.

All modules in Caravel are implemented according to the concept of generic programming, in which algorithms are designed to operate
on any data type satisfying certain (minimal) requirements. In particular, our algorithms are well equipped to work with any numerical
type, such as floating point number (of fixed or variable size) or numbers in an algebraic field (the rational numbers or numbers in a
finite field). This allows us to perform evaluations of amplitudes with different fixed-size floating point numbers and the reconstruction
of their analytic form from exact evaluations over finite fields with essentially a single implementation.

4. Installation and setup

The source code of Caravel can be obtained from a git repository at

https://gitlab .com /caravel -public /caravel .git.

Caravel employs the meson [69] build system, which relies on pkg-config for resolving dependencies. For more details on dependence
resolution, configuration options and the installation of optional libraries see the README.md and INSTALL.md files in the repository.
To build Caravel in the default configuration and install it to the directory <install dir> one can proceed as shown in Listing 1. All
available test suites can be run with the command

3 In particular, there is no restriction on the number of particles in vertices.
7

https://gitlab.com/caravel-public/caravel.git

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
1 > git clone https://gitlab.com/caravel-public/caravel.git
2 > cd caravel
3 > mkdir build
4 > cd build
5 > meson .. -D prefix=<install dir>
6 > ninja
7 > ninja install

Listing 1: Obtaining and building Caravel in its default configuration.

> ninja test

executed in the build directory. Note that, depending on the hardware and build configuration, running all test suites can take a consider-
able amount of time. This is particularly noticeable for the first time tests are run which produce and store warm-up information.

The default configuration of Caravel provides very limited functionalities. This allows users to customize the installation to suit their
particular needs, and additional configuration options and their current values can be queried by running

> meson configure

in the build directory. An option <option> can be set to a particular value <value> with the command

> meson configure -D <option>=<value>

These options can be set either at the configuration stage (step 5 of Listing 1), or any time before the building is initiated (step 6 of
Listing 1). It is possible to specify several options at the same time.

Some of the options, listed first when running meson configure, are related to generic C++ compiler and linker options, which are
automatically provided by the meson build system. These options are intended mostly for developers.

Options specific to Caravel can be found in the section Project options, which enable additional features. We first describe the set of
options most relevant for a user of the example programs.

• double-inverter: Switch between Eigen and Lapack for solving linear systems in double precision.
• finite-fields: Enable computation using finite fields. Requires the external library GMP. This option can be set to false (default) or
true.

• field-ext-fermions: Enable the exact computation of master integral coefficients for amplitudes involving fermions. Off-shell currents
are then evaluated in an algebraic extension of the number field in order to handle square roots originating from the solutions of
quadratic constraints for on-shell momenta (see section 2.2). The evaluation of cuts in the algebraic extension is slower than in the
corresponding field. For this reason, if only amplitudes in Yang-Mills theory are of interest, the option should be left at the default
value false.

• gravity-model: Enable/select gravity models. Possible choices are none, Cubic, EH, EH-GB-R3 and all. The last two options
increase compilation times considerably. These options give access to the computations of ref. [19], in particular to our implementation
of the cubic formulation of the Einstein-Hilbert Feynman rules of [70].

• precision-QD: Enable the computation of master-integral coefficients and integrals in double-double (-D precision-QD=HP) or
quad-double (-D precision-QD=VHP) floating-point precision. In this case floating-point types are provided by the QD library [55]
and linear systems are solved with Eigen [59]. Allowing computations in both double-double and quad-double precision requires
setting -D precision-QD=all. The default is none.

• integrals: Choose whether or not to compile the master integrals of the module IntegralLibrary. The default is none which means
that no master integrals are compiled. If goncharovs is selected, GiNaC [63] is required. If pentagons is selected the Pen-
tagonLibrary [47] is required.4 The choice all compiles both representations of the master integrals.

• lapack-path: If necessary, specifies the path of Lapack if meson is unable to find the path to the library.

Beyond these, there are a number of options mainly useful for development:

• caravel-debug: Enable a dynamic handling of debugging information from specific source files. To use this feature, simply place a
file named debug.dat in the directory where the corresponding binary is run. The file should contain the filenames of the source files
(without the full path to it), which should provide additional debugging information. One filename should be listed per line and lines
starting with # are ignored. This option can be set to false (default) or true.

• doxygen: Enable the generation of HTML API documentation. This requires Doxygen [72]. This option can be set to false (default)
or true.

• ds-strategy: Select the algorithm for the reconstruction of the dependence of the two-loop amplitudes on the dimensional regulator
Ds (see section 2.4). Possible values are decomposition (default), referring to the decomposition by particle content, and sam-
pling, referring to the reconstruction of the Ds polynomial coefficients from the sample values. The former provides a significant
efficiency boost so we recommend not to change its default value. The option decomposition is currently not supported for gravity
amplitudes.

• instantiate-rational: Enable selected computations with rational numbers. This option requires finite-fields set to true. This option
can be set to false (default) or true.

4 The modified version of the PentagonLibrary that is employed in Caravel can be obtained from https://gitlab .com /caravel -public /pentagon -library.git. Notice the
recent release of the new PentagonFunctions++ library [71].
8

https://gitlab.com/caravel-public/pentagon-library.git

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
• precision-arbitrary: Enable computation with arbitrary-precision floating-point types included in the GMP and MPFR libraries. This
option can be set to false (default) or true.

• timing: Enable the printout of the time spent in different contributions to amplitude’s calculations at the end of each program. This
option can be set to false (default) or true.

Enabling some of these features introduces dependencies on third-party libraries, which the user should make available before the start
of the building process. Since certain options may significantly increase build times, we suggest to enable only the features necessary for
each calculation. Depending on the chosen configuration, building Caravel can take from a few minutes up to half an hour on a modern
multi-core processor.

5. Example programs

In this section we introduce the example programs provided with this release, which demonstrate the main features of Caravel. For
each one we specify the required configuration setup, a brief explanation of the computations it performs and instructions for execution.
More information about these programs can be found in the file examples/README.md, contained in the Caravel repository. All pro-
grams can be found in build/examples, where build is the build directory created in Listing 1. Before turning to the description
of each example, we first establish some conventions and explain the general structure of the command-line input that the user must
provide.

5.1. Helicity amplitudes

Each particle q in a multi-particle helicity amplitude is labeled by the particle type fq (here, fq can be a gluon, an (anti)quark, or a
graviton), the helicity state hq and the color index cq (for color-charged particles). An n-particle amplitude depends on all this data, that
is

Mn ≡ Mn(1c1,h1
f1

, . . . ,ncn,hn
fn

). (9)

We assign a momentum index q to particle q. All particles and their momenta are considered outgoing. Note that the color indices cq are
not present in pure graviton amplitudes. We consider the perturbative expansion of the (bare) helicity amplitudes and write

Mn = aλ
0

(
M(0)

n +
(a0

4π

)2
M(1)

n +
(a0

4π

)4
M(2)

n + · · ·
)

, (10)

where a0 is a generic bare coupling constant and λ denotes the power of the leading-order amplitude. For QCD amplitudes, the expansion
is in powers of the strong coupling, i.e. a0 = g0, where g0 = √

4παs . For Einstein gravity amplitudes, instead, a0 = κ0/2, where κ0 =√
32πG N and G N is Newton’s constant. In this section we will often refer to the index L in M(L)

n as the loop order, as for the examples
we will consider the two numbers are aligned. L = 0 corresponds to tree-level amplitudes.

As already stated in section 2, see in particular eq. (1), Caravel computes the coefficients A(L)
n of the decomposition of M(L)

n in terms
of a set of color structures. For gravity amplitudes, this decomposition is trivial and Caravel directly computes the M(L)

n . More generally,
to properly define the helicity amplitudes A(L)

n we must specify several of our conventions and this is done in detail in Appendix A. These
conventions are important for defining the output of the example programs described in this section.

The example programs we provide compute tree-level, one-loop and two-loop amplitudes. While the tree-level example program allows
one to evaluate amplitudes with an arbitrary number of particles, the one-loop and two-loop example programs evaluate at most five-
point amplitudes, up to order ε2 for one loop and ε0 for two loops. The integral normalization for the amplitudes computed numerically
in the example programs is defined by equation (10). We stress that this differs from the internal normalization in eq. (8). Indeed, the
integrals in the example programs are normalized as

I�,i =
∫ ⎛

⎝ L∏
j=1

dD� j

(2π)D

⎞
⎠ m�,i(�l)∏

k∈P�
ρk(�l)

. (11)

Additionally, the QCD loop amplitudes are evaluated in the leading-color limit of QCD. In this limit, we keep the leading term of eq. (1)
in the limit of a large number of colors Nc , but consider the ratio N f /Nc to be fixed, where N f is the number of massless flavors. The
leading-color amplitudes have a decomposition in terms of powers of this ratio, specifically

A(L)(1h1
p1 , . . . ,nhn

pn) = A(L)[0] + N f

Nc
A(L)[1] + . . . +

(
N f

Nc

)L

A(L)[L]. (12)

5.2. Specifying program input

Many of the programs that we provide can be run for a variety of different scattering amplitudes. To evaluate different amplitudes,
we provide a uniform interface by passing (arbitrarily-ordered) command-line arguments. These arguments are formatted similarly to
Mathematica lists with heads.

Specifying particles. In the command-line interface, a particle is specified as

Particle[field, index, state]
9

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
Table 1
Allowed field/state pairings in a Particle list.

Type field state

Gluon gluon p, m
Quark q, u, d, c, s, b qbp, qm
Anti-quark qb, ub, db, cb, sb, bb qbp, qm
Graviton G hpp, hmm

Table 2
Examples of valid PartialAmplitudeInput lists, all related to leading-
color QCD amplitudes. The quotation marks are required to keep the line
breaks in a shell execution.

Amplitude PartialAmplitudeInput

A(2)[2](1+
g ,2+

g ,3+
g ,4+

g ,5+
g)

"PartialAmplitudeInput[
Particles[
Particle[gluon,1,p],
Particle[gluon,2,p],
Particle[gluon,3,p],
Particle[gluon,4,p],
Particle[gluon,5,p]

],
NfPower[2]

]"

A(L)[0](1+
q ,2−

q ,3+
g ,4−

g)

"PartialAmplitudeInput[
Particles[
Particle[q,1,qbp],
Particle[qb,2,qm],
Particle[gluon,3,p],
Particle[gluon,4,m]

]
]"

A(L)[0](1+
u ,2−

u ,3+
d ,4−

d
)

"PartialAmplitudeInput[
Particles[
Particle[u,1,qbp],
Particle[ub,2,qm],
Particle[d,3,qbp],
Particle[db,4,qm]

]
]"

A (momentum) index needs to be provided for each particle, starting from 1 up to the number of particles in the scattering process.
Gluons are specified by setting the field to gluon, and state should be set to either p (+ helicity) or m (− helicity). For mass-
less quarks, Caravel offers multiple possibilities. Generic unflavored quarks and their anti-particles are input as q and qb respectively.
Fields of definite flavor can also be specified with u,d,c,s,b and ub,db,cb,sb,bb. We note that scattering processes with identical
fermion flavors are currently not supported. However, these can be obtained from anti-symmetrizing distinct flavor amplitudes (see for
example [73–75]). The associated states for fermions are labeled with qbp (+ helicity) and qm (− helicity). The graviton field is labeled
by G and its polarization states are given by hmm (−− helicity) and hpp (++ helicity). In Table 1 we summarize the available field and
state options to define particles in Caravel.

Specifying amplitudes. The simplest scattering amplitudes are color-ordered tree-level helicity amplitudes A(0)(1h1
f1

, . . . , nhn
fn

). Such a tree-
level amplitude is specified in Caravel by an ordered list of particles

Particles[Particle[..],Particle[..],Particle[..],..]

where each particle is defined as in the previous section. Note that color-ordered amplitudes are invariant under cyclic permutations of
the external particles. For gravity the same interface is used, however the ordering of the external gravitons does not matter.

For loop amplitudes, the partial amplitude A(L)[k] of equation (12) can be specified in the command-line interface by

PartialAmplitudeInput[Particles[Particle[..], ..], NfPower[k]]

where NfPower[k] corresponds to the desired power of N f . This entry is optional, and if it is omitted then the N0
f contribu-

tion is computed. For gravity amplitudes this entry is meaningless and should be omitted. In Table 2 we give examples of valid
PartialAmplitudeInput.

Specifying kinematics. By default, most of the examples we provide evaluate amplitudes on phase-space points which allow one to repro-
duce the results of ref. [10]. Nevertheless, the user can request evaluations at different phase-space points. Since internally most of the
example programs perform calculations in a finite field, one has to be sure that the momenta associated with the chosen phase-space
point can be represented in a finite field. Finding such points is in general a non-trivial problem. For all the examples we will be con-
cerned with, however, it can be solved by using a special parametrization of phase-space, called momentum twistor parametrization [68].
In Appendix B, we give more details on this parametrization for four- and five-point massless kinematics. In particular, we give equations
10

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
that relate our choice of twistor parameters to Mandelstam variables si j = (pi + p j)
2, where pi denotes the momentum of the external

particle with particle index i.
To evaluate amplitudes at a chosen phase-space point, the user should provide a list with the head TwistorParameters. For four-

point kinematics, the phase space is directly parametrized by the Mandelstam variables s12 and s23 which are passed as

TwistorParameters[s12, s23]

For five-point kinematics the parametrization is given in terms of the 5 independent twistor parameters x0, . . ., x4, see Appendix B for
more details. These are passed as

TwistorParameters[x0, x1, x2, x3, x4]

5.3. Numerical amplitude evaluation

In this subsection we present a series of programs which allow the numerical evaluation of a number of QCD scattering amplitudes at
tree level, one loop and two loop as well as graviton amplitudes at tree level.

5.3.1. Tree level
The program treeamp evaluates tree-level amplitudes for a variety of processes. It can be executed by specifying the corresponding

amplitude with a Particles list (see section 5.2). For example:

> ./treeamp "Particles[Particle[..],...,Particle[..]]"

The program randomly generates a phase-space point and prints the value of the specified tree-level amplitude as well as the point. In
Appendix A.2 we provide details about the normalization employed for external helicity states, which are necessary to specify our phase
conventions.

If treeamp is to be used to evaluate N-graviton scattering amplitudes, Caravel must be configured with the option

-D gravity-model=Cubic

Instead of evaluating the amplitudes on randomly-generated phase-space points the user can also provide external momenta by placing
a file with the name treeampPSP.dat into the same directory as the executable. The file should list one momentum per line in the
format:

E PX PY PZ

treeamp will find this file, read the momenta and, after performing on-shell and momentum-conservation checks, will compute the
corresponding amplitude.

If Caravel has been configured to include high-precision floating-point types (with the option precision-QD set to HP, VHP or
all), then high-precision amplitudes can be computed by passing an additional command-line input

> ./treeamp "Particles[...]" "HighPrecision[prec]"

where prec is either HP for double-double or VHP for quad-double precision.
Finally, the program can be used to compute tree amplitudes using finite-field arithmetic (-D finite-fields=true required). In

this case the cardinality of the finite field has to be passed as a parameter to the program

> ./treeamp "Particles[...]" "Cardinality[p]"

where p is a prime number smaller than 231 and larger than 230, such as p = 231 − 1 = 2147483647. For finite-field evaluations, the
program does not randomly generate phase-space points and so the user must provide a set of valid external momenta using a file named
treeampPSP.dat as explained above. Notice that in the case of finite-field evaluations we use a space-time metric with alternating
signature (+, −, +, −) to enhance performance by rendering spinors real (see Appendix A.2 for details). Thus, the momentum components
should be provided in this signature. For example, using treeampPSP.dat we can pass the rational phase-space point

1/3 1/3 -2 2
-5/16 1/4 -9/64 15/64

329/144 -355/144 17/16 -25/48
-83/36 271/144 69/64 -329/192

to evaluate four-point amplitudes for the momenta

p1 =
(

1

3
,

1

3
,−2,2

)
, p2 =

(
− 5

16
,

1

4
,− 9

64
,

15

64

)
,

p3 =
(

329

144
,−355

144
,

17

16
,−25

48

)
, p4 =

(
−83

36
,

271

144
,

69

64
,−329

192

)
,

corresponding to s12 = −3/4 and s23 = −1/4. The program converts the rational momentum components into their image in the chosen
finite field.
11

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
5.3.2. One-loop amplitude to O(ε2)

The program amplitude_evaluator_1l numerically evaluates one-loop four- and five-parton helicity amplitudes up to order
O(ε2) in the dimensional regulator. The master-integral coefficients are rationally reconstructed from finite-field evaluations. The inte-
grals are then computed (in double precision) to obtain the numerical value for the amplitude. If the corresponding tree-level amplitude
is non-vanishing the one-loop result is normalized by this tree-level amplitude. Otherwise, the result is normalized by a spinor weight as
defined in Appendix A.3, see in particular eq. (A.17). The Laurent expansion of the amplitude is printed to the standard output.

By default, the program runs on the phase-space points defined in ref. [10] so that the user can easily reproduce the results in tables
3 and 4. In the current implementation, this example program runs only in the Euclidean region of phase space as Caravel does not
include the analytic continuation of the integrals. We note that the evaluation of five-point amplitudes takes a considerable amount of
time because of the evaluation of the one-loop pentagon integral through order ε2.

In order to enable this example, Caravel has to be configured with the following options:

-D finite-fields=true
-D field-ext-fermions=true
-D integrals=all

The program can be executed by passing the appropriate amplitude input and kinematic point specifications. For example:

> ./amplitude_evaluator_1l "PartialAmplitudeInput[Particles[
Particle[gluon,1,m], Particle[gluon,2,m],
Particle[gluon,3,p], Particle[gluon,4,p]]]" \
"TwistorParameters[-1/3, -1/5]"

evaluates the one-loop color-ordered helicity amplitude A(1)[0](1−
g , 2−

g , 3+
g , 4+

g) at s12 = − 1
3 and s23 = − 1

5 .

5.3.3. Leading-color two-loop amplitude
The program amplitude_evaluator_2l numerically evaluates two-loop four- and five-parton helicity amplitudes to O(ε0) in the

dimensional regulator. It works in the same way as the one-loop program described above. The master-integral coefficients are rationally
reconstructed from finite-field evaluations and subsequently combined with the master integrals into a semi-analytic object, which is
expressed in terms of unevaluated special functions. Next, those special functions are evaluated to produce the amplitude whose Laurent
expansion is then printed to the standard output. The computation of the master-integral coefficients is performed in parallel, using
all available threads in the CPU, then the special functions are evaluated sequentially in a single thread. As at one-loop, the amplitude
is normalized either by the corresponding non-vanishing tree-level amplitude or by the spinor-weight defined in Appendix A.3, see in
particular eq. (A.17). On the first evaluation of each amplitude, the program performs a warm-up run, as described in sections 2.2 and
section 2.4.

By default, the program runs on phase-space points defined in ref. [10] and can be used to reproduce the results presented in the
tables 1 and 2. As at one-loop, this example program is restricted to the Euclidean region of phase space, as master integrals are so far
included only for this region.

In order to enable this example the Caravel library has to be configured with the following options:

-D finite-fields=true
-D field-ext-fermions=true
-D integrals=all

The program can be executed in an analogous way to what was described in the previous example in section 5.3.2. Additionally, the user
can pass the argument Verbosity[All] in order to print to the standard output extra information on the computations performed. For
example:

> ./amplitude_evaluator_2l "PartialAmplitudeInput[Particles[
Particle[gluon,1,m], Particle[gluon,2,m],
Particle[gluon,3,p], Particle[gluon,4,p]],NfPower[1]]" \
"TwistorParameters[-1/3, -1/5]"

evaluates the two-loop color-ordered helicity amplitude A(2)[1](1−
g , 2−

g , 3+
g , 4+

g) for s12 = − 1
3 and s23 = − 1

5 .
The evaluation of two-loop amplitudes is considerably more involved than the corresponding one-loop amplitudes. For example, the

runtime of the most complex two-loop five-parton amplitude is of the order of 12 minutes to rationally reconstruct all master-integral
coefficients on the default phase-space point (using 22 finite-field evaluations), while the computation of the pentagon functions in double
precision by the external library provided with ref. [47] takes about 23 minutes (employing a modern 12-core Intel i7 processor).

5.3.4. Leading-color five-point two-loop finite remainder
The program finite_remainder_2l numerically computes the finite remainder of planar two-loop five-parton amplitudes. The

numerical calculation of finite remainders was instrumental in order to reconstruct the analytic form of the planar two-loop five-parton
amplitudes in refs. [16,17]. The program proceeds by building the requested two-loop amplitude and its corresponding infrared subtraction,
which also requires the one-loop amplitude to O(ε2). The finite remainder obtained in this way is decomposed in terms of the special
functions introduced in ref. [47]. As in the two-loop amplitude evaluation example, the computation of the two-loop master integral
coefficients is performed in parallel, using all available threads in the CPU and, on the first evaluation, a warm-up run will be performed
for the two-loop amplitude. The program automatically verifies that all poles in ε cancel exactly, rationally reconstructs the special function
coefficients in the finite remainder and subtraction term, and evaluates the special functions. The program then prints the values of the
subtraction term, the remainder and the amplitude. We refer to ref. [17] for the precise definition of our subtraction conventions. We note
that the run-time of this program is comparable to that of the two-loop amplitude evaluation program.
12

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
Table 3
Table of numerator labels used in output files and their
explicit expression in momentum space. The conventions
for dbTensor are specified in Fig. 2.

NumeratorLabel Master-integral numerator

scalar 1
mu2 μ2

mu4 (μ2)2

dbTensor (p1 + �2)2

Fig. 2. Specifying momentum routing for the double-box tensor integral.

In order to enable this example Caravel has to be configured with the following options:

-D finite-fields=true
-D field-ext-fermions=true
-D integrals=pentagons

This example can also be enabled with the integrals option set to -D integrals=all. The program has similar command-line
arguments as in the examples above. For example, it can be executed with

> ./finite_remainder_2l "PartialAmplitudeInput[Particles[
Particle[gluon,1,p],Particle[gluon,2,p],Particle[gluon,3,p],
Particle[gluon,4,p],Particle[gluon,5,p]],NfPower[2]]"

in order to compute the finite remainder for the color-ordered two-loop amplitude A(2)[2](1+
g , 2+

g , 3+
g , 4+

g , 5+
g). As in the two previous

examples, the phase-space point can be specified in the command-line input as a list with the head TwistorParameters. The optional
argument Verbosity[All] or Verbosity[Remainder] can be passed in the command line to request the printing of additional
information.

5.4. Analytic reconstruction of amplitudes

An important application of the numerical techniques for amplitude calculation that Caravel provides is the reconstruction of analytic
results from numerical evaluations. Here we present two programs which reconstruct either two-loop four-parton or one-loop five-parton
amplitudes from numerical evaluations. These examples rely on MPI for parallelization.

5.4.1. Program output
The two analytic reconstruction example programs share common output features, which we describe here. Both programs perform

the analytic reconstruction over a single finite field and attempt to rationally reconstruct the result. The computation in the finite field is
saved as a text file in the local directory analytics/amplitudes_XY/, where XY refers to the relevant cardinality. The master-integral
coefficients are then rationally reconstructed employing only the single finite-field evaluation performed. This rational reconstruction
is cross checked against a numerical computation at a single phase-space point in a second finite field. In the case of a successful
reconstruction, the amplitude is saved in a text file under analytics/amplitudes_rational/. The reconstructed amplitudes are
normalized either by the corresponding non-vanishing tree-level amplitude or by the spinor weight defined in Appendix A.3, see in
particular eq. (A.17).

The files produced by each program are named according to the requested PartialAmplitudeInput. They contain a string that
encodes the decomposition of the amplitude as a linear combination of master integral coefficients and master integrals.5 Each master
integral is specified by a string of the form

Topology[NumeratorLabel, {D1, D2, .., Dm}].

Here, Topology is a human readable name for the topology, e.g. Triangle or DoubleBox. The list of Di is the list of inverse
propagators of the master integral, written in terms of the loop momenta (l1, l2) and external momenta (k1, k2, . . .) of the amplitude.
Our conventions in Caravel are that all external momenta are outgoing. The label NumeratorLabel denotes the numerator of the
master integral. For the example programs provided with this release, there are four possible values for this label, which we list in
Table 3. For one-loop integrals, these include numerators built from powers of μ2, which is the scalar product of the (D − 4) dimensional
components of the loop momentum, i.e.

μ2 = �(D−4) · �(D−4). (13)

5 The format used in this string allows it to be directly imported into Mathematica for usage if desired.
13

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
In order to aid reading of the output, we provide a collection of Mathematica routines in math/CaravelGraph.m which produce
graphical representations of the integrals. The output format as described above is not appropriate for these routines. The example pro-
grams therefore also writes a textfile in the directory analytics/integral_info/, which contains a list of replacement rules that
allow one to use these routines.

5.4.2. Univariate amplitude reconstruction
As a simple example of the two-loop analytic reconstruction capabilities of Caravel, the program 4parton_2loop_analytics_MPI

analytically computes the reduction to master integrals. The massless four-point amplitudes depend only on the Mandelstam variables
s = (p1 + p2)

2 and t = (p2 + p3)
2. By setting s = 1 and x = t/s the amplitude depends only on a single parameter. Its analytic dependence

on x is reconstructed from exact numerical evaluations of the master-integral coefficients over a finite field, which are then fed into
Thiele’s interpolation formula. The dependence on s is then recovered by dimensional analysis.

To enable this example, Caravel has to be configured with the options

-D finite-fields=true
-D field-ext-fermions=true

To compute the two-loop four-gluon all-plus-helicity amplitude, for example, the program should be executed with

> mpirun -np <ncores> ./4parton_2loop_analytics_MPI \
"PartialAmplitudeInput[Particles[Particle[gluon,1,p],
Particle[gluon,2,p],Particle[gluon,3,p],
Particle[gluon,4,p]]]"

5.4.3. Multivariate amplitude reconstruction
The program computes the analytic form of five-parton one-loop amplitudes, using multivariate functional reconstruction. The five-

parton amplitudes depend on five twistor parameters x0, . . . , x4, see Appendix B. The problem is reduced to a four-dimensional recon-
struction by setting x4 = 1. The dependence on x4 is recovered from dimensional analysis.

In order to enable this example, Caravel has to be configured with the options

-D finite-fields=true
-D field-ext-fermions=true

To compute the one-loop five gluon all-plus-helicity amplitude, for example, the program should be executed with

> mpirun -np <ncores> ./5parton_1loop_analytics_MPI \
"PartialAmplitudeInput[Particles[Particle[gluon,1,p],
Particle[gluon,2,p],Particle[gluon,3,p],Particle[gluon,4,p],
Particle[gluon,5,p]]]"

6. Conclusions

We have presented Caravel, a C++ framework for the computation of multi-loop amplitudes through the multi-loop numerical unitarity
method. This is the first publicly available program of its kind. We have provided a series of example programs which showcase the main
functionalities of Caravel. In particular, these examples give access to all details of the calculation of the planar two-loop five-parton
scattering amplitudes [16,17] and the two-loop four-graviton scattering amplitude in Einstein gravity [19].

In its current form, Caravel is not meant to be able to automatically evaluate arbitrary two-loop multi-leg amplitudes. Rather, it
is meant as a framework to do so, which should be complemented with process-specific information such as, for instance, the mas-
ter integrals. The modular fashion in which Caravel is constructed allows one to easily add these new features. We aim to continue
the development of Caravel, to increase the pool of multi-loop amplitude computations that it can perform, while also extending its
autonomy.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We gratefully acknowledge contributions to Caravel made by Matthieu Jaquier during the initial stages of the development. We also
wish to thank Mao Zeng for discussions. The work of S.A. is supported by the Fonds De La Recherche Scientifique - FNRS, Belgium. The
work of F.F.C. is supported by the U.S. Department of Energy under grant DE-SC0010102. The work of V.S. is supported by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, Novel structures in scattering
amplitudes (grant agreement No. 725110). The work of B.P. is supported by the French Agence Nationale pour la Recherche, under grant
ANR-17-CE31-0001-01. M.S.R.’s work is funded by the German Research Foundation (DFG) within the Research Training Group GRK 2044.
The authors acknowledge support by the state of Baden-Württemberg through bwHPC.
14

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
Appendix A. Helicity amplitudes in Caravel

In this appendix we summarize several of our conventions, that allow us to precisely define the helicity amplitudes computed by
Caravel. In Appendix A.1 we discuss the conventions regarding the color decomposition. In Appendix A.2 we present our conventions for
external helicity states. Finally, in Appendix A.3 we discuss the spinor-weight normalization.

A.1. Color decomposition

As already stated in section 2, see in particular eq. (1), Caravel computes the coefficients of M(L)
n in a decomposition in terms of color

structures. For Einstein gravity amplitudes, this decomposition is trivial and Caravel directly computes the M(L)
n . For QCD amplitudes,

however, to properly define the objects computed in the example programs we must specify the color decomposition and our conventions
for the color algebra. We follow the conventions of ref. [76] and denote the fundamental generators of the SU (Nc) group by (T a)

j̄

i , where
the adjoint index a runs over N2

c − 1 values and the (anti-) fundamental indices i and ı̄ run over Nc values. We use the normalization
Tr(T a T b) = δab . Finally, we define F abc = Tr

([T a, T b,]T c
)
, which is closely related to the SU (Nc) structure constants.

Tree-level QCD amplitudes. In order to define in a unified way the color-ordered tree-level amplitudes that we compute, we shall consider
QCD with all fields (that is, both quarks and gluons) in the adjoint representation. In this ‘adjoint QCD’ theory, amplitudes with any
number of partons can be expressed in terms of (n − 2)! color-ordered partial amplitudes using the decomposition of ref. [77],

M(0) =
∑

σ∈Sn−2

C(an−1,aσ1 , . . . ,aσn−2 ,an)A(0)(n−1hn−1
pn−1 ,σ1

hσ1
pσ1

, . . . , σn−2
hσn−2
pσn−2

,nhn
pn). (A.1)

Here, Sn denotes all permutations of n indices and C is a color structure given by

C(a1, . . . ,an) = F a1a2x1 F x1a3x2 · · · F xn−4an−2xn−3 F xn−3an−1an , (A.2)

with the F abc defined above. We stress that we simply use adjoint QCD to define quark and gluon amplitudes in a unified way. It is a well
understood procedure to assemble the multi-parton QCD amplitude from these color-ordered amplitudes, see for example [67,77,78].

Leading-color QCD loop amplitudes. Beyond tree-level, the example programs compute the color ordered amplitudes relevant for the leading-
color limit of QCD. In this limit, we keep the leading term for a large number of colors Nc , but consider the ratio N f /Nc to be fixed,
where N f is the number of massless flavors.

We first discuss the four-point amplitudes and consider amplitudes for the scattering of four gluons, one quark pair and two gluons,
and two distinct quark pairs. In the leading-color approximation we write

M(L)(1g,2g,3g,4g)
∣∣
leading color =N L

c

∑
σ∈S4/Z4

Tr
(
T aσ (1) T aσ (2) T aσ (3) T aσ (4)

)
A(L)(σ (1)g,σ (2)g,σ (3)g,σ (4)g) , (A.3)

M(L)(1q,2q̄,3g,4g)
∣∣
leading color =N L

c

∑
σ∈S2

(
T aσ (3) T aσ (4)

) ı̄2
i1
A(L)(1q,2q̄,σ (3)g,σ (4)g) , (A.4)

M(L)(1q,2q̄,3Q ,4Q̄)
∣∣
leading color =N L

c δ
ı̄2

i3
δ

ı̄4
i1

A(L)(1q,2q̄,3Q ,4Q̄) , (A.5)

where Sn/Zn denotes all non-cyclic permutations of n indices, and L corresponds to the number of loops of the amplitudes. In the
five-point case we write

M(L)(1g,2g,3g,4g,5g)
∣∣
leading color = N L

c

∑
σ∈S5/Z5

Tr
(
T aσ (1) . . . T aσ (5)

)
A(L)(σ (1)g,σ (2)g,σ (3)g,σ (4)g,σ (5)g) , (A.6)

M(L)(1q,2q̄,3g,4g,5g)
∣∣
leading color = N L

c

∑
σ∈S3

(
T aσ (3) T aσ (4) T aσ (5)

) ı̄2
i1
A(L)(1q,2q̄,σ (3)g,σ (4)g,σ (5)g) , (A.7)

M(L)(1q,2q̄,3Q ,4Q̄ ,5g)
∣∣
leading color = N L

c (T a5)
ı̄2
i3

δ
ı̄4

i1
A(L)(1q,2q̄,5g,3Q ,4Q̄) + N L

c (T a5)
ı̄4
i1

δ
ı̄2

i3
A(L)(1q,2q̄,3Q ,4Q̄ ,5g) . (A.8)

A.2. External helicity states

In this section we collect the conventions used in Caravel for the spinors and polarization states. For floating-point computations,
the spinors must be constructed so that they are numerically stable, which means different conventions are chosen depending on the
phase-space point. As an example, if p+ is not small, we take

u+(p) = v−(p) = |p〉 =
√|p+|

p+

(
p+
p⊥+

)
,

u−(p) = v+(p) = |p] = 1√|p+|
(

p+
p⊥−

)
,

(A.9)

where we defined

p+ = p0 + p3 , p⊥+ = p1 + ip2 , p⊥− = p1 − ip2 . (A.10)
15

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
We will often use the particle index instead of its momentum to denote the spinors. That is, for a particle with index i of momentum pi

we will write |i〉 and |i].
For massless external vector bosons with four-momentum p, the polarization states are defined in terms of a light-like reference vector

nμ as

ε
μ
+(p,n) = 〈n|σ̄ μ| p]√

2 〈n|p〉 , ε
μ
−(p,n) = −[n |σμ|p〉√

2[n|p] , (A.11)

where σμ = (1, σ i), σ̄ μ = (1, −σ i) and σ i are the Pauli matrices. Amplitudes are independent of the specific choice of auxiliary vector n.
Finally, for the computation of gravity amplitudes, the external graviton states are constructed from the polarization vectors given above.
The two transverse polarization states read

hμν
−−(p,n) = ε

μ
−(p,n)εν−(p,n) , hμν

++(p,n) = ε
μ
+(p,n)εν+(p,n) , (A.12)

where as before p is the four momentum of the graviton and n is a massless auxiliary vector.
In the case of finite-field evaluations, we would like the external helicity states to be rational functions of the momentum components.

To achieve this, we exploit the fact that Weyl spinors are defined up to a little group scaling

|p〉 → zp |p〉 , |p] → 1

zp
|p] . (A.13)

With zp = √
p+ , we obtain

u+(p) = v−(p) = |p〉 =
(

p0 + p3

p1 − p2

)
,

u−(p) = v+(p) = |p] = 1

p0 + p3

(
p0 + p3

p1 + p2

)
,

(A.14)

where the components are given for the alternating signature (+, −, +, −), in which the spinors can be rendered explicitly real. This
choice of metric does not affect the value of Lorentz-invariant quantities, such as the normalized amplitudes A(L) defined in eq. (A.17)
below.

A.3. Spinor weights of helicity amplitudes

In this section we present our conventions for a spinor-weight normalization which allows one to construct Lorentz-invariant objects
from helicity amplitudes in Caravel. We use a generalization of the normalization factor introduced in ref. [79] with the conventions
specified in the previous section.

For an n-point amplitude, let C = {h1, . . . , hn} be the sequence of the helicity states of nv vector bosons and n f fermion pairs (n =
nv + 2n f), labeled by their particle index. We then construct the spinor weight �C associated to C as

�C =
nv∏

i=1

ω
sign(hvi)

vi

n f∏
i=1

ηf−i f+i
. (A.15)

Here, v and f± are the (order-preserving) subsequences of the index sequence of C corresponding to vector-boson states and fermion
states with hi = ± 1

2 respectively.6 The weights ω±
i and ηi j are given by

ω+
1 = [12] 〈32〉

〈13〉 , ω+
i = 〈13〉

〈i1〉2 [12] 〈32〉 for i ≥ 2,

ω−
i = 1

ω+
i

, ηi j = 〈iki j〉
[
kij j

]
,

(A.16)

where kij is the smallest positive integer such that kij �= i and kij �= j. The spinor weights for the graviton helicity states are
(
ω±

i

)2
. We

can then write the amplitudes as

A(L)(1h1
p1 , . . . ,nhn

pn) = �C A(L)(1h1
p1 , . . . ,nhn

pn) (A.17)

where A(L)(1h1
p1 , . . . , n

hn
pn) is Lorentz invariant.

6 Note that this pairs fermion states based strictly on the ordering of C and disregards any other quantum numbers of the corresponding particles. This might not be what
is intuitively anticipated.
16

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
Appendix B. Momentum-twistor parametrizations

Here we list explicitly the momentum-twistor parametrization [68] used to rationalize the external on-shell momenta. We provide
explicit relations with the Mandelstam invariants si j = (pi + p j)

2, where pi denotes the momentum of the external particle with index i.
We recall that the conventions in Caravel are that all external momenta are outgoing.

Four-point kinematics

In order to construct four-point rational momenta we use the momentum-twistor parametrization of ref. [80], which is given by

Z =
(|1〉 |2〉 |3〉 |4〉

|μ1] |μ2] |μ3] |μ4]
)

=

⎛
⎜⎜⎝

1 0 − 1
s12

− 1
s12

− 1
s23

0 1 1 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (B.1)

With this parametrization the resulting momenta are rational in s12 and s23.

Five-point kinematics

For five-point kinematics we use the parametrization given in refs. [9,14]

Z =
(|1〉 |2〉 |3〉 |4〉 |5〉

|μ1] |μ2] |μ3] |μ4] |μ5]
)

=

⎛
⎜⎜⎜⎝

1 0 1
x4

1+x0
x0x4

1+x1(1+x0)
x0x1x4

0 1 1 1 1
0 0 0 x2

x0
1

0 0 1 1 x2−x3
x2

⎞
⎟⎟⎟⎠ . (B.2)

The Mandelstam variables are then parametrized by

s12 = x4 ,

s23 = x2x4 ,

s34 = x4

[
(1 + x1)x2

x0
+ x1(x3 − 1)

]
,

s45 = x3x4 ,

s51 = x1x4(x0 − x2 + x3) ,

tr5 = iε(p1, p2, p3, p4)

= x2
4

[
x2(1 + 2x1) + x0x1(x3 − 1) − x2(1 + x2)(x2 − x3)

x0

]
.

(B.3)

References

[1] F. del Aguila, R. Pittau, J. High Energy Phys. 07 (2004) 017, https://doi .org /10 .1088 /1126 -6708 /2004 /07 /017, arXiv:hep -ph /0404120.
[2] G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl. Phys. B 763 (2007) 147–169, https://doi .org /10 .1016 /j .nuclphysb .2006 .11.012, arXiv:hep -ph /0609007.
[3] R.K. Ellis, W.T. Giele, Z. Kunszt, J. High Energy Phys. 03 (2008) 003, https://doi .org /10 .1088 /1126 -6708 /2008 /03 /003, arXiv:0708 .2398.
[4] W.T. Giele, Z. Kunszt, K. Melnikov, J. High Energy Phys. 04 (2008) 049, https://doi .org /10 .1088 /1126 -6708 /2008 /04 /049, arXiv:0801.2237.
[5] C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre, Phys. Rev. D 78 (2008) 036003, https://doi .org /10 .1103 /PhysRevD .78 .036003,

arXiv:0803 .4180.
[6] F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108 (2012) 111601, https://doi .org /10 .1103 /PhysRevLett .108 .111601, arXiv:1111.5206.
[7] S. Actis, A. Denner, L. Hofer, A. Scharf, S. Uccirati, J. High Energy Phys. 04 (2013) 037, https://doi .org /10 .1007 /JHEP04(2013)037, arXiv:1211.6316.
[8] S. Abreu, F. Febres Cordero, H. Ita, B. Page, M. Zeng, Phys. Rev. D 97 (11) (2018) 116014, https://doi .org /10 .1103 /PhysRevD .97.116014, arXiv:1712 .03946.
[9] S. Badger, C. Brønnum-Hansen, H.B. Hartanto, T. Peraro, Phys. Rev. Lett. 120 (9) (2018) 092001, https://doi .org /10 .1103 /PhysRevLett .120 .092001, arXiv:1712 .02229.

[10] S. Abreu, F. Febres Cordero, H. Ita, B. Page, V. Sotnikov, J. High Energy Phys. 11 (2018) 116, https://doi .org /10 .1007 /JHEP11(2018)116, arXiv:1809 .09067.
[11] S. Badger, C. Brønnum-Hansen, T. Gehrmann, H.B. Hartanto, J. Henn, N.A. Lo Presti, T. Peraro, PoS LL2018 (2018) 006, https://doi .org /10 .22323 /1.303 .0006, arXiv:1807.

09709.
[12] H.B. Hartanto, S. Badger, C. Brønnum-Hansen, T. Peraro, J. High Energy Phys. 09 (2019) 119, https://doi .org /10 .1007 /JHEP09(2019)119, arXiv:1906 .11862.
[13] A. von Manteuffel, R.M. Schabinger, Phys. Lett. B 744 (2015) 101–104, https://doi .org /10 .1016 /j .physletb .2015 .03 .029, arXiv:1406 .4513.
[14] T. Peraro, J. High Energy Phys. 12 (2016) 030, https://doi .org /10 .1007 /JHEP12(2016)030, arXiv:1608 .01902.
[15] S. Badger, C. Brønnum-Hansen, H.B. Hartanto, T. Peraro, J. High Energy Phys. 01 (2019) 186, https://doi .org /10 .1007 /JHEP01(2019)186, arXiv:1811.11699.
[16] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page, Phys. Rev. Lett. 122 (8) (2019) 082002, https://doi .org /10 .1103 /PhysRevLett .122 .082002, arXiv:1812 .04586.
[17] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page, V. Sotnikov, J. High Energy Phys. 05 (2019) 084, https://doi .org /10 .1007 /JHEP05(2019)084, arXiv:1904 .00945.
[18] S. Badger, D. Chicherin, T. Gehrmann, G. Heinrich, J. Henn, T. Peraro, P. Wasser, Y. Zhang, S. Zoia, Phys. Rev. Lett. 123 (7) (2019) 071601, https://doi .org /10 .1103 /

PhysRevLett .123 .071601, arXiv:1905 .03733.
[19] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, M. Ruf, V. Sotnikov, Phys. Rev. Lett. 124 (21) (2020) 211601, https://doi .org /10 .1103 /PhysRevLett .124 .211601,

arXiv:2002 .12374.
[20] H.A. Chawdhry, M.L. Czakon, A. Mitov, R. Poncelet, J. High Energy Phys. 02 (2020) 057, https://doi .org /10 .1007 /JHEP02(2020)057, arXiv:1911.00479.
[21] Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425 (1994) 217–260, https://doi .org /10 .1016 /0550 -3213(94)90179 -1, arXiv:hep -ph /9403226.
[22] Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 435 (1995) 59–101, https://doi .org /10 .1016 /0550 -3213(94)00488 -Z, arXiv:hep -ph /9409265.
[23] Z. Bern, L.J. Dixon, D.A. Kosower, Nucl. Phys. B 513 (1998) 3–86, https://doi .org /10 .1016 /S0550 -3213(97)00703 -7, arXiv:hep -ph /9708239.
[24] R. Britto, F. Cachazo, B. Feng, Nucl. Phys. B 725 (2005) 275–305, https://doi .org /10 .1016 /j .nuclphysb .2005 .07.014, arXiv:hep -th /0412103.
[25] H. Ita, Phys. Rev. D 94 (11) (2016) 116015, https://doi .org /10 .1103 /PhysRevD .94 .116015, arXiv:1510 .05626.
[26] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, Phys. Rev. D 95 (9) (2017) 096011, https://doi .org /10 .1103 /PhysRevD .95 .096011, arXiv:1703 .05255.
17

https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1088/1126-6708/2008/03/003
https://doi.org/10.1088/1126-6708/2008/04/049
https://doi.org/10.1103/PhysRevD.78.036003
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1007/JHEP04(2013)037
https://doi.org/10.1103/PhysRevD.97.116014
https://doi.org/10.1103/PhysRevLett.120.092001
https://doi.org/10.1007/JHEP11(2018)116
https://doi.org/10.22323/1.303.0006
https://doi.org/10.1007/JHEP09(2019)119
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1007/JHEP12(2016)030
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1103/PhysRevLett.122.082002
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.1103/PhysRevLett.123.071601
https://doi.org/10.1103/PhysRevLett.123.071601
https://doi.org/10.1103/PhysRevLett.124.211601
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/0550-3213(94)00488-Z
https://doi.org/10.1016/S0550-3213(97)00703-7
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.95.096011

S. Abreu, J. Dormans, F. Febres Cordero et al. Computer Physics Communications 267 (2021) 108069
[27] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, M. Zeng, Phys. Rev. Lett. 119 (14) (2017) 142001, https://doi .org /10 .1103 /PhysRevLett .119 .142001, arXiv:1703 .05273.
[28] F.A. Berends, W.T. Giele, Nucl. Phys. B 306 (1988) 759–808, https://doi .org /10 .1016 /0550 -3213(88)90442 -7.
[29] P. Mastrolia, G. Ossola, J. High Energy Phys. 11 (2011) 014, https://doi .org /10 .1007 /JHEP11(2011)014, arXiv:1107.6041.
[30] S. Badger, H. Frellesvig, Y. Zhang, J. High Energy Phys. 04 (2012) 055, https://doi .org /10 .1007 /JHEP04(2012)055, arXiv:1202 .2019.
[31] Y. Zhang, J. High Energy Phys. 09 (2012) 042, https://doi .org /10 .1007 /JHEP09(2012)042, arXiv:1205 .5707.
[32] P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, Phys. Lett. B 718 (2012) 173–177, https://doi .org /10 .1016 /j .physletb .2012 .09 .053, arXiv:1205 .7087.
[33] K. Chetyrkin, F. Tkachov, Nucl. Phys. B 192 (1981) 159–204, https://doi .org /10 .1016 /0550 -3213(81)90199 -1.
[34] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087–5159, https://doi .org /10 .1016 /S0217 -751X(00)00215 -7, arXiv:hep -ph /0102033, https://doi .org /10 .1142 /

S0217751X00002157.
[35] C. Anastasiou, A. Lazopoulos, J. High Energy Phys. 07 (2004) 046, https://doi .org /10 .1088 /1126 -6708 /2004 /07 /046, arXiv:hep -ph /0404258.
[36] C. Studerus, Comput. Phys. Commun. 181 (2010) 1293–1300, https://doi .org /10 .1016 /j .cpc .2010 .03 .012, arXiv:0912 .2546.
[37] A. von Manteuffel, C. Studerus, Reduze 2 - distributed feynman integral reduction, arXiv:1201.4330.
[38] R.N. Lee, J. Phys. Conf. Ser. 523 (2014) 012059, https://doi .org /10 .1088 /1742 -6596 /523 /1 /012059, arXiv:1310 .1145.
[39] A. Smirnov, V. Smirnov, Comput. Phys. Commun. 184 (2013) 2820–2827, https://doi .org /10 .1016 /j .cpc .2013 .06 .016, arXiv:1302 .5885.
[40] A.V. Smirnov, Comput. Phys. Commun. 189 (2015) 182–191, https://doi .org /10 .1016 /j .cpc .2014 .11.024, arXiv:1408 .2372.
[41] P. Maierhoefer, J. Usovitsch, P. Uwer, Comput. Phys. Commun. 230 (2018) 99–112, https://doi .org /10 .1016 /j .cpc .2018 .04 .012, arXiv:1705 .05610.
[42] J. Gluza, K. Kajda, D.A. Kosower, Phys. Rev. D 83 (2011) 045012, https://doi .org /10 .1103 /PhysRevD .83 .045012, arXiv:1009 .0472.
[43] R.M. Schabinger, J. High Energy Phys. 01 (2012) 077, https://doi .org /10 .1007 /JHEP01(2012)077, arXiv:1111.4220.
[44] V. Sotnikov, Scattering amplitudes with the multi-loop numerical unitarity method, Ph.D. thesis, Freiburg U, 2019.
[45] A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Phys. Rev. Lett. 105 (2010) 151605, https://doi .org /10 .1103 /PhysRevLett .105 .151605, arXiv:1006 .5703.
[46] C. Duhr, J. High Energy Phys. 08 (2012) 043, https://doi .org /10 .1007 /JHEP08(2012)043, arXiv:1203 .0454.
[47] T. Gehrmann, J.M. Henn, N.A. Lo Presti, J. High Energy Phys. 10 (2018) 103, https://doi .org /10 .1007 /JHEP10(2018)103, arXiv:1807.09812.
[48] R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Nucl. Phys. B 822 (2009) 270–282, https://doi .org /10 .1016 /j .nuclphysb .2009 .07.023, arXiv:0806 .3467.
[49] R. Boughezal, K. Melnikov, F. Petriello, Phys. Rev. D 84 (2011) 034044, https://doi .org /10 .1103 /PhysRevD .84 .034044, arXiv:1106 .5520.
[50] F.R. Anger, V. Sotnikov, On the dimensional regularization of QCD helicity amplitudes with quarks, arXiv:1803 .11127.
[51] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55, Courier Corporation, 1964.
[52] J. Klappert, F. Lange, Reconstructing rational functions with FireFly, arXiv:1904 .00009.
[53] J. Klappert, S.Y. Klein, F. Lange, Interpolation of dense and sparse rational functions and other improvements in FireFly, arXiv:2004 .01463.
[54] T. Peraro, J. High Energy Phys. 07 (2019) 031, https://doi .org /10 .1007 /JHEP07(2019)031, arXiv:1905 .08019.
[55] Y. Hida, S. Li, D. Bailey, Quad-double arithmetic: algorithms, implementation, and application.
[56] T. Granlund, the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic Library, 5th edition, 2012, http://gmplib .org/.
[57] P. Barrett, in: A.M. Odlyzko (Ed.), Advances in Cryptology — CRYPTO’ 86, Springer, Berlin, Heidelberg, 1987, pp. 311–323.
[58] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd

edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
[59] Eigen, http://eigen .tuxfamily.org /index .php ?title =Main _Page.
[60] W.R. Inc, Mathematica, Version 12.1, champaign, IL, 2020, https://www.wolfram .com /mathematica.
[61] C.W. Bauer, A. Frink, R. Kreckel, J. Symb. Comput. 33 (2000) 1, arXiv:cs /0004015.
[62] J. Vollinga, S. Weinzierl, Comput. Phys. Commun. 167 (2005) 177, https://doi .org /10 .1016 /j .cpc .2004 .12 .009, arXiv:hep -ph /0410259.
[63] J. Vollinga, Nucl. Instrum. Methods A 559 (2006) 282–284, https://doi .org /10 .1016 /j .nima .2005 .11.155, arXiv:hep -ph /0510057.
[64] B. Haible, CLN - class library for numbers, https://www.ginac .de /CLN/.
[65] F.R. Anger, F. Febres Cordero, H. Ita, V. Sotnikov, Phys. Rev. D 97 (3) (2018) 036018, https://doi .org /10 .1103 /PhysRevD .97.036018, arXiv:1712 .05721.
[66] A. Ochirov, B. Page, J. High Energy Phys. 02 (2017) 100, https://doi .org /10 .1007 /JHEP02(2017)100, arXiv:1612 .04366.
[67] A. Ochirov, B. Page, J. High Energy Phys. 10 (2019) 058, https://doi .org /10 .1007 /JHEP10(2019)058, arXiv:1908 .02695.
[68] A. Hodges, J. High Energy Phys. 05 (2013) 135, https://doi .org /10 .1007 /JHEP05(2013)135, arXiv:0905 .1473.
[69] Meson, https://mesonbuild .com/.
[70] C. Cheung, G.N. Remmen, J. High Energy Phys. 09 (2017) 002, https://doi .org /10 .1007 /JHEP09(2017)002, arXiv:1705 .00626.
[71] D. Chicherin, V. Sotnikov, Pentagon functions for scattering of five massless particles, arXiv:2009 .07803.
[72] Doxygen, http://www.doxygen .nl/.
[73] Z. Bern, L.J. Dixon, D.A. Kosower, S. Weinzierl, Nucl. Phys. B 489 (1997) 3–23, https://doi .org /10 .1016 /S0550 -3213(96)00703 -1, arXiv:hep -ph /9610370.
[74] E. Glover, J. High Energy Phys. 04 (2004) 021, https://doi .org /10 .1088 /1126 -6708 /2004 /04 /021, arXiv:hep -ph /0401119.
[75] A. De Freitas, Z. Bern, J. High Energy Phys. 09 (2004) 039, https://doi .org /10 .1088 /1126 -6708 /2004 /09 /039, arXiv:hep -ph /0409007.
[76] L.J. Dixon, in: Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and Beyond, 1996, pp. 539–584, arXiv:hep -ph /9601359.
[77] V. Del Duca, L.J. Dixon, F. Maltoni, Nucl. Phys. B 571 (2000) 51–70, https://doi .org /10 .1016 /S0550 -3213(99)00809 -3, arXiv:hep -ph /9910563.
[78] H. Johansson, A. Ochirov, J. High Energy Phys. 01 (2016) 170, https://doi .org /10 .1007 /JHEP01(2016)170, arXiv:1507.00332.
[79] S. Badger, J. Phys. Conf. Ser. 762 (1) (2016) 012057, https://doi .org /10 .1088 /1742 -6596 /762 /1 /012057, arXiv:1605 .02172.
[80] S. Badger, H. Frellesvig, Y. Zhang, J. High Energy Phys. 12 (2013) 045, https://doi .org /10 .1007 /JHEP12(2013)045, arXiv:1310 .1051.
18

https://doi.org/10.1103/PhysRevLett.119.142001
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1007/JHEP11(2011)014
https://doi.org/10.1007/JHEP04(2012)055
https://doi.org/10.1007/JHEP09(2012)042
https://doi.org/10.1016/j.physletb.2012.09.053
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/S0217-751X(00)00215-7
https://doi.org/10.1142/S0217751X00002157
https://doi.org/10.1142/S0217751X00002157
https://doi.org/10.1088/1126-6708/2004/07/046
https://doi.org/10.1016/j.cpc.2010.03.012
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib02C5B5923B5490C604857616526F20D0s1
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1016/j.cpc.2013.06.016
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2018.04.012
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.1007/JHEP01(2012)077
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib5D8BB6EADE5DB1A92DEBBBFF6935B153s1
https://doi.org/10.1103/PhysRevLett.105.151605
https://doi.org/10.1007/JHEP08(2012)043
https://doi.org/10.1007/JHEP10(2018)103
https://doi.org/10.1016/j.nuclphysb.2009.07.023
https://doi.org/10.1103/PhysRevD.84.034044
http://refhub.elsevier.com/S0010-4655(21)00181-8/bibD4240C84A60BF1253062899F2990C1AFs1
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib22CC7DBBB1089C66AA73BC72F51846B4s1
http://refhub.elsevier.com/S0010-4655(21)00181-8/bibBE80CC16D61CD031C0BEA16683921C57s1
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib5EE3A5188BCD7E6EF02C8702C9ED334Bs1
https://doi.org/10.1007/JHEP07(2019)031
http://gmplib.org/
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib403D52A7A6E3B37864F9B86DE38FFA17s1
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib6A7321323DEEAC8D377E41ED762A858Bs1
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://www.wolfram.com/mathematica
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib87DF1CD5B25E0177705698B6951BF5BFs1
https://doi.org/10.1016/j.cpc.2004.12.009
https://doi.org/10.1016/j.nima.2005.11.155
https://www.ginac.de/CLN/
https://doi.org/10.1103/PhysRevD.97.036018
https://doi.org/10.1007/JHEP02(2017)100
https://doi.org/10.1007/JHEP10(2019)058
https://doi.org/10.1007/JHEP05(2013)135
https://mesonbuild.com/
https://doi.org/10.1007/JHEP09(2017)002
http://refhub.elsevier.com/S0010-4655(21)00181-8/bibD12B911A00E81CA3C7E2BF0583859F4Cs1
http://www.doxygen.nl/
https://doi.org/10.1016/S0550-3213(96)00703-1
https://doi.org/10.1088/1126-6708/2004/04/021
https://doi.org/10.1088/1126-6708/2004/09/039
http://refhub.elsevier.com/S0010-4655(21)00181-8/bib17A8F1038D78311CDE97FE8F23E4D6D5s1
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1007/JHEP01(2016)170
https://doi.org/10.1088/1742-6596/762/1/012057
https://doi.org/10.1007/JHEP12(2013)045

	Caravel: A C++ framework for the computation of multi-loop amplitudes with numerical unitarity
	1 Introduction
	2 Computational methodology
	2.1 Integrand parametrization
	2.2 Integrand factorization and cut equations
	2.3 Special functions
	2.4 Analytic structure in the dimensional regulators
	2.5 Finite fields and functional reconstruction
	2.6 Numerical evaluation of scattering amplitudes

	3 Internal modules
	4 Installation and setup
	5 Example programs
	5.1 Helicity amplitudes
	5.2 Specifying program input
	5.3 Numerical amplitude evaluation
	5.3.1 Tree level
	5.3.2 One-loop amplitude to O(ε2)
	5.3.3 Leading-color two-loop amplitude
	5.3.4 Leading-color five-point two-loop finite remainder

	5.4 Analytic reconstruction of amplitudes
	5.4.1 Program output
	5.4.2 Univariate amplitude reconstruction
	5.4.3 Multivariate amplitude reconstruction

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Helicity amplitudes in Caravel
	A.1 Color decomposition
	A.2 External helicity states
	A.3 Spinor weights of helicity amplitudes

	Appendix B Momentum-twistor parametrizations
	References

