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Abstract
The future upgrades of the LHC (Large Hadron Collider)

will increase its luminosity. To fulfil the needs of the de-
tector electronic upgrades and in particular to cope with
the extreme radiation environment, the GBT-SCA (Giga-Bit
Transceiver - Slow Control Adapter) Application-specific
integrated circuit (ASIC) was developed for the control and
monitoring of on-detector electronics. To benefit maximally
from the ASIC, a flexible and hardware interface agnostic
software suite was developed.

A hardware abstraction layer - the SCA software package
- exploits the abilities of the chip, maximizes its potential
performance for back-end implementations, provides control
over ASIC configuration, and enables concurrent operations
wherever possible. An OPC UA server was developed on
top of the SCA software library to integrate seamlessly with
distributed control systems used for detector control and Trig-
ger/DAQ (Data AcQuisition) configuration, both of which
communicate with the GBT-SCA via network-attached opti-
cal link receivers based on FPGAs.

This paper describes the architecture, design and imple-
mentation aspects of the SCA software suite components and
their application in the ATLAS experiment.

SCA SOFTWARE SUITE CONTEXT
Introduction

The GBT-SCA, or SCA for short, is a radiation-tolerant
ASIC and part of a chip-set of the GBT project, in which
a bi-directional 4.8 Gbps optical link architecture has been
developed using a SEU robust protocol [1], providing simul-
taneous transfer of readout data, timing and trigger signals
as well as slow control and monitoring data, by multiplex-
ing multiple logical electrical data links of 80, 160 or 320
Mbps, called E-links [2] onto a single optical link using the
rad-tolerant GBTX ASIC on the front-end side. The SCA’s
purpose is to interface to control and monitoring signals of
front-end electronics on the detectors, using two redundant
80Mbps E-links to connect to a GBTX.

The SCA employs the HDLC (High-level Data Link Con-
trol) protocol on its E-links in a synchronous request-reply
communication pattern. On top of the HDLC data link layer,
a custom protocol has been implemented to address the dif-
ferent hardware devices (or channels) present on the SCA
chip.

The SCA has 16 independent I2C (Inter-Integrated Cir-
cuit) serial bus masters, an SPI serial bus master, a JTAG
∗ paris.moschovakos@cern.ch

serial bus, 32 GPIO ports (General Purpose I/O), an ADC
with 31 analogue inputs, an embedded temperature sensor
and 4 independent DAC. The SCA request and reply message
layout is shown in Fig. 1

SOF Address Control Payload FCS EOF
HDLC 
Frame

Transact.
ID

Channel Length Command Data …

Transact.
ID

Channel Error Length

From Master to 
Slave (request)

From Slave to 
Master (reply)

Data

Data … Data

Figure 1: The SCA request and reply message layout.

The channels operate independently from each other in
order to allow concurrent transactions1 and perform concur-
rent transfers from their end-devices [3].

Functionality and Requirements
The software package is required to provide a high level of

abstraction and means for interfacing to all communication
channels of an SCA profiting from the hardware parallelism
in-between independent channels. In order to ensure reliabil-
ity, the software needs to do the necessary bookkeeping for
the synchronous communication and transaction tracking.

Moreover, the software is required to achieve high per-
formance and low latency, including features like grouping
of requests to perform lengthy operations, such as field-
programmable gate array (FPGA) programming, requiring
transfer of large amounts of data over JTAG. Since thousands
of SCAs will be used in the detector systems, scalability is
an important design aspect. At the same time, monitoring
and control tasks require a high availability of close to 100%,
implying the need of a high level of robustness.

Finally, the software needs to adapt to different commu-
nication scenarios of the SCA. A simulated chip needs to
be supported as well as prototype board communication in-
terfaces for development and testing purposes. For the final
production system, the SCA software is interfaced with the
optical link receiver system - FELIX [4,5] via a dedicated
communication link called netIO [6].

Integration Overview
Figure 2 shows an overview of the SCA integration chain,

illustrating the interplay of the SCA software suite compo-
nents.
1 Data are gettiing serialized in the physical line, while HDLC sequence

number is used to keep the traffic in order when the data are ready to be
transmitted
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Figure 2: Global picture of the software suite. The SCA Software package, in light blue, comprises the SCA Software API to
communicate with the SCA via different back-ends, the SCA Simulator to emulate SCA traffic for testing and development,
and the Demonstrator tools which are used for standalone operations. The SCA OPC UA server and its ecosystem, in orange,
is the middleware of choice to exchange data with the front-ends. UaoClientForScaOpcUa is a library that clients use to
communicate with the SCA server. Finally, the fwSca module automatizes the integration of the server data into SCADA
systems.

THE SCA SOFTWARE PACKAGE
In the SCA Software package [7] core there is a library

that is structured in modules that implement the required
functionality in various layers. The library was designed
to be flexible and easily adaptable to the diverse systems
intended to use it by its polymorphic HDLC back-end. A
block diagram of the software architecture of this library
is shown in Fig. 3. Moreover, the SCA Software package
contains the Demonstrators which are tools that directly use
the library and are used for testing and for low level diagnos-
tics. Finally, as part of the package, an SCA Simulator was
developed that is able to generate SCA traffic, simulating
realistic SCA behaviour, in order to allow for development
and testing without real hardware.

SCA Software

ADC SPI I2C GPIO JTAG DAC

Synchronous Service

SCA 

Simulator
netIO USB

HDLC Backend

Figure 3: SCA Software Library stack.

HDLC Back-end
The HDLC back-end is a software abstraction of the back-

end to be used. The existing back-end implementations were

created for netIO (for FELIX-based systems), ScaSimula-
tor and for the SCA evaluation board via USB. The HDLC
back-end is independent of the actual SCA data provider
as a polymorphic interface unifying sending requests and
subscribing to replies. It facilitates the handling of the pay-
load and organizes a common addressing scheme among
back-ends.

Synchronous Service
The synchronous service is responsible for transaction

tracking, time-out handling and most importantly synchro-
nization of multiple threads accessing the same SCA. Fur-
ther, it allows for full concurrency among SCA channels.

SCA Communication Interfaces Library
The SCA communication interfaces library is a high level

abstraction library to control the user interface ports and
the configuration of the ASIC. A user can perform complex
operations e.g. SPI/I2C configuration of an ASIC or pro-
gramming a Xilinx FPGA via JTAG etc with simple API
calls.

Accompanying Demonstrators
The SCA Software package also includes standalone low

level tools, called Demonstrators. The Demonstrators which
use the SCA API to perform standalone operations, like I2C
write/read or ADC monitoring, are used as debugging and
diagnostic tools or as an example of the SCA API usage for
example SPI configuration of a specific ASIC.
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THE SCA OPC UA ECOSYSTEM
The Detector Control Systems (DCS) has chosen OPC UA

[8] as its standard middleware for the following reasons:

• Focus on communicating with industrial equipment
and systems for data collection and control

• Open specification and various implementations avail-
able (free or commercial)

• Cross-platform

• Service-oriented architecture

• Inherent complexity

• Robust security

• Integral information model, which is the foundation
of the infrastructure necessary for information integra-
tion where vendors and organizations can model their
complex data into an OPC UA namespace.

SCA OPC UA Server
The SCA OPC UA server [9] was implemented using the

quasar [10–12] framework, a software framework for the
efficient creation of OPC UA servers offering a very efficient
development path. The SCA OPC UA server takes advan-
tage of the quasar built-in features such as calculated vari-
ables, different types of variables and methods and advanced
threading.

The server architecture divides the SCA channels into
device classes, corresponding to the respective hardware
function such as the I2C or ADC interfaces. In addition,
a Global Statistician module was developed to collect and
measure general statistics across the setup and to expose the
collected metrics to the clients. Finally, an SCA Supervisor
software module oversees the state of the system and pro-
vides supervisory functionality such as automatic recovery
of communication loss with SCAs, SCA ID validation and
other administrative tasks.

The structure of all quasar classes used in the server are
described by the quasar design diagram shown in Fig. 5.
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Figure 4: SCA OPC UA stack.

SCA OPC UA Clients
Applications from different domains will need to have

access to the same SCA system and use it for distinct pur-
poses. For that reason, the general SCA OPC UA server is
used as the hub from where the data pass and get synchro-
nized, while any specialized application was chosen to be
decentralized (as shown in Fig. 2). This solution makes
the maintenance reasonable, has the advantage of dividing
responsibilities among different communities, allows for
staging e.g. making higher level wrapper applications and
allows for interoperability between diverse clients.

To support the concept, a quasar generated [13] C++ li-
brary, namely UaoClientForOpcUaSca [14] is provided for
building ad-hoc OPC UA clients. This library supplies the
interface to the SCA OPC UA server and is created based on
information sourced from the design of the server. Appli-
cations in ATLAS, that use the aforementioned library, are
Trigger/DAQ OPC UA clients used for configuration, or pe-
ripheral servers which perform sub-detector specific higher
level operations. The simplified architecture of the OPC UA
SCA server and an example SCA OPC UA client that uses
this library is depicted in Fig. 4.

The server allows for the usage of general purpose test
clients for diagnostic purposes such as the UaExpert [15].

Finally, the most common way that an OPC UA server is
used by the DCS is through SCADA WinCC OA [16] based
systems. Those systems employ OPC UA clients which con-
nect to the servers to retrieve the data and visualize the in-
formation in a user interface, usually deployed in a counting
room where the system is monitored by a shifter.

In the case of WinCC OA, the OPC UA connectivity is
done via a module, namely fwSca, which is based on code
generated by quasar tooling and is supplied by the SCA
software suite. This module allows for fast integration as
it creates all the necessary configuration in the WinCC OA
side based on a priori information of the SCA OPC UA in-
formation schema.

PERFORMANCE
The server has been designed to serve setups of various

sizes and types. The biggest challenge is the NSW (New
Small Wheel) upgrade project of ATLAS. In this system,
6976 SCAs are employed, distributed over different types
of front-end electronic boards. The traffic of the SCAs are
handled by 30 FELIX hosts with 18 optical fibre connections
each, and a similar number of SCA OPC UA servers.

In an early integration setup, the SCA OPC UA server was
tested against a full sector slice of the NSW micromegas
sub-system with 8 detector layers fully equipped with their
front-end electronics. The slice serves 160 SCAs, handled
by a single server which was used in various realistic sce-
narios. The SCA are separated in three categories/types
of electronics with different functionality and interfaces as
described in the Table 1.

The setup used one FELIX host equipped with an In-
tel(R) Xeon(R) CPU E5-1650 v4 @3.60 GHz. The SCA
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Figure 5: quasar design diagram of SCA OPC UA server.

OPC UA server runs in the FELIX host machine along with
FELIX software. In a first constant-throughput scenario,
a WinCC OA SCADA application was monitoring the ana-
logue inputs from a separate host while three OPC UA clients
were connected and used for diagnostics. In the second burst
traffic scenario, the server was used by 128 additional con-
figuration clients.

Table 1: SCA channel usage in the ATLAS NSW micromegas full
sector slice. The setup was used to evaluate the performance of the
server.

Board Name MMFE8 ADDC L1DDC

Functionality readout trigger data
aggregator aggregator

SCA Numbers 128 16 16
ADC Inputs 15 10 9
Calculated 15 10 9variables
I2C Master 2 6 2
I2C Slave 44+60 6 2
SPI Slave 8 - -
GPIO 19 18 -

Constant-throughput Monitoring Traffic
Even when no configuration activities are performed, the

server is used constantly to provide monitoring data from
the detector electronics. Those data which mostly come
from analogue inputs correspond to the minimum possible
activity of the server. In the aforementioned setup, the global

request rate was measured to be ∼7800 requests/s for 2192
ADC inputs (each analogue input read consists of two SCA
requests). That resulted in an actual refresh rate of ∼2 Hz per
analogue input. The CPU usage of the server reached ∼25%
in average and the used share of available physical memory
was 340 MB, a metric that is stable and not dependent on
the usage.

On-demand SCA Traffic - Front-end Configuration
The most challenging in terms of open sessions and pro-

cess complexity is the configuration of the front-end boards.
Emulating the cold start of the NSW micromegas detector,
a full sector configuration was attempted in addition to the
constant-throughput monitoring traffic as described above.
During the process, up to 58 concurrent sessions were es-
tablished from various OPC UA clients. The configuration
clients were programming the front-end electronics using
a combination of interleaving operations in-between GPIO,
I2C, and SPI totalling around 2700 requests for each SCA.

The global request rate reached ∼35000 requests/s. The
instantaneous CPU usage peaked at 218%. The total time to
initialize all the front-ends was measured to be 10 s.

CONCLUSION
A comprehensive solution for the multi-purpose radiation

tolerant GBT-SCA ASIC was presented. The architecture
allows concurrent usage by multiple applications and em-
phasizes reliability, availability, and scalability resulting in a
solution suitable for large experimental physics control sys-
tems. The software stack provides a high-level abstraction,
taking advantage of all ASIC functions, making communica-
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tion and design aspects of the hardware largely transparent.
The usage of the quasar framework in the design and imple-
mentation of the SCA OPC UA ecosystem proved to be an
ideal choice due to its efficient development process which
enabled the users within the detector controls and data ac-
quisition teams to swiftly integrate the GBT-SCA into their
applications. Usability and good performance was demon-
strated with a large setup from the New Small Wheel detector
upgrade project within the ATLAS experiment at CERN.
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