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Abstract
quasar (Quick OPC-UA Server Generation Framework)

started as OPC-UA server generation framework. The
project evolved into a software ecosystem providing OPC-
UA support for distributed control systems. OPC-UA servers
can be modeled and generated and profit from tooling to aid
development, deployment and maintenance. OPC-UA client
libraries can be generated and published to users. Client-
server chaining is supported. quasar was used to build
OPC-UA servers for different computing platforms including
server machines, credit-card computers as well as system-on-
chip solutions. quasar generated servers can be integrated as
slave modules into other software projects written in higher-
level programming languages (such as Python) to provide
OPC-UA information exchange. quasar supports quick and
efficient integration of OPC-UA servers into a control system
based on the WinCC OA SCADA platform.

The ecosystem is adapted to different OPC-UA stack im-
plementations and thus can be used as fully free and open-
source solution as well as with and for commercial applica-
tions.

The contribution will present an overview and the evolu-
tion of the ecosystem along with example applications from
the ATLAS Detector Control System (DCS) and beyond.

PREVIOUS WORK
The OPC-UA Standard

The OPC-UA standard [1] is very attractive for informa-
tion exchange between nodes of a distributed control system.
The prime advantages are: information modeling, firewall
friendliness, portability to different computing platforms, us-
age of open standards, security and scalability. The standard
defines how information is to be exchanged but it leaves the
corresponding aspects of software engineering undefined.
Therefore software engineers are left without tools to make
OPC-UA compliant software. In addition it bears the risk of
multiple incompatible software architectures and implemen-
tations which are difficult to maintain in a big distributed
system which is expected to be used for a decade or longer.

Quasar
quasar was born as an OPC-UA server generation frame-

work [2, 3] to standardize the process of OPC-UA software
creation. It was used to create, develop and maintain mul-
tiple OPC-UA server projects, primarily for the controls of
the ATLAS [4] and other LHC experiments at CERN. Open-
sourcing in 2015 [5] permitted its application to numerous
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projects beyond CERN, e.g. to create OPC-UA servers for
commercial power supplies [6].

quasar profits from the Model-Driven Architecture. The
models used in quasar are called quasar designs. quasar
designs are on a conceptually higher level than OPC-UA
information models. A number of dependent artifacts is
generated from quasar designs: source code, model visual-
izations, documentation, SCADA integration, among other.

MOTIVATION FOR EVOLUTION
Due to the positive experience with a growing number of

OPC-UA applications, the new standard gained wide inter-
est. Consequently, new applications (and thus requirements)
followed. Among the requirements the following were of
the highest importance: liberation from restrictive software
licensing, embedding of OPC-UA software components on
embedded targets, distributing processing logic to a chain of
serially or parallely connected OPC-UA components, quick
integration into SCADA systems and integration of OPC-UA
software components into other programming languages.

EVOLUTION OVERVIEW
Liberation from Restrictive Licensing

Initially, the Unified Automation’s C++ OPC-UA SDK [7]
(further referred to as UA-SDK) was supported as the only
OPC-UA implementation. However, the UA-SDK requires
a paid license to develop with, which is considered to be
relatively costly, especially for multiple developers. This was
considered a significant barrier to wider adoption of OPC-
UA. In addition, the source code is closed-source, which
poses a significant limitation for build platforms requiring
access to the source code, like Yocto (detailed in the next
subsection).

Thus an attempt was made to find a substitute for the UA-
SDK. Among free and open-source OPC-UA protocol stacks,
open62541 [8] was considered the most promising choice.
A compatibility library called open62541-compat [9] was
made to adapt the API of open62541 to the one offered by
UA-SDK. As the result, while building OPC-UA software
components made with quasar, it is possible to select the
protocol stack: either UA-SDK (paid) or open62541 (free
and open-source).

The open62541-compat library covers most of the fea-
tures achievable with the UA-SDK . However, at the time of
writing, certain features were not yet available. For exam-
ple, the internal architecture of the open62541 leaves much
less freedom on how to process incoming OPC-UA requests
than the UA-SDK. This limits the distribution of requests
processing into multiple threads and prevents job queuing.
Nevertheless only few applications known to the authors
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were impacted by this limitation; in most applications both
open62541 and UA-SDK did equally well.

Advancements in Server Generation
The quasar ecosystem as a whole profits from significant

advancements in the core quasar itself. A summary of few
most important items is given, with regard to the initial
publication [2, 3].

The introduction of calculated variables permits server
users and administrators to quickly provide calibrations, con-
versions, unit changes and introduction of new quantities by
defining OPC-UA variables with values based on analytic
formula evaluation of other variables. The prime advantage
is that recompilation of the server is not necessary - calcu-
lated variables are loaded from the configuration file which
is parsed at runtime.

OPC-UA methods became supported, with any number of
arguments and return values. In addition, methods in quasar
servers can be executed in threads which are separate from
the protocol stack’s threads, so potentially long-lasting and
CPU-intensive tasks can be spawned without affecting the
processing of other OPC-UA requests.

The support for restrictions of the configuration schema
appeared. In addition, generation of documentation for the
configuration schema as well as address-space was added,
to the benefit of users and server administrators.

quasar optional modules feature standardizes the way in
which external dependencies of servers are used. In addition,
a publicly-available repository of quasar optional modules
was created.

OPC-UA on Embedded Targets
The ubiquity of embedded systems nowadays is visible

also in the domain of detector control systems. Often the pro-
cessing systems used for such devices are powerful enough
to permit to embed OPC-UA software components directly
within the devices. This is a significant improvement com-
pared to previous approaches when only simple protocols
were used for the embedded systems.

quasar was successfully used in multiple embedded soft-
ware projects. Different build and deployment strategies
were tested: cross-compiling, usage of Yocto and native
compilation on the embedded target.

Cross-compilation: quasar projects can be cross-
compiled for an embedded system of choice. The path(s)
to the cross-compiler and the sysroot 1 are required to be
configured and an OPC-UA server executable ready to be
run on the target is produced.

Yocto-based: Yocto [10] is an open-source project
(backed by numerous companies from the embedded sector)
which creates highly customized Linux distributions. Yocto
builds everything from sources (even the compiler used to

1 sysroot (also known as rootfs) is the folder corresponding to root directory
on the embedded device file system.

build the target software is built from source) and therefore
the achievable coverage of target systems is very wide.

quasar’s build system was extended to support Yocto’s
CMake-based recipes. quasar can be used to create OPC-UA
server applications for Yocto. Sample recipes for OPC-UA
applications as well as all dependencies not handled by built-
in recipes are provided.

In addition, Yocto is used as the work-horse of higher
level environments, e.g. Xilinx’s PetaLinux [11]. Therefore
quasar OPC-UA servers can easily be built with PetaLinux.

Native Compilation on the Embedded Target: In cer-
tain situations the embedded systems were powerful enough
to conveniently build the OPC-UA software natively. quasar
was used in such situations exactly like if an OPC-UA server
was being made for a desktop or a server-grade machine.

Note on Resource Footprint Measurements were per-
formed to estimate executable size and memory consump-
tion of a simple OPC-UA server made with quasar using the
open62541 as the protocol stack. Two environments were
measured: on the armv7l architecture on an embedded board
with Zynq SoC using PetaLinux and on the x86_64 archi-
tecture using CentOS 7 on a desktop PC. In both cases the
protocol stack was linked statically to the executable, while
the remaining dependencies were linked to shared objects de-
livered by the operating system. For armv7l, the executable
size was 1.4MB and the RSS2 was 12M. For x86_64 the
executable size was 2.6MB and the RSS was 7.5MB. Note
that the usage of RSS is not an ideal measure of memory
consumption on architectures in which virtual memory is
used and swapping might take place.

Generation of Corresponding OPC-UA Clients
In many situations, an OPC-UA client for information

exchange with an OPC-UA server made with quasar needs
to be embedded into a computer program.

The quasar ecosystem delivers a solution to this problem
called UaObjects (abbreviated UaO) [12, 13]. Using C++
variant of UaO, a client library for C++ can be generated,
in which proxy (surrogate) classes are provided for every
quasar class of the server for which the corresponding client
is generated. The proxy classes expose methods to read,
write or call OPC-UA variables or methods (respectively)
declared per given quasar class. In the methods, OPC-UA
client code is generated which deals with all aspects such as
data encoding, calling the protocol stack, processing errors
and other.

UaO users therefore do not need to know much about
OPC-UA or its client APIs. The only requirement is that
those users have access to the quasar design of the server
for which the client is generated.

Within the ATLAS Detector, the UaO approach found
applications for interconnecting the Data Acquisition (DAQ)

2 RSS, Resident Set Size - part of the memory occupied by a process held
in the RAM.
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systems with the Detector Control Systems (DCS). Namely,
often the DCS runs an OPC-UA server which is responsible
not only for controls and monitoring but also has hardware
interfaces to configure the detector. However, the configu-
ration data is often in possession of the DAQ system, thus
it needs to find its way to hardware controlled by DCS via
OPC-UA. Therefore, an OPC-UA client generated by UaO
is integrated into the DAQ software.

Chaining Multiple Clients and Servers
quasar can be used to create both OPC-UA servers and

corresponding OPC-UA clients. Therefore, it is possible
to easily create multi-stage information exchange in which
one OPC-UA server integrates an OPC-UA client which
connects to another OPC-UA server. Such an arrangement
is depicted in the Figure 1.

OPC-UA server 1

information source/sink

OPC-UA server 2
OPC-UA client made
with UaO for server 1

DCS 

systems

(SCADA)

other  systems 

(e.g. DAQ)

using UaO

other OPC-UA
clients

(e.g. diagnostic)

API or specific 
protocol

Figure 1: An example of chained servers and clients. The
client generated using UaO for server 1 is used from within
of the server 2. All arrows without label indicate OPC-UA.

The possible use cases for such an architecture are:

• providing different levels of abstraction for different
stages of information exchange.
For example, server 1 (in the figure) exposes data at
very low level of abstraction (e.g. data read directly
from hardware, like contents of registers of a chip).
Server 2 processes data such that they are exposed on
much higher level of abstraction, for example as results
of measurements which can be expressed in physical
quantities (volts, amperes, etc).

• intermediate data processing.
For example, server 2 performs statistical operations
(e.g. average, median, FFT, etc.) which significantly
reduce the amount of published information.

• separation of management/maintenance/responsibility.
For example, server 1 is within the responsibility of the
experiment infrastructure while server 2 is within the
responsibility of data processing teams. The separation
allows for the modifications of the algorithms used in
server 2 without impact on server 1, and especially
without impact on other clients that server 1 might
have.

Both servers of the example can be created using quasar.
The OPC-UA client made for server 1 and used in server 2
can be obtained using UaO.

The schema can be much more advanced, for example:
one server might connect to many different clients and the
number of processing stages might by freely chosen.

A more realistic example of such an application is given
in the examples section of this contribution.

Quick Integration into SCADA Systems
Integration of OPC-UA connectivity to a SCADA sys-

tem depends on chosen SCADA platform. For the WinCC
OA SCADA [14], which is the chosen SCADA for all De-
tector Control Systems of LHC experiments, the OPC-UA
connectivity is achieved by configuring so-called peripheral
addresses3 per each data point element4 which is mapped
to a given OPC-UA variable. Such task might often be te-
dious, especially for big systems. In addition, coherency
between peripheral addresses and OPC-UA address-space
must be maintained. Both factors prompt for automation of
peripheral address assignment.

The quasar extension Cacophony [15] allows for the au-
tomatic creation of SCADA data structures and peripheral
addresses using the quasar design and configuration file of
the corresponding server by generating SCADA program
instructions (i.e. CTRL code for WinCC OA). The approach
saves relatively big effort for control system developers, be-
cause all OPC-UA servers made with quasar can have their
SCADA counter-part done at negligible cost.

Integration into other Programming Languages
All components of the quasar ecosystem are primarily

oriented towards the C++ programming language. However,
often the integration into other programming languages is
necessary. Since at the time of writing Python was perceived
to be the most common programming language into which
the OPC-UA server needed to be integrated, the quasar
ecosystem was extended with a module called Poverty [16].

3 In WinCC OA, a peripheral address for OPC-UA uniquely identifies given
variable in a chosen OPC-UA server. In addition, supplementary data to
ensure connectivity is also often there, like the subscription to be used.

4 A data point element is an equivalent of a process variable in the WinCC
OA architecture.
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The Poverty module is capable of generating a dynamically-
loaded library per chosen quasar design which can be im-
ported into any Python program. The library delivers meth-
ods to manage (e.g. start) an OPC-UA server for which it
was created as well as methods to operate on its address-
space. Note that in this scenario the Python application is
considered a parent application to the quasar-made OPC-UA
server.

However, the Python application is limited to publishing
or reading information to or from the address space while the
embedded OPC-UA server cannot be used to invoke parent
application Python code.

From a user point of view, equipping a Python program
with an OPC-UA server (for example, to publish data from
Python over OPC-UA) only requires to use the Poverty mod-
ule to obtain the library, load it into Python, start the server
and call a function to publish data. It is therefore a very effi-
cient approach forintegrating OPC-UA servers into Python5.

APPLICATIONS
At the time of writing, 16 OPC-UA server projects were

used in production or were in pre-production use (each of
the projects is usually deployed in multiple instances - with
different configuration - on different nodes of the distributed
control system). Many more are in the development phase
awaiting future upgrades of the ATLAS detector.

Among these projects, the server for the Slow Controls
Adapter (SCA) OPC-UA is the most interesting example
application [17]. It is the most advanced OPC-UA server in
terms of quasar features used (different types of variables
and methods, advanced threading, relatively large OPC-UA
address-space etc.).

In addition, the project profits from many extensions de-
tailed in this writing. In the New Small Wheel (NSW) up-
grade project, UaObjects is used to provide OPC-UA clients
for DAQ software performing detector configuration. The
DAQ configuration process is run in parallel with the DCS
control and monitoring activities with both systems access-
ing the same SCA instances. In this case the concurrency is
handled entirely by the OPC-UA server. In the Liquid Argon
(LAr) upgrade project, UaObjects is used to make an OPC-
UA client for a second-stage OPC-UA server called LAr
LTDB Peripheral OPC-UA server. The peripheral server
provides high-level abstraction of system-specific electron-
ics boards containing several SCA chips; each command
sent to the peripheral server translates into multiple com-
mands sent to the generic SCA OPC-UA server. This gives
freedom of development (i.e. separation of responsibility)
to the LAr software developers because the generic server
(SCA OPC-UA) is used by multiple several other ATLAS
upgrade projects.
5 Note that one can find OPC-UA implementations written purely in Python.

The advantage of using quasar is that one stays within the quasar ecosys-
tem, so it is possible to quickly integrate such an embedded OPC-UA
server into a SCADA system (using aforementioned Cacophony module)
or use (aforementioned) UaObjects to make a client for it.

Cacophony (detailed above) was used to create SCADA
integration code, for rapid integration of SCA connectivity
into SCADA projects for the NSW detector. In addition
Cacophony is planned to be used to integrate the aforemen-
tioned LAr LTDB Peripheral OPC-UA server into the DCS.

Other OPC-UA software solutions created with quasar
include:

• OPC-UA servers for commercial industrial power sup-
plies used by all LHC experiments: CAEN, Iseg,
Wiener [6],

• OPC-UA server for the monitoring and control of
ATCA shelves, compliant to the PICMG standard,

• several servers for specialized hardware in ATLAS,

• OPC-UA servers for integration of system-on-chip
boards into ATLAS DCS: gFEX and eFEX OPC-UA
servers,

• ATLAS version of Wiener VME crates OPC-UA server,

• Generic IPbus [18] server,

• Generic SNMP server.

FUTURE OUTLOOK
Different ideas were recognized as future quasar ecosys-

tem development directions. Bridging the gap of supported
features between UA-SDK and open62541 is important be-
cause in certain applications only the latter can be used (e.g.
due to licensing). Support for OPC-UA events could help
to cleanly implement event-type notifications. Internally
within quasar, the code generation engine will shift from
XSLT (majority today) to Jinja2 [19], which is easier to
maintain (ongoing development). quasar servers will also
be able to load arbitrary additional OPC-UA address-spaces
to support alternative ways of information modeling.

CONCLUSION
Since the initial publication, quasar evolved significantly

and well-beyond sole server generation framework. Nowa-
days, control systems made of multiple OPC-UA clients and
servers, potentially involving many stages of data process-
ing, can be made with quasar. Such systems might involve
software components written in programming languages dif-
ferent from C++ (e.g. Python) with seamless integration with
the other components. The Cacophony extension frees con-
trol system developers from tedious task of SCADA systems
configuration to provide OPC-UA connectivity. Multiple
new features seen in the core quasar, like calculated vari-
ables, bring added value to server users and administrators
without need to write any code.

quasar was successfully applied to a wide range of ap-
plications; many of the applications are seen in the ATLAS
DCS. Beyond the DCS, applications are seen CERN-wide
and also in different projects collaborating with CERN.
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Certain applications are in production for more than
4 years and no design flaws or instabilities were found which
could be attributed to the quasar architecture. Multiple new
applications will enter production in the years to come.
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