
BIG DATA ARCHIVING FROM ORACLE TO HADOOP

I. Prieto Barreiro, M. W. Sobieszek. CERN, Geneva, Switzerland.

Abstract

The CERN Accelerator Logging Service (CALS) is used

to persist data of around 2 million predefined signals coming

from heterogeneous sources such as the electricity infras-

tructure, industrial controls like cryogenics and vacuum, or

beam related data. This old Oracle based logging system

will be phased out at the end of the LHC’s Long Shut-down

2 (LS2) and will be replaced by the Next CERN Accelerator

Logging Service (NXCALS) which is based on Hadoop. As

a consequence, the different data sources must be adapted

to persist the data in the new logging system. This paper

describes the solution implemented to archive into NXCALS

the data produced by QPS (Quench Protection System) and

SCADAR (Supervisory Control And Data Acquisition Rela-

tional database) systems, which generate a total of around

175,000 values per second. To cope with such a volume of

data the new service has to be extremely robust, scalable

and fail-safe with guaranteed data delivery and no data loss.

The paper also explains how to recover from different failure

scenarios like e.g. network disruption and how to manage

and monitor this highly distributed service.

INTRODUCTION

CALS is used to persist and retrieve billions of data acqui-

sitions per day and is considered a mission critical service.

The data is coming from heterogeneous sources such as the

CERN accelerator complex, related subsystems and experi-

ments [1]. The logging system was initially designed for a

throughput of 1 TB/year and it is currently operating far over

its design limits, storing over 1.2 TB/day. The underlying

storage of CALS is based on Oracle Database and uses an

old monolithic architecture which is difficult to scale up [2].

CALS will be phased out at the end of the LHC’s Long

Shut-down 2 (LS2) in 2020 and will be replaced by the Next

CERN Accelerator Logging Service [3] (NXCALS) which

is based on Hadoop.

The replacement of the logging system will have an impact

on many client applications which use a database to database

transmission mechanism to archive the data in the logging

system. This is the case for QPS (Quench Protection System)

and SCADAR (Supervisory Control And Data Acquisition

Relational database) [4], which are first storing their data in a

temporary database and then transferring a sub-set of the data

to CALS for permanent storage using PL/SQL. As NXCALS

is based on Hadoop, this approach of data transmission is

technically not possible and therefore it was necessary to

implement a new mechanism to feed the new logging system

with the data.

This paper describes the solution implemented to archive

in NXCALS the data produced by QPS and SCADAR. The

client systems of NXCALS must register the signals be-

fore archiving their data values, and these two systems have

registered over 1.6 million signals in the logging system

which generate a total of around 175,000 values per second.

Therefore, the implemented solution must cope with big data

volumes and it was designed to be extremely robust, scalable

and fail-safe with guaranteed data delivery and no data loss.

The paper also explains how to recover from different failure

scenarios like e.g. network disruption and how to manage

and monitor this highly distributed service.

SYSTEM OVERVIEW

The tasks performed by the new data source for NXCALS,

named WinCC OA Data Source (WCCDS), are conceptually

simple:

1. Get the list of signals registered in the logging system.

2. For each registered signal, get the list of values not

yet transmitted to the logging system and send them to

NXCALS.

3. Wait for the reception acknowledge of the transmitted

values and mark them as logged.

4. Allow data re-transmissions on user demand.

5. Manage the registration, removal and modification of

the signals in the logging system.

The implementation of the WCCDS service was split into 
two main processes: Datasource process for the first four 
aforementioned tasks and Metadata process for the last task. 
Figure 1 shows the system overview; the different QPS and 
SCADAR applications store their data and metadata in two 
different database schemas. The data schema contains the 
values and timestamps produced by all the signals of the 
system. The metadata schema keeps track of the signals 
registered in the logging system and contains additional in-

formation, like the name of the table where the signal values 
are stored or the timestamp of the last values archived in 
NXCALS for each signal. The WCCDS service queries both 
schemas and transmits the data and metadata to NXCALS. 
When the service receives the reception acknowledge for 
the transmitted data, it marks the data as transferred to 
NXCALS.

Data Partitioning and Scaling

The volume of data to be transmitted to the logging sys-

tem is too big to be handled by a single JVM (Java Virtual 
Machine) process and the WCCDS service profits from the 
data partitioning defined by CALS, where a signal belongs 
to a data category and a data category belongs to a data 
transfer group. For example, QPS has over 135,000 signals 
registered in the logging system which are partitioned into 
53 data categories. The data categories are spread over 20 
data transfer groups.

This data partitioning allows a simple distribution of the 
data transmission among different JVM processes and ma-

chines depending on the capacity of the available resources.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA117

Data Management
MOPHA117

497

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: System overview.

After performing stress tests, performance tests and process

tunning for QPS, it was established that each datasource

process will manage two transfer groups and each machine

will run five datasource processes. If the volume of data

grows in the future, it will be possible to modify the distri-

bution by i.e. having a single transfer group per process or

even to modify the strategy to distribute the data categories

among different processes. The whole system can be easily

scaled up by distributing the different datasource processes

on additional machines.

DATASOURCE PROCESS

The datasource process is in charge of getting the signal

values not yet transmitted to the logging system, send them

to NXCALS, wait for the reception acknowledge and mark

them as sent in the database. The process is divided into two

logical modules, data producer and data consumer, linked

by a communication channel (Figure 1). The default imple-

mentation of the channel is based on a Concurrent Blocking

Queue.

Data Producer

One of the difficulties of the data producer resides in how

to optimize the queries to the temporary database containing

the application data in order to have a low impact on its

performance.

The values of the signals belonging to a transfer group

can be stored in different tables, therefore, the first optimiza-

tion implemented was to group the queries for the signal

values by table. The second optimization was to query the

data in configurable time windows defaulting to 300 seconds.

Finally, the last optimization was to introduce a timestamp

aligner algorithm for grouping multiple signals in the queries

used to obtain the values to transmit into the logging system.

Without such an algorithm, the queries to obtain the values

would be executed individually for each signal, having a

negative impact in the database performance. For example,

Table 1 shows the metadata table containing the timestamp

of the last logged values for five different signals and their

aligned timestamps. Using the aligned timestamp, it is pos-

sible to execute only two queries to obtain the new values

for the five signals. For example, the first three signals will

be grouped by their aligned timestamp in the query:

select * from data

join metadata on

metadata.signal_id = data.signal_id

where

metadata.aligned_stamp = ’09:20:30’

and data.timestamp > ’09:20:30’

and data.timestamp <= ’09:25:30’;

The only inconvenience of the timestamp aligner approach

is that some values will be sent twice to the logging system,

which is not an issue for NXCALS as such data will be de-

duplicated by the system. However, it improves greatly the

performance on the queries to the database.

Table 1: Example of aligned timestamps for several signals

Signal Timestamp Aligned

ID Last Logged Value Timestamp

1 09:20:45 09:20:30

2 09:20:49 09:20:30

3 09:20:37 09:20:30

4 09:20:07 09:20:00

5 09:20:11 09:20:00

Figure 2: Acknowledge of time window batches.

When the data of a time window is obtained from the

database, it is split into multiple data batches and sent to

the communication channel in order to be processed by the

data consumer. The last task to be performed by the data

producer is to wait for the reception acknowledge of the data

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA117

MOPHA117
498

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



batches and update the timestamps in the database accord-

ingly. The acknowledge of the data batches can be received

in any order, therefore, the data producer waits until it re-

ceives the acknowledge of a consecutive block of batches

from the beginning of the time window before updating the

timestamps. Figure 2 shows a time window of five minutes

split into eight data batches with the acknowledge received

for the batches 2 to 5. If the next acknowledge received cor-

responds to the first data batch, the data producer will update

the last logged and aligned timestamps in the database to

include the values sent in the first five batches. The entire

communication, described above, has asynchronous nature

therefore its performance is very good.

Data Consumer

The data consumer digests the data batches and sends the

individual signal values to NXCALS. Then it waits asyn-

chronously for their reception acknowledge. When the con-

firmation is received for all the values of a batch, it sends

the batch reception acknowledge to the data producer.

If the publication of a value to NXCALS throws an excep-

tion, the data consumer will check whether it is a recoverable

error in which case it will try to re-publish the same data. If

the exception is not recoverable, for example, due to a bad

data formatting, the exception will be propagated to the data

producer and the complete batch will be invalidated, storing

the error in the database and locking the data to avoid its

re-transmission. The system monitoring and alerting, ex-

plained in a subsequent section, will detect the locked data

and send an alert to the service administrators for a further

investigation of the problem.

Blocking Queue

The communication channel between the data producer

and consumer was implemented using a blocking queue.

If the producer is faster than the consumer processing the

data, the queue will be filled and the process will be blocked

until the consumer removes items from it. This approach

avoids having out of memory errors due to the increasing

heap space used by the application in the case of having slow

consumers.

Even if the process is blocked temporarily, there is no

risk of data loss because the metadata tables contain the

timestamp of the last values archived in the logging system.

As soon as the process resumes its normal operation, it will

start processing the data sequentially from the oldest values

not yet transmitted.

Data Re-Transmission

In certain situations, the administrators of the systems

generating the data might request a data re-transmission to

the logging system. For example, a typical use case is to add

a new signal in the logging system and archive its values

from a number of hours in the past.

Since the values of all the signals are stored in the tempo-

rary database, the data re-transmission can be triggered just

by re-setting the aligned timestamp of the required signals in

the metadata table. When the data producer starts processing

data for the signals, it will get the values to transmit starting

from the time specified in the aligned timestamp.

Network Disruption Events

In the case of a network disruption event, the data flow

between the different system layers might be affected (Figure

1). If the source applications cannot send their values to the

Oracle temporary storage, they will buffer the data in the

local file system until the connection is restored. At that

point, the applications will resume the data transmission

sending first the oldest values stored in the buffers. This

sequential data transmission will guarantee that there are no

gaps in the Oracle database for the application data and all

the values will be processed by the datasource.

If the disruption event affects the communication between

the Oracle temporary storage and the datasource process,

the data producer will not be able to obtain any new data.

As soon as the connection is restored, the data producer will

see the new data and it will resume its normal operation.

Finally, the network issue might affect the communica-

tion between the datasource and NXCALS. In this scenario,

the data consumer will try to send the batch data and wait

asynchronously for the reception acknowledge. Since the

acknowledgement will not be received until the network dis-

ruption is resolved, the confirmation of the batch reception

will not be sent to the data producer and the data transmis-

sion for the signals will be temporarily blocked until the

communications are restored.

METADATA PROCESS

The metadata process manages the registration, removal

and modification of the signals in the logging system and

their organization in a hierarchical, tree-like structure, which

allows a better navigation and categorization of the signals.

The process checks regularly the metadata tables looking

for new signals to register, remove or modify and propagates

the changes to the logging system.

An additional task of the metadata process is to look for

inconsistencies between the signals registered in CALS and

NXCALS. This feature will be helpful during the initial

deployment of the WCCDS service to ensure that the sig-

nals registered in CALS are also registered in NXCALS.

The number of inconsistent signals between both systems

is exposed by JMX (Java Management Extensions) and is

available for the system monitoring and alerting.

TESTING

The testing of the WCCDS service was split into func-

tional and stress tests. The functional tests were performed

using a mock application and they aimed to verify the cor-

rect implementation of the service. The stress tests were

performed with live data coming from the QPS production

system which is producing around 150,000 values per sec-

ond. The objectives of the stress tests were the following:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA117

Data Management
MOPHA117

499

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: Performance comparison between PGC and CMS garbage collectors.

• Measuring the data transfer rates for each of the 20 data

transfer groups.

• Grouping the data transfer groups in order to have a

similar transfer rate for each process.

• Optimizing the number of data transfer groups to be

included in each datasource process in order to obtain

the best possible performance.

• Tuning the the number of concurrent executors used in

the different modules of the datasource process.

• Testing the data re-transmission up to 12 hours in the

past.

• Estimating the number of machines required to execute

the service.

The initial stress tests were performed using a pool of 20

virtual machines, each of them executing a single datasource

process handling a unique data transfer group. An additional

virtual machine was used to execute the metadata process.

The first round of tests allowed the measuring of the data

transfer rates for the transfer groups and the initial tuning of

the datasource parameters to optimize its performance.

The second round of tests was performed using two phys-

ical machines, each of them having 128GB of RAM and

two CPUs of type Intel(R) Xeon(R) CPU E5-2630 v4 @

2.20GHz, having a total of 40 CPU virtual threads. The

results obtained from the tests demonstrated that the optimal

configuration for the service was to include two data transfer

groups per datasource process with a distribution of five

datasource processes per machine. This configuration has a

relatively low usage of the hardware resources during normal

operation but allows data re-transmissions up to 12 hours in

the past without having a big impact on the normal operation

of the service. The JVM processes were running under Java

HotSpot 64-Bit Server VM (build 1.8.0_152-b16).

Java Garbage Collector Issues

During the stress tests of the system several kind of is-

sues occurred; in some cases it crashed the execution of the

datasource process and in other cases it threw very strange

exceptions while processing the data. The issues could not

be reproduced systematically and they appeared randomly in

the different datasource processes. After analyzing the issues

in detail, it turned out to be a bug in the Java’s Garbage-First

Collector (G1).

Therefore, the subsequent tests aimed to compare the per-

formance and stability of the garbage collectors PGC (Paral-

lel Garbage Collector) and CMS (Concurrent Mark Sweep).

Figure 3 shows the execution time of data re-transmission

of 10 hours for the 20 transfer groups using PGC and CMS

garbage collectors. The data re-transmission took between

70 and 160 minutes when PGC was used and between 130

and 445 minutes for CMS. In the comparison between the

data re-transmissions of each transfer group, the processes

executed with CMS was between 1.4 and 3.2 times slower

than PGC. Therefore, PGC was selected as the garbage col-

lector for the execution of the processes.

The modification of the garbage collector completely re-

moved the instability of the system and the datasource pro-

cesses were running for over a month without further inter-

ruptions.

SYSTEM MONITORING AND ALERTING

The status of the different processes and the hosts is con-

stantly monitored by the Prometheus [5] ecosystem
(Figure 4).

The WCCDS processes expose relevant metrics for moni-

toring their current state via JMX. The datasource process

exposes the number of metadata groups being processed

and how many are locked due to an exception, the number

of errors reading from the database and publishing to NX-

CALS, and the number of records read from the database.

The metadata process exposes the number of signals which

are registered in CALS and not registered in NXCALS.

Prometheus gathers the metrics exposed by the WCCDS

processes along with the host metrics which are exposed by

Prometheus’ node exporter, like CPU, memory or network

usage. They can be then displayed in Grafana [6] in a form of

custom charts and dashboards. Prometheus also compares

the metric values against a set of customized alerts defined

for monitoring the healthy state of the processes and the hosts.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA117

MOPHA117
500

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



For example, if the data processing of a transfer group is

active for more than a certain amount of time, if the number

of signals locked due to an exception is greater than 0 or

if the CPU usage of a host is higher than 75% for more

than a given threshold, an alarm will be triggered. The alert

manager process will receive the alarms, group them by

type and send notifications by email or sms to the relevant

receivers, depending on the type of the alarm.

Figure 4: System monitoring and alerting.

Finally, Monit [7] is used for managing (start/stop/restart)

the different processes and, more importantly, for monitoring

their execution state and restarting them if they stop for any

reason.

RELEASE AND DEPLOYMENT

The software release and deployment procedures were

fully automated and can be triggered from Jenkins [8] with

a single mouse click. The software release is managed by

Apache Maven [9] which takes care of building, testing,

packaging and releasing the different modules to an artifact

repository.

The software deployment, from the artifact repository to

the test or production environments, was implemented using

Ansible [10], a software provisioning, configuration man-

agement, and application-deployment tool. Ansible allows

the automation of repetitive and time consuming tasks, al-

lowing to apply the same actions on different environments.

For example, deploying the system to the test environment

implied installing software packages on 21 virtual machines,

a tedious task to be done manually which was repeated very

often during the development phase. With Ansible, the ser-

vice can be deployed to the test or production environments

specifying a different inventory file. The file contains dif-

ferent configuration settings depending on the environment,

such as the host names or the connection strings for the test

and production databases.

CONCLUSION

The WinCC OA Data Source service was implemented

to archive data produced by the QPS and SCADAR systems

into the Next CERN Accelerator Logging System, which

will replace the old CERN Accelerator Logging System

at the end of the LHC’s Long Shut-down 2 in 2020. The

data produced by QPS and SCADAR in normal operation

is around 175,000 values per second. During the data re-

transmission tests the transfer rate reached peaks of 800,000

values per second.

The new service substitutes the previous approach of data

transmission to the logging system, from Oracle to Oracle

using PL/SQL, by a Java distributed service which is ex-

tremely robust and fail-safe with guaranteed data delivery

and no data loss. The service can scale up easily by dis-

tributing the data generated by the source systems among

new processes and distributing the Java Virtual Machine

processes on additional machines.

The code-base implemented for the service will be re-used

at CERN by other services that store their data into their

own temporary database and have a need for a permanent

storage solution.

REFERENCES

[1] C. Roderick et al., "The CERN accelerator Logging Service

- 10 years in operation: A look at the past, present, and fu-

ture". 14th ICALEPCS Int. Conf. on Accelerator and Large

Expt. Physics Controls Systems. San Francisco (USA), 7-11

October 2013, TUPPC028.

[2] C. Roderick and R. Billen, “Capturing, Storing and Using

Time-Series Data for the World’s Largest Scientific Instru-

ment”, November 2006, CERN-ABNote-2006-046 (CO).

[3] J. Wozniak, C. Roderick, "NXCALS - Architecture and Chal-

lenges of the Next CERN Accelerator Logging Service", pre-

sented at the 17th Int. ICALEPCS Conf., New York, USA,

October 2019, paper WEPHA163, this conference.

[4] P. Golonka et el., "Database archiving system for supervi-

sion systems at CERN: A successful upgrade story". 15th

ICALEPCS Int. Conf. on Accelerator and Large Expt. Physics

Controls Systems. Melbourne (Australia), 19-23 October

2015, MOPGF021.

[5] Prometheus

https://prometheus.io

[6] Grafana

https://grafana.com

[7] Monit

https://mmonit.com/monit/

[8] Jenkins

https://jenkins.io

[9] Apache Maven

https://maven.apache.org

[10] Ansible

https://www.ansible.com

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA117

Data Management
MOPHA117

501

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


