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Abstract
A common need in large scientiic experiments is the abil-

ity to monitor by means of simultaneous data acquisition
across the whole installation. Data is acquired as a result
of triggers which may come either from external sources,
or from internal triggering of one of the acquisition nodes.
However, a problem arises from the fact that once the trigger
is generated, it will not arrive to the receiving nodes simulta-
neously, due to varying distances and environmental condi-
tions. The Distributed Oscilloscope (DO) concept attempts
to address this problem by leveraging the sub-nanosecond
synchronisation and deterministic data delivery provided
by White Rabbit (WR) and augmenting it with automatic
discovery of acquisition nodes and complex trigger event
scheduling, in order to provide the illusion of a virtual oscil-
loscope. This paper presents the current state of the DO, in-
cluding work done on the Field-Programmable Gate Array
(FPGA) and software level to enhance existing acquisition
hardware, as well as a new protocol based on existing indus-
trial standards. It also includes test results obtained from a
demonstrator used to showcase the DO concept, based on
two digitisers separated by a 2.5 km optical ibre.

INTRODUCTION
From the monitoring of particle accelerators to smart

electrical grids and from scientiic experiments performed
at the bottom of the sea to astronomical observatories and
meteorological stations on mountaintops, a common re-
quirement in large-scale Test and Measurement (T&M) se-
tups has always been the ability to remotely control, auto-
mate and synchronise the involved equipment (instruments).
This is of course true even in smaller setups, such as the ones
found in laboratories, but it becomes even more important
when the equipment is distributed across longer distances,
or placed in remote and hard-to-reach locations.

The accelerator complex of the European Organisation
for Nuclear Research (CERN), which includes the Large
Hadron Collider (LHC) with a circumference of 27 km, is
a prime example of such an installation. CERN operators
need to be able to monitor the state of the accelerators and,
very often, to correlate measurements performed across the
accelerators (e.g. at beam transfer lines).

This paper presents the White Rabbit Trigger Distribu-
tion (WRTD) [1] system, a new development at CERN
that allows sub-nanosecond synchronisation of instruments
across several kilometres of distance and distribution of trig-
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gers over White Rabbit (WR) [2, 3] in the form of network
messages. It also presents the Distributed Oscilloscope
(DO) [4], a proof-of-concept project for WRTD.

BACKGROUND
Historically, the need for synchronisation of instruments

has been addressed by various types of T&M systems. Al-
ready in the late 1960s, the General Purpose Interface Bus
(IEEE-488, GPIB) [5] was introduced to allow control and
readout of up to 14 daisy-chained instruments from a com-
puter, using a cable of up to 20 meters total length. GPIB ex-
tenders were later introduced to overcome these limitations.
Long coaxial cables were (and still are being) used to syn-
chronise the instruments and distribute triggers by means of
their external trigger input/output and “sync” ports. In the
1980s, the popularity of VMEbus led to the development of
the VME eXtensions for Instrumentation (VXI) [6], and a
decade later, PCI eXtensions for Instrumentation (PXI) [7]
was added to the list. Both VXI and PXI included multi-
ple trigger lines on their backplanes for synchronisation be-
tween the instruments.

In more recent years, the proliferation of Ethernet-based
computer networks led in 2005 to the introduction of the
LAN eXtensions for Instrumentation (LXI) [8]. Where VXI
and PXI also imposed the mechanical format of the instru-
ments, LXI focused on the protocol and provided services
(such as automatic discovery of attached devices), allowing
for rack-mounted, bench-top, modular or any other type of
form factor to be used and interconnected, as long as they
have a Local Area Network (LAN) port. Furthermore, the
Ethernet network allowed for long distances between the in-
struments and their operators.

The LXI standard is divided into the so-called “Device
Speciication” [9] which contains requirements for all LXI-
compatible devices, and a set of optional “Extended Func-
tions”. A group of three such extended functions, Clock
Synchronisation (CS) [10], Event Messaging (EM) [11]
and Timestamped Data (TD) [12] provide a synchronisation
layer on top of the core LXI standard, ofering similar capa-
bilities to those found on the backplanes of VXI and PXI.
LXI CS is based on the IEEE 1588 Precision Time Proto-
col (PTP) [13] and it speciies its own PTP proile. LXI
devices supporting this function have their clocks synchro-
nised with sub-microsecond accuracy. LXI EM deines the
methods for the exchange of messages directly between the
instruments using multicast User Datagram Protocol (UDP)
or point-to-point Transmission Control Protocol (TCP) con-
nections. LXI TD adds timestamps to all messages, events
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and acquired data. The combination of LXI CS, EM and
TD allows for events to be tied to absolute times for pre-
cise triggering, synchronisation and correlation among the
instruments.

Nevertheless, for time-sensitive applications, the sub-
microsecond accuracy provided by typical PTP implemen-
tations, such as the one in LXI, is often not enough. Mod-
ern oscilloscopes and digitisers provide the ability to take
billions of samples per second, in order to be able to cap-
ture events that last only for a few nanoseconds (or less);
in this context, even half a microsecond “of” in the trig-
ger moment could render the measurement unusable or just
impossible to correlate with measurements from other os-
cilloscopes on the same network.

To address this issue, CERN initiated in 2008 the White
Rabbit project, an efort to develop a fully deterministic
Ethernet-based network which improves on top of PTP by
providing sub-nanosecond accuracy. Furthermore, during
the irst run of the LHC (2009-2013), the operators were
witnessing transverse instabilities in the accelerator, which
led to the development and deployment of the LHC Insta-
bility Trigger (LIST) [14,15] distribution project during the
irst Long Shutdown (LS1). The LIST, which is still opera-
tional today, is a trigger distribution system based on WR.
It can receive a trigger from a “cloud” of devices and dis-
tribute it to all relevant devices to for example freeze their
acquisition bufers. This was used during the second run
of the LHC (2015-2018) to synchronise instruments across
the accelerator and help in the early detection of instability
onsets.

In 2018, CERN launched the WRTD project, a new ef-
fort which builds upon the experience gathered from LIST
and which aims to provide a generic event distribution sys-
tem, one that could be easily integrated in various types of
instruments and which could cater for a larger variety of ex-
periments. Furthermore, and in an efort to bring it closer
to existing standards (and eventually merge it with them),
WRTD is based on the LXI CS, EM and TD extensions and
it uses the same LXI event message format.

WRTD
In WRTD, Nodes receive “input” Events and distribute

them to other Nodes over WR in the form of network Mes-
sages that are used to transfer the timestamp of the input
Event. The receiving Nodes are programmed to execute
some “output” Event (action) upon reception of a particu-
lar Message, potentially with some ixed delay added to the
timestamp.

There are two main categories of WRTD applications:

1. A ”source” Node receives an input Event, adds a ixed
delay to its timestamp and distributes it to other Nodes.
As long as the ixed delay added is greater than the
upper-bound latency of the network (a fundamental
feature of WR itself), all other Nodes will receive the
Message before the programmed time and will exe-
cute simultaneously their action (thanks to the sub-

nanosecond synchronisation provided by WR). This is
the typical scenario for an event distribution system.

2. The receiving Nodes are recording devices (e.g. digi-
tisers), capable of storing data in a recording bufer.
The source Node transmits the Message, with or with-
out a ixed delay added to its timestamp. When one
of the destination Nodes receives the Message, it stops
recording and rolls-back its bufer to the moment spec-
iied by the timestamp in the received Message (pro-
vided that it has a large enough bufer to compensate
for the latency). Thus, all Nodes will deliver recorded
data from the moment in the past when the input Event
was originally received at the source Node. In partic-
ular, this is the way that the Distributed Oscilloscope
uses WRTD.

Of course, the above list is not exhaustive, there are many
other potential applications but they are usually permuta-
tions of one of the above scenarios.

Basic Concepts
This section introduces various basic concepts of WRTD

in alphabetical order. These concepts are fundamental to
understanding how WRTD works (and, by extension, how
the DO works).

Alarm An Alarm is simply a user-deined moment to
generate internally an input Event on a Node. Every Node
checks periodically if any of the declared (and enabled)
Alarms need to be triggered.

Event Events represent inputs and outputs of a WRTD
Node. Input Events received on a Node will result in an out-
put Event to be generated (assuming that the relevant Rule
exists to associate an input to an output). In that sense, in-
puts Events are the causes, while output Events are the ef-
fects.

Input Events can originate from a Local Channel, an in-
bound network Message, or an Alarm. Output Events can
be delivered to a Local Channel, or an outbound network
Message.

An Event is essentially a combination of an Event ID (the
“what”) and an Event timestamp (the “when”).

Local Channel Local Channels represent the connec-
tions of a Node to its environment. They can be either in-
puts or outputs.

A Local Channel input delivers input Events to the Node.
Typical examples include the external trigger input of a digi-
tiser, a Time to Digital Converter (TDC) or a TTL input
channel on a digital I/O board.

A Local Channel output transmits output Events from the
Node. Typical examples include a Fine Delay generator or
a TTL output channel on a digital I/O board.

All Local Channels use speciic -reserved- Event IDs.
For inputs these take the form LC-I<x>, while for outputs
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they take the form of LC-O<x>, where <x> is a number start-
ing from 1 (e.g. LC-I1). All other Event IDs are considered
to refer to network messages.

Message WRTD Event Messages (or, simply, Mes-
sages) follow the LXI Event Messaging format, as deined
in Rule 4.3 of the LXI Event Messaging Extended Function
speciication. To ensure compatibility and interoperability
with LXI devices, WRTD Event Messages are transmitted
using multicast UDP on address 224.0.23.159, port 5044
(Rule 3.3.1 of the speciication). Each Message is transmit-
ted as a single Ethernet frame, with a UDP header and a
payload as shown in Fig. 1.

Within a Message, the “Domain” and “Flag” LXI ields
(octets 3 and 36 respectively) are ixed to zero. Although
there are currently no “Data Fields” deined (octets 37 and
beyond), it should be highlighted that the LXI Event mes-
sage format supports an arbitrary number of data ields, in
the form of Type/Length/Value (TLV) triplets, which could
be used to provide additional functionality to WRTD in the
future.

Node WRTD is made of Nodes, connected to each
other over a WR network. Nodes receive input Events and
send output Events.

Every Node has Local Channel inputs and/or outputs al-
lowing it to interact with its environment. It also has a con-
nection to a WR network, allowing it to send and/or receive
Messages to other Nodes.

Rule In WRTD, the programming of Events, Messages
and associated actions is done by deining Rules. A Rule
simply declares a relationship between an input (cause) and
an output (efect) Event. A Rule can state that when a spe-
ciic Event is received a Message should be transmitted or,
that when a Message is received an output Event should be
generated.

An input Event to a Rule can be a Local Channel, a Mes-
sage or an Alarm. When an input Event is received by a
Node, WRTD tries to match it with any declared (and en-
abled) Rule. Once an input Event has been matched and all
delays have been applied to it, it is forwarded to the next pro-
cessing block that generates the preconigured output Event,
which is then delivered to a Local Channel or sent over the
network.

Reference Nodes
WRTD provides so-called “reference” Nodes for the

most common use-cases. These Nodes are based on open
hardware designs, which are also commercially available
from various manufacturers.

Every reference Node has a Field-Programmable Gate
Array (FPGA) with one or more RISC-V soft-CPUs and
a WR core [16]. The soft-CPUs (based on the Mock Tur-
tle project [17]) run embedded software (irmware) which
implements all the WRTD-related functions and connects
WRTD to the local application, while the WR core provides

the interface to send and receive Messages over the WR net-
work.

Of course, every reference Node additionally includes
application-speciic cores to handle everything else that is
not part of WRTD (e.g. a core to control an Analogue-to-
Digital Converter).

A irmware development framework (built on top of the
MT irmware framework) is also available. This framework,
which is used by the provided reference Nodes, can accel-
erate the development of irmware for new reference Nodes
and ensure full compatibility with WRTD.

Currently, the following reference Nodes are available:

1. A quad channel, 100 MHz, 14bit PCIe-based digitiser
capable of triggering via WRTD (SPEC150T-FMC-
ADC).

2. A pulse-in/pulse-out WRTD Node in VME format, for
generic trigger distribution applications (SVEC-TDC-
FD).

SPEC150T-FMC-ADC This is a WRTD Node based
on the Simple PCIe FMC Carrier (SPEC1) [18] and the
Fmc-Adc-100M-14b-4cha (FMC-ADC) [19] ditigiser. It
provides the possibility to generate WRTD Messages based
on trigger events of the FMC-ADC, as well as to trigger the
FMC-ADC from incoming WRTD Messages.

It should be noted that the 100 MHz sampling clock of
the FMC-ADC is not yet synchronised to WR. This means
that there can be up to one sample period (10 ns) misalign-
ment when correlating data from two SPEC150T-FMC-
ADC Nodes. This is a limitation of the current FMC-ADC
design, not of WRTD.

The architecture of the Node can be seen in Fig. 2. The
user application running on the host communicates with the
Node via the WRTD library for all WRTD-related aspects
and via the ADC library [20] for everything else. Inter-
nally, the Node is running one irmware application, respon-
sible for retrieving/delivering triggers from/to the FMC-
ADC and the WR network. Since the ADC library and the
irmware application access diferent and separate parts of
the FMC-ADC, there is no danger of accessing the same
resources simultaneously.

The Node exposes ive Local Channel inputs and one out-
put. Their mapping to ADC functions is shown in Table 1.
The forwarding delays introduced by the Node2 are sum-
marised in Table 2.
1 This Node does not use the standard SPEC, because the itted FPGA

(XC6SLX45T) is not large enough for the complete design. Instead it
uses the pin-compatible XC6SLX150T FPGA (the rest of the board is
exactly the same, only the FPGA chip is diferent). This special version
is available from the manufacturers of the SPEC board upon request.

2 The delays in Tables 2 and 3 are representative of real performance when
the Node is programmed with a single Rule. If more Rules are de-
clared, then the Node will need to perform more checks in every loop
and/or might be executing a Rule when another Event arrives. In any
case, WRTD provides the necessary diagnostics and statistics to calcu-
late worst-case delays in such scenarios.
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Figure 1: Contents of a WRTD Event Message.

Figure 2: SPEC150T-FMC-ADC reference WRTD Node.

Table 1: Mapping of SPEC150T-FMC-ADC Functions to
Local Channels.

Channel Function
LC-I1 ADC Channel #1 internal trigger
LC-I2 ADC Channel #2 internal trigger
LC-I3 ADC Channel #3 internal trigger
LC-I4 ADC Channel #4 internal trigger
LC-I5 ADC external trigger
LC-O1 ADC auxiliary trigger

Table 2: Forwarding Delays of the SPEC150T-FMC-ADC.

Direction Value
Trigger out to WR 12 μs
WR to trigger in 12 μs

SVEC-TDC-FD This is a WRTD Node based on the
Simple VME FMC Carrier (SVEC) [21], the FMC Time
to Digital Converter (FMC-TDC) [22] and the FMC Fine
Delay generator (FMC-FD) [23].

The basic principle of this Node is simple: it takes in
external pulses on its FMC-TDC inputs, timestamps them
using WR time and converts them to WRTD Messages, to
be sent over the WR network. Conversely, the Node also
receives WRTD Messages which are then used to generate
pulses at a predeined moment on one of the FMC-FD out-
puts. As such, it can be seen as a “pulse-to-message” and

“message-to-pulse” converter with applications in the ields
of pulse distribution, trigger synchronisation, etc.

Figure 3: SVEC-TDC-FD reference WRTD Node.

The architecture of the Node can be seen in Fig. 3. The
user application running on the host communicates with
the Node via the WRTD library. Internally, the Node is
running two irmware applications, one responsible for re-
trieving triggers from the FMC-TDC and delivering them to
the WR network and the other for retrieving triggers from
the WR network and delivering them to the FMC-FD. The
user application can also use the FMC-TDC and FMC-FD
libraries to ine tune the respective cores (e.g. to change the
pulse length on FMC-FD outputs). However, this should be
done with care, as it could lead to a race condition between
the user and irmware applications.

The Node exposes ive Local Channel inputs and four
outputs. The inputs are mapped to the ive channels of the
FMC-TDC, while the outputs are mapped to the four chan-
nels of the FMC-FD. The forwarding delays introduced by
the Node are summarised in Table 3.
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Table 3: Forwarding delays of the SVEC-TDC-FD.

Direction Value
Pulse in to WR 20 μs
WR to pulse out 40 μs

Provided Software
WRTD provides three options for accessing a Node via

software (in decreasing order of lexibility and complexity):

1. a C library.

2. a Python wrapper for the C library.

3. a command-line tool built using the Python wrapper.

C Library The WRTD C Library is the standard, most
lexible (but also complex) way of accessing a WRTD Node.
The library Application Programming Interface (API) mim-
ics that of an Interchangeable Virtual Instruments (IVI) [24]
driver, with a strong inluence from the IVI-3.2 “Inherent
Capabilities” [25] and IVI-3.15 “IviLxiSync” [26] specii-
cations.

struct wrtd_dev *wrtd;
uint32_t node_id = 1;
char error_description[256];
enum wrtd_status status;

status = wrtd_init(node_id, 0, NULL, &wrtd);

if (status != WRTD_SUCCESS) {
wrtd_get_error(wrtd, &status, 256, error_description);
fprintf(stderr, error_description);
return 1;

}

status = wrtd_add_rule(wrtd, "rule1");

status = wrtd_set_attr_string(wrtd, "rule1",
WRTD_ATTR_RULE_SOURCE, "LC-I2");

status = wrtd_set_attr_string(wrtd, "rule1",
WRTD_ATTR_RULE_DESTINATION, "NET0");

status = wrtd_set_attr_bool(wrtd, "rule1",
WRTD_ATTR_RULE_ENABLED, true);

Listing 1: Example of declaring a Rule using the C library.

Listing 1 shows an example of accessing a Node using
the C library and declaring a Rule. Please note that, for the
sake of brevity, the example omits error-checking after the
irst function call.

Python Wrapper The WRTD Python wrapper pro-
vides a thin wrapper around the C Library, using the Python
“ctypes” package. The wrapper is provided as a Python
package with a single class (PyWrtd) that encapsulates the
complete WRTD C Library.

The Python wrapper makes it easier to develop applica-
tions that make use of WRTD since it encapsulates all de-
vice initialisation and error handling within the provided

from PyWrtd import PyWrtd

wrtd = PyWrtd(1)
wrtd.add_rule('rule1')
wrtd.set_attr_string(

'rule1', PyWrtd.WRTD_ATTR_RULE_SOURCE, 'LC-I2')
wrtd.set_attr_string(

'rule1', PyWrtd.WRTD_ATTR_RULE_DESTINATION, 'NET0')
wrtd.set_attr_bool(

'rule1', PyWrtd.WRTD_ATTR_RULE_ENABLED, True)

Listing 2: Example of declaring a Rule using the Python
wrapper.

class. Listing 2 shows the same operations as in Listing 1,
being performed with the Python wrapper instead.

Command-line Tool WRTD provides a Python based
tool (wrtd-tool) for accessing a Node. The tool implements
several diferent operations on a Node. It supports most of
the functionality provided by the Python Wrapper.

$ wrtd-tool add-rule 1 rule1
$ wrtd-tool set-rule 1 rule1 LC-I2 NET0
$ wrtd-tool enable-rule 1 rule1

Listing 3: Example of declaring a Rule using the command-
line tool.

When the additional lexibility provided by the C and
Python APIs is not required, the command-line tool ofers
the easiest and briefest way of accessing a Node. Listing 3
shows the same operations as in Listings 1 and 2, being per-
formed with the command-line tool instead.

DISTRIBUTED OSCILLOSCOPE
The DO is built on top of WRTD as a set of Python mod-

ules. These include:

1. User applications

2. Server

3. Device applications

Figure 4: Inter-module communication in the DO.

Figure 4 shows the various communication channels be-
tween the three modules. Within a given network, there can
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be many User and Device applications, but only one Server.
Devices use Zeroconf to announce themselves to the Server.
All synchronous communication is done via Remote Pro-
cedure Calls (RPC), using a “request/response” messaging
scheme, while all other (asynchronous) communication, in-
cluding data publishing and notiications is performed using
a “publisher/subscriber” scheme. Both messaging schemes
are implemented with ZeroMQ.

User Applications
User applications are clients with the ability to control

the coniguration of devices (WRTD Nodes) and to collect,
post-process and -possibly- display the acquired data from
them.

Figure 5: DO GUI user application made with PyQt.

Currently, there are two User applications available: the
“GUI” and the “Testbench”. The irst is the main DO user
application, which resembles a standard benchtop oscillo-
scope. All graphical elements of the GUI are built using
PyQt. Figure 5 shows an impression of the GUI. The sec-
ond is used to test the Server and the Device applications,
as well as to perform diagnostics and calculate performance
statistics.

Server
The Server is a central unit responsible for managing

all the connections, preprocessing the data and providing
a common interface for connected applications. It acts as a
proxy between Device and User applications.

Device Applications
Device applications provide access to the underlying

hardware devices (WRTD Nodes).
There is currently one Device application available,

which works with the SPEC150T-FMC-ADC WRTD ref-
erence Node. It is built on top of the WRTD Python wrap-
per (for the WRTD-related operations on the Node, such as
adding/coniguring/enabling Rules) and ADC-LIB (for all
other aspects, such as coniguration of acquisition parame-
ters).

Demonstrator
Figure 6 shows the laboratory demonstrator that was built

in order to showcase the DO concept and measure its per-
formance.

Figure 6: The DO demonstrator.

The demonstrator uses two SPEC150T-FMC-ADC refer-
ence Nodes, installed on two slots of the same computer.
Analogue input channel #4 of each Node is connected to a
signal generator using matched-length coaxial cables. Fur-
thermore, the WR port of each Node is connected to a stan-
dard WR switch. In order to emulate a distributed acquisi-
tion setup, one Node is connected using a 50 m ibre, while
the other is connected using a 2.5 km roll of ibre.

The total delay introduced when distributing triggers over
this setup can be calculated as:

Δ���� = 2∗Δ�����+(�1+�2)∗Δ�� ����+Δ���� (1)

Where Δ����� is the delay introduced by the reference
Node (both introduce 12 μs), �1 and �2 are the lengths of
the two ibres (50 m and 2500 m), Δ�� ���� is the propaga-
tion delay for one meter of ibre (5 ns) and Δ���� is the
worst-case packet forwarding delay of a WR switch (10 μs).
Putting these numbers in Eq. (1), we calculate 46.75 μs of
total delay.

Given the fact the that sampling clock of the FMC-ADC
is 10 ns, that it has four channels and that it uses 2 bytes per
sample, the trigger-receiving Node needs to be able to “sac-
riice” up to 18 700 samples (or 37 400 bytes) of memory in
order to successfully roll back its bufer to the moment of
trigger on the other Node. This is not an issue at all for
the SPEC150T-FMC-ADC that is equipped with 256 MB
of memory.

RESULTS
A series of measurements were performed using the DO

demonstrator. The aim of the measurements was to evaluate
the accuracy and precision of data alignment between two
Nodes that receive exactly the same analogue signal.

For these measurements, a 1 kHz square-wave signal was
provided on ADC channel #4 of both Nodes of the demon-
strator, using two matched-length (both labelled as “8 ns”)
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coaxial cables from the signal generator. One of the Nodes
was chosen as the trigger source, conigured for internal pos-
itive edge triggering on channel #4 crossing the 0 V thresh-
old. The acquisition (same on both Nodes) was conigured
with 50% pre/post sampling and a duration that was shorter
than the period (1 ms) of the analogue signal. A measure-
ment consisted of 20000 acquisitions performed with this
setup.

As already mentioned, the sampling clock of the ADCs is
not locked to WR, therefore the expected precision is 20 ns
(equal to two periods of the sampling clock). Another fac-
tor to take into consideration is that the Nodes were run-
ning an early development version of the SPEC150T-FMC-
ADC reference design, which did not support retrieving and
applying the FMC-ADC calibration values. Therefore, the
two FMC-ADCs were running uncalibrated.

The accuracy of data alignment between the two Nodes
was calculated for each acquisition by detecting the zero-
crossing of each data set and taking the distance between
the two zero-crossing points. The zero-crossing was calcu-
lated by taking a linear function deined by the two adjacent
samples of the data set that show a change of sign (from neg-
ative to positive) and calculating the value for which this
function becomes zero.

The precision was measured from the standard deviation
(σ) of the Gaussian distribution itted to the measured accu-
racy. The resulting histogram of the measurement is shown
in Fig. 7. As it can be seen from the results, the accuracy
(μ) is 180 ps and the precision (6σ) is 20.1 ns.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
ns

0

200

400

600

800

1000
(μ=0.18, σ=3.35)

Figure 7: Histogram of data alignment measurement.

In order to verify that the lengths of the cables used to
deliver the signal to the two Nodes were indeed matched, a
second measurement was performed by exchanging the two
cables (and keeping everything else the same). The result-
ing histogram of the measurement is shown in Fig. 8.

As expected, the precision remains the same. However,
the fact that the mean value is diferent shows that the two
cables do not have exactly the same propagation delay. We
can calculate their signal propagation diference by subtract-

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
ns

0

200

400

600

800

1000
(μ=1.05, σ=3.34)

Figure 8: Histogram of data alignment measurement with
reversed signal cables.

ing the two mean values and dividing by two, to arrive to a
mismatch of 435 ps.

CONCLUSION
The Distributed Oscilloscope successfully demonstrates

the use of WRTD for creating a virtual oscilloscope appli-
cation, able to correlate signals across several kilometres of
distance. The generic API and open design of WRTD it-
self, as well as its reliance on existing industrial standards
and the availability of good documentation, provide a solid
base for building many other kinds of trigger distribution
systems with it.

In the future, it is foreseen to try to merge WRTD with the
IVI/LXI standards. Such a development would allow instru-
ments with an IVI driver (e.g. PXI, LXI instruments) and a
WR interface to exchange events with each other. It would
also enable the production of commercial WRTD-enabled
devices.
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