
CERN CONTROLS OPEN SOURCE MONITORING SYSTEM
F. Locci*, F. Ehm, L. Gallerani, J. Lauener, J. Palluel, R. Voirin

CERN, Geneva, Switzerland

Abstract
The CERN accelerator controls infrastructure spans sev-

eral thousands of computers and devices used for Acceler-
ator control and data acquisition. In 2009, a fully in-house,
CERN-specific solution was developed (DIAMON) to
monitor and diagnose the complete controls infrastructure.
The adoption of the solution by a large community of users,
followed by its rapid expansion, led to a final product that
became increasingly difficult to operate and maintain. This
was predominantly due to the multiplicity and redundancy
of services, centralized management of data acquisition
and visualization software, its complex configuration and
its intrinsic scalability limits. At the end of 2017, a com-
pletely new monitoring system for the beam controls infra-
structure was launched. The new "COSMOS" system was
developed with two main objectives in mind: firstly, de-
tecting instabilities and preventing breakdowns of the con-
trol system infrastructure. Secondly, providing users with
a more coherent and efficient solution for development of
their specific data monitoring agents and related dash-
boards. This paper describes the overall architecture of
COSMOS, focusing on the conceptual and technological
choices for the system.

INTRODUCTION
The CERN Accelerator Control System [1] relies on

many components and a substantial infrastructure, which
must be available 24 hours a day, 7 days a week. This hard-
ware and software infrastructure needs to be monitored in
order to anticipate or detect failures and fix them as quickly
as possible. The Controls Open-Source Monitoring System
(COSMOS) project was launched in 2017 to renovate the
existing in-house solution [2] [3], which was suffering
from its hyper-centralized model, the multiplicity of the so-
lution, service overlap and scalability issues.

THE CONTEXT
In monitoring, the term ‘host’ refers to a device with an

IP address (responsive to ping) while ‘service’ refers to any
application, resource or hardware component (network de-
vice, module, sensor, etc.) providing a particular function
on the host.

The accelerator control system has just under 7000 hosts
(Fig. 1), mainly Linux CentOS CERN 7 computers (the use
of Windows is declining in the domain of accelerator con-
trols) and specific Ethernet devices (BMCs1, PLCs2, etc.).
The number of Linux computers is constantly increasing,
by 5 to 8% per year, while disk space has increased by a
factor of 500 in a decade.

Figure 1: Main types of control system hosts.

OBJECTIVES AND SCOPE
Reviewing the existing system and evaluating major

products in the monitoring field (collectd, Icinga2, Zabbix,
Prometheus) helped us to define the main objectives of the
COSMOS project and laid the foundations for the future
solution.

Preliminary Study Recommendation
Recommendations emerging from the preliminary study

were the following:
 Align the new monitoring system with CERN IT

services (e.g. the central “DB on Demand” service)
and industry standards in order to allow us to focus
on our core business.

 Use de-facto standard technologies and open-source
software as far as possible.

 Propose a new paradigm where specific aspects of
the monitoring are delegated to experts who become
responsible for collecting their metrics, define alerts
and setup their own dashboards.

Scope of the COSMOS Monitoring System
When designing a monitoring system, it is important to

consider the origin and the nature of data we want to mon-
itor. We can distinguish at least two types of information
intended for users with different objectives:

 Functional monitoring to detect infrastructure re-
lated failures, to alert the system administration
team or equipment experts and to assist in taking
technical decisions.

 Business monitoring focused on operational data
and providing support for controlling the accelera-
tor.

* frank.locci@cern.ch
1 Baseboard Management Controller
2 Programmable Logic Controller

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA085

MOPHA085
404

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

Figure 2: Integration and interconnection of the software component.collectd: acquisition of OS Metrics.

Table 1: Selected Open-Source Software

Product Motivation
Collectd

(5.8.1)
MIT License, easy to install, file-based
configuration, modular layout, large
plugin collection, CERN support

Prometheus
(1.7.1)

Apache License 2.0, easy to install/run,
rich data model, functional query lan-
guage, powerful rule processing, graphing
and alerting, HTTP API

Icinga2
(2.10.4)

GPLv2, file-based configuration, ~75%
of needs covered, extensive features, col-
lectd support, scalability, availability,
multi-tenancy, large user community, sup-
port, complete documentation

InfluxDB
(1.6.3)

MIT License, write and query perfor-
mance, on-disk compression, scalability

Grafana
(5.4.2)

Apache License 2.0, easy to install, file-
based configuration, dashboard flexibil-
ity, data-sources support (Influx, Elastic
Search), large user community

Experience shows that it is very difficult to combine both
aspects and to provide simple and efficient tools that take
the different needs into account. Therefore, COSMOS is
exclusively dedicated to the functional monitoring of the
controls infrastructure.

We wanted to avoid the pitfall of a Unified Monitoring
Infrastructure (UMI) solution, which does not fit the size
and diversity of our infrastructure. As discussed later, it has
been possible to propose a perfectly customized and com-
pact solution, based on a limited number of targeted open-
source software (OSS) components, see Table 1 for details.

Finally, with a more modular approach, we wanted to
share development between teams and thus clarify the re-
sponsibilities of each stakeholder (system administrators,
application experts, operation, etc.).

THE SOLUTION
Overall Architecture

Figure 2 shows the COSMOS architecture. At its heart,
one finds an open-source product called Icinga2 [4]. Icinga
covers most of our needs out of the box and perfectly fits
the collaborative and distributed model that we need to
monitor our heterogeneous infrastructure (from the hard-
ware, software and human point of view).

Icinga2, which started as a fork of Nagios, introduces the
‘plugin’ concept, a standalone extension to the Icinga2
core. Each plugin instance (commonly called ‘check’) ex-
ecutes a specific logic and produces a health report of the
related component (see Table 2 for details). The result of
the check is made of a functional status report of the com-
ponent and optional additional metrics (“performance
data”) that are sent to the Icinga2 server. The server then
generates a notification (by email or SMS) according to the
user configuration, and sends status and performance data
to the IDO1 (MySQL) or time series (InfluxDB) database
as appropriate.

In parallel, COSMOS uses collectd [5] agents to gather
system metrics from hosts, related devices (disks, memory,
etc.) and the network. collectd makes this information
available over the network to the central server, where data
is stored into the InfluxDB database as well.

1 Icinga Data Output

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA085

Control System Infrastructure
MOPHA085

405

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Table 2: Common Host and Services Checks

Check Mode Source
basic connectivity (host
alive: ping, ssh)

active system

boot diagnostic (reboot
count., Eth. speed, etc.)

passive system, REST

Crate and BMC1 metrics
(fan speed, power sup.,
temp., batt., bus, led, etc.)

active IPMI

Timing network, specific
devices and sensors

active SNMP

Real-time fieldbus and
sub-network agents

passive REST (proxy)

Disk partition usage,
CPU load, std. and
EDAC2 memory, etc.

active collectd-
unixsock

PLC3 active JMX [6]
(proxy)

Process status (up/down)
and diagnostics (CPU,
memory, etc.)

passive systemd, sys-
tem, REST

Application status and
functional metrics

active JMX, CMX,
NGINX [7]

Whenever it is not possible to compute the status of a
service from a single Icinga2 check, or in order to detect
trends, COSMOS uses Prometheus as an intermediate
agent. Prometheus [8] then generates the service status us-
ing its functional expression language (see ‘Prometheus’
chapter below for details).

The central IDO database is used by expert tools such as
IcingaWeb, to establish, in real time, a complete diagnostic
of each component, to manage notifications and downtime,
and to provide detailed statistics and event histories.

Finally, data can be visualized and analyzed by expert
users thanks to a dedicated Grafana [9] instance.

An Open-Source Software Based Solution
In accelerator control, as in other fields, the network

size, the number and complexity of deployed equipment
and the rate of change are constantly increasing. It makes
monitoring a vital part of system administration activities.
At the same time fortunately, some extremely powerful,
open source monitoring tools, have appeared on the mar-
ket. By selecting and integrating several of these tools, we
have built a lightweight and efficient solution that best met
our objectives (Fig. 3).

collectd is the piece of software that we use to gather
operating system metrics on every host covered by COS-
MOS. This tool, dating back to 2005, still receives regular
commits and is released under the MIT License: this is a

very stable product that was successfully adopted before-
hand by CERN's IT department. We use both sides of col-
lectd’s client-server model. The client is a daemon running
on every host within the scope of accelerator controls,
whether diskless (front-end computers) or disk-based
(servers) and technical consoles). Every five minutes a pre-
defined set of metrics is collected through the daemon. The
typical amount of system-related metrics per host is be-
tween 60 and 90. Covered areas are – non-exhaustively –
CPU usage and statistics, RAM usage, disk status (with
S.M.A.R.T. attributes when applicable) and partition us-
age, as well as network measurements. Metrics are tailored
to the hardware that collectd is running on: for instance, we
automatically detect if extra partitions are present on the
system, or if SSDs of a particular brand are physically pre-
sent, in order to get relevant information about their depre-
ciation. Once collected locally on a host, metrics are sent
to an instance of collectd acting as a server and running on
the COSMOS server. This instance plays three roles:

 Transferring metrics to Icinga2 that will determine
whether measurements are within an acceptable
range.

 Pushing metrics to the Influx database, which is the
main source of data for Grafana, COSMOS’s graph-
ical visualization layer.

 Writing metrics into RRD files (Round-Robin data-
base), one for each metric. RRD files provide a low-
level data visualization alternative to Grafana,
mostly used as a fallback method by system admin-
istrators.

Figure 3: An OSS solution fitting each kind of metrics.

 Icinga2: Hosts and Services Checks
An Icinga2 check is a piece of code running on moni-

tored nodes or directly on the Icinga2 central server. In the

1 Baseboard Management Controller
2 Error Detection and Correction
3 Programmable Logic Controller

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA085

MOPHA085
406

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

latter case, it uses custom or dedicated protocols such IPMI
or SNMP to gather raw data from which it computes the
final status of the service, based on pre-configured thresh-
olds. A check can be as simple as a few lines of Bash, C or
Python. It can be active or passive. An active check is trig-
gered by the central server in polling mode and takes met-
rics from the nodes on a periodic basis. A passive check is
a standalone agent (usually running on the monitored node
or proxy), pushing data to the central server asynchro-
nously. With COSMOS, it is used in particular to reach
hosts deployed on Ethernet subnets like White-Rabbit,
CERN’s Control timing system. The Icinga2 REST API is
then used to send the result to the Icinga2 server. In the case
of systems for which it is critical to fork processes and al-
locate resources at any moment, passive checks are also
recommended. For the same reason, it is suggested to use
high-performance languages such as C or C++ for real-
time systems. For instance, acquisition of metrics for low-
level processes is performed with C++ Management Ex-
tension (CMX [10]) agents, as described later in this docu-
ment.

In addition to custom plugins developed by users, there
are over 3,000 third-party Nagios plugins [11] we can use
to easily enhance the monitoring system.

Prometheus: Application Metrics Acquisition
In many cases, application monitoring is based on obser-

vation over time, instead of a single indicator such as a
counter. Basic service checks turn into complex, stateful
agents. Instead of designing, implementing and maintain-
ing such agents, the idea is to use Prometheus and let it act
as an agent for Icinga2, using its embedded data storage
and powerful query language (Fig. 4).

The Prometheus language allows the definition of any
kind of rule, from a simple comparison of a single metric,
to a complex check against an aggregation of metrics over
time. This provides a lot of flexibility, whilst hiding the im-
plementation details from the upper layer. An Icinga2 ac-
tive check (prom-check) queries alerts and metrics from
Prometheus in order to expose them as performance data.
To ease aggregation and classification inside the higher
layer, a set of standard labels has been defined: hostname,
application and service. Besides the rules, which are man-
ually defined, the Prometheus configuration is automati-
cally derived from the Icinga2 configuration.

It is trivial to integrate Prometheus with Java applica-
tions through the standard JMX protocol [6]. However, for
native applications that are monitored through the C++
CMX interface [10], custom development was needed.
Such native applications run on soft real-time, diskless
computers called Front-Ends (FECs). As Prometheus per-
forms HTTP GET calls to scrap the raw metrics, it is nec-
essary to run a HTTP server directly on the FEC. Several
solutions were evaluated: Boost Beast, Apache, Lighttpd
and NGINX [7]. Due to its stable memory usage, small
footprint and low CPU usage, NGINX became the web-
server of choice. A native module was developed to read
CMX metrics from the shared memory and publish them
through HTTP via a heap buffer [12]. The module is real-

time compliant: everything is done in-memory, without
disk access.

Figure 4: Overview of the CMX monitoring stack.

Graphical User Interfaces
COSMOS presents monitoring data in various fashions.

Firstly, operators can still use the previous DIAMON con-
sole, refactored to use COSMOS components as data pro-
viders (or backends), without modifying the overall ap-
pearance and behaviour of the GUI. From custom tree
views, the user can quickly visualize failing systems and
restart them if necessary.

Secondly, Grafana (Fig. 5) is the main entry point for
visualizing infrastructure metrics. As collectd ingests data
and sends it to the Influx database, Grafana is used to query
and display results in graphical manner. Teams can create
their own dashboards, focusing on particular aspects of the
infrastructure. For instance, displaying a chart of fan
speeds for specific kinds of hardware or retrieving the
amount of RAM used by a process over time, in order to
spot potential memory leaks.

Figure 5: Visualization of server metrics in Grafana.

The final user interface is IcingaWeb (Fig. 6), the front-
end to Icinga2, which is very efficient at providing an over-
view of problems occurring in the infrastructure, as well as
a detailed history of events. In addition to its powerful
search tool and its integrated and customizable views, Ic-
ingaWeb offers a complete, multi-user interface to interact
with the monitoring process (events control, downtime pe-
riod, checks scheduler, etc.).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA085

Control System Infrastructure
MOPHA085

407

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: IcingaWeb showing host groups.

Checks Deployment and Configuration
COSMOS includes an automatic configuration tool, de-

veloped in Python, to generate Icinga2 configuration files
on a daily basis, from three different data sources:

 The controls configuration database (Oracle) de-
scribing each host, service and their dependencies;

 The list of hosts managed by Ansible and their pre-
defined variables;

 The user-specific data (alarms setup, check argu-
ments, etc.).

If we choose to delegate the development and mainte-
nance of checks to the users, it is also essential to provide
adequate means to store and deploy these pieces of soft-
ware. COSMOS uses GitLab for this purpose and in par-
ticular its CI/CD module to build (when necessary) and de-
ploy checks whenever the user makes changes in his code.

CONCLUSION AND FUTURE PLANS
Less than one year (1.25 man-years) has been required

to build the core part of COSMOS (Icinga2, collectd), cov-
ering 80% of the basic infrastructure monitoring. The sec-
ond phase of the project, which is ongoing, is dedicated to
the monitoring of processes, application metrics (Prome-
theus) and to the integration of specific diagnostics and
critical accelerator equipment (cryogenics, magnet protec-
tion, etc.). Today, a single Linux computer (2xCPU
2.2GHz/10 Cores, 128Gb RAM) is hosting the COSMOS
services (Icinga2, collectd and Grafana) and easily sup-
ports the load.

It performs on average 30,000 checks every 5 minutes
and generates a large number of metrics, as shown in Table
3.

System administrators and control experts quickly
adopted the COSMOS tools for diagnosis and daily
maintenance work. We must now provide the system with
a framework dedicated to a wider audience (equipment
groups, operation) and allow the configuration of custom
checks (setup, notification, etc.) in a more autonomous
way. The use of IcingaWeb may also be extended to all us-
ers. To do this we must guarantee that the system can sup-
port a large number of simultaneous connections, that it is
secure, provides proper backup services and the required
level of availability. We are considering implementing

some of the high-availability features of Icinga2 to im-
prove overall reliability (clustering, failover mechanism,
etc.)

Table 3: Metric Statistics

Item Source ~Number
OS metric types collectd 250
OS metric cardinality collectd 236,000
Check types Icinga2 80
Check cardinality Icinga2 29,600
Perf. data types Icinga2 2,500
Perf. data cardinality Icinga2 1,378,000

The experience gained so far shows that the new collab-
orative model is being well-received by users and works
perfectly. The project study also demonstrated that no sin-
gle monitoring tool on the market could cover 100% of our
needs. However, it is relatively easy to build a complete
system by integrating a small number of open-source soft-
ware tools, providing that the tools are properly selected
according to their functionality, complementarity and in-
terconnectivity.

REFERENCES
[1] Introduction to the BE-CO Control System, CERN, GVA,

Switzerland, 2019 edition, chapter 23.
[2] P. Charrue, M. Buttner, F. Ehm, and P. Jurcso, “Improving

Software Services Through Diagnostic and Monitoring Ca-
pabilities”, in Proc. ICALEPCS'15, Melbourne, Australia,
Oct. 2015, pp. 1070-1072. doi:10.18429/JACoW-
ICALEPCS2015-WEPGF155

[3] M. Buttner, P. Charrue, J. Lauener, and M. Sobczak, “Diag-
nostic and Monitoring CERN Accelerator Controls Infra-
structure: The DIAMON Project - First Deployment in Op-
eration”, in Proc. ICALEPCS'09, Kobe, Japan, Oct. 2009,
paper TUP019, pp. 128-130.

[4] Icinga2, https://icinga.com/products
[5] collectd, https://collectd.org
[6] JMX,

 https://en.wikipedia.org/wiki/
Java_Management_Extensions

[7] NGINX (doc), https://www.nginx.com
[8] Prometheus, https://prometheus.io
[9] Grafana, https://grafana.com

[10] F. Ehm, Y. Fischer, G. M. Gorgogianni, S. Jensen, and P.
Jurcso, “CMX - A Generic Solution to Expose Monitoring
Metrics in C and C++ Applications”, in Proc.
ICALEPCS'13, San Francisco, CA, USA, Oct. 2013, paper
THPPC014, pp. 1118-1121.

[11] Nagios,
https://www.nagios.org/projects/ nagios-plugins

[12] NGINX (git),
https://gitlab.cern.ch/smith/ nginx-cmx-module

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA085

MOPHA085
408

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

