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Abstract
Particle production from secondary proton-proton collisions, commonly referred to as pile-up,
impair the sensitivity of both new physics searches and precision measurements at large hadron
collider (LHC) experiments. We propose a novel algorithm, Puma, for modeling pile-up with the
help of deep neural networks based on sparse transformers. These attention mechanisms were
developed for natural language processing but have become popular in other applications. In a
realistic detector simulation, our method outperforms classical benchmark algorithms for pile-up
mitigation in key observables. It provides a perspective for mitigating the effects of pile-up in the
high luminosity era of the LHC, where up to 200 proton-proton collisions are expected to occur
simultaneously.

1. Introduction

The large hadron collider (LHC) at CERN Geneva, will remain the most powerful tool on Earth to produce
and study heavy elementary particles, at least for this decade. Further maximizing the potential of its
experiments, such as ATLAS and CMS, and thereby increasing the chances of discovering new physics in the
coming LHC runs, is of paramount importance. These runs will be characterized by an ever-increasing
instantaneous luminosity, i.e. by a larger average number of simultaneous proton-proton collisions. During
the final High Luminosity phase of the LHC (HL-LHC) starting in 2027, this number is expected to reach
200, which is almost an order of magnitude more than what was seen during Run 2 (2016–2018).

This poses an enormous challenge to the experiments, because their reconstruction algorithms have to
identify interesting signatures among a large number of signals coming from secondary collisions.
Reconstructed objects falsely attributed to the primary collision are called ‘pile-up’, and they can dramatically
impair the sensitivity of an analysis. Especially in the Run 3 and High-Luminosity scenarios, removing
pile-up contamination will become a primary objective. We present a method for identifying pile-up
particles with the help of deep neural networks based on sparse transformers adapted from the field of
natural language processing.

One example of a widely-used algorithm for rejecting pile-up particles is the charged-hadron subtraction
as used in the CMS particle-flow (PF) algorithm [1]. It removes charged particles whose tracks have not been
assigned to the primary vertex. As more sophisticated algorithms, PUPPI [2] and SoftKiller [3] aim at further
identifying the pile-up component present among neutral particles.

First studies on the performance of pile-up mitigation using image recognition techniques [4] to identify
pile-up contributions, and graph-based [5, 6] methods have focused on a subset of particles in the event
clustered into hadronic jets or did not consider detector resolution effects. In addition, the weights calculated
for each particle using the PUPPI algorithm are used as input features in these networks. Here, we present for
the first time a machine learning algorithm relying only on raw reconstructed information that outperforms
the classical benchmarks like PUPPI on event- and jet-level metrics, and in a realistic detector setting. This is
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a crucial step toward demonstrating the superiority of machine learning-based pile-up rejection on a global
event level at future detectors and scenarios like the HL-LHC.

The paper is organized as follows. Firstly, a description of the setup and of the datasets is provided that
we use for training and for performing the comparisons between the different pile-up mitigation algorithms.
We then give a detailed explanation of the implementation of PUMA. Third, we introduce the key metrics to
benchmark the performance of the algorithms and provide details on the algorithm training. Finally, we
quantify the performance of PUMA.

2. Setup

2.1. The Delphes simulation framework
The goal of DELPHES [7] is to allow the simulation of a multipurpose detector for phenomenological studies.
The simulation includes a track propagation system embedded in a magnetic field, electromagnetic (ECAL)
and hadron calorimeters (HCAL), and a muon identification system. Physics objects that can be used for
data analysis are then reconstructed from the simulated detector response. These include tracks and
calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy.

The DELPHES framework allows for a fast simulation of an approximated detector response for typical
LHC detectors using parameterized resolution and efficiency functions. The simulation includes a tracking
system within a magnetic field, ECAL and HCAL as well as a muon systems. High-level objects like isolated
electrons, particle jets or missing transverse energies are reconstructed using low level observables such as
tracks and energy deposits in the calorimeters. The calorimeter systems within DELPHES is finely segmented in
η and ϕ and it is assumed that ECAL and HCAL have the same granularity, i.e. each ECAL cell has a
corresponding cell in the HCAL. The geometrical center of each cell then defines the coordinate of the
calorimeter energy deposit.

The stable charged particles on generator level with a minimal transverse momentum (e.g.
pT > 100MeV) undergo the track reconstruction. The track reconstruction efficiency as well as the
resolution and scale is parameterized vs. pT, η and ϕ.

Particles on generator level that reach the calorimeter system leave the fractions fECAL and fHCAL in the
electromagnetic and HCAL cells, respectively. The relevant cells can then be group together in one
calorimeter tower. When several particles reach the same cells the total energy of one tower is simple the sum
over all particles, that leave energies either in the ECAL or HCAL. DELPHES assumes that all electrons and
photons leave their full energy on the ECAL system, i.e. fECAL = 1.0 and fHCAL = 0.0. Muons and neutrinos
are assumed to leave no energy at all in the calorimeter system. All stable hadrons are treated with fECAL = 0.0
and fHCAL = 1.0, with the exception of Kaons and Λ, where the values fECAL = 0.3 and fHCAL = 0.7 are used.

The resolutions of the electromagnetic and the HCAL are independently parameterized in dependence of
the particle kinematics, using a stochastic, a noise and a constant as parameters.

The CMS collaboration was one of the first that implemented a PF algorithm for the reconstruction and
measurement of finale state objects, in order to maximize the use of sub-detector measurements for the event
reconstruction. Since the full PF approach is rather complex, a simplified version is implemented within the
DELPHES framework, which results in two types of object collections: PF tracks and PF towers. Each tower is
described by the total energy deposited in the electromagnetic and the HCAL, EECAL and EHCAL, respectively.
In addition, the total energy deposit originating from charged particles in a given tower is stored in the
variables EECAL,trk and EHCAL,trk. It is important to note in this context, that DELPHES assumes that the
momentum of charged particles is always measured best by the tracking system. This allows to define the
energy flow of a tower by

Eef lowTower =max(0,∆ECAL)+max(0,∆HCAL),

where∆ECAL = EECAL − EECAL,trk and∆HCAL = EHCAL − EHCAL,trk. The PF algorithms then create a PF track
for each reconstructed track and a PF tower with the energy Eef lowTower if E

ef low
Tower > 0.

PF tracks describe therefore all charged particles with a good resolution. PF towers on the other hand,
contain the energy information of neutral particles and charged particles that have not been reconstructed by
the tracking system. In addition, also energy deposits due to the positive smearing of the calorimeters are
taken into account. A detailed description of the algorithms can be found in [7], where also several validation
studies are shown.

2.2. Collision datasets
To emulate the HL-LHC data taking situation, we generate Monte-Carlo simulations of LHC proton-proton
collisions at

√
s= 14 TeV using Pythia version 8.244 [8]. Pythia is used for both matrix-element generation
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and parton showering and hadronization, employing the parton shower tune 4 C [9], which also provides a
description of effects from multi-parton interaction and the underlying event. The stable generator-level
particles are subsequently passed through a model of the CMS detector built with Delphes version
3.4.3pre01, retaining the correspondence between reconstructed PF objects and the incident truth particles.
The layout of the detector roughly corresponds to the Phase-II upgrade conditions at CMS, including novel,
high-granularity forward detector components. The processes simulated are dileptonic t̄t production,
Z(→ νν̄)+jets production, vector boson fusion (VBF) production of a Higgs boson with subsequent H→ cc̄
or H→ dark matter decays, and soft-QCD production. For each of the studied SM processes, 200 thousand
events have been generated for training and evaluation. On average, 140 soft-QCD events are mixed with the
hard scattering event, sampled from a total of 50 million soft-QCD events. In the following, ‘PF candidate’
and ‘particle’ will be used interchangeably to refer to a PF object.

Very few simplifying assumptions are made in the simulation and reconstruction of the events: for stable,
charged particles (electrons, muons, charged hadrons), the vertex assignment is assumed to be perfect. No
underlying event is simulated. We note that apart from these assumptions, this study is based on a fast but
sophisticated detector simulation that realistically models particle reconstruction efficiencies and smearing
of track momenta and calorimeter tower energies.

2.3. Particle and event definitions
Each PF candidate is represented by a set of features: its Lorentz four-vector, the particle species, the electric
charge, the corresponding vertex (if available), and local cluster information (see section 3.1 for the method
to obtain event sub-clusters). An event is represented as a set of PF candidates, as well as the number of
reconstructed vertices. For each particle, we also compute the target quantity to be learned:

y=
EgenLV

EgenLV + EgenPU

, (1)

where EgenLV is the summed energy of the incident generated particles from the leading vertex (LV), i.e. from
the hard interaction, associated with the PF candidate. Similarly, EgenPU is the summed energy of associated
incident generated particles stemming from pile-up interactions. The quantity y is referred to as hard energy
fraction in the following.

3. Modeling pile-up with sparse transformers

We formulate the problem of pile-up identification as one of regressing the hard energy fraction of each
particle. That is, we define a model g(·;Θ) to minimize the loss L(·;Θ):

L({xi},{yi};Θ) =
∑
j

||g({xi};Θ)j − yj||22 , (2)

where xi is the feature vector of particle i in a given event, yi is the hard energy fraction of particle i,Θ
denotes free parameters of the model g, and g(· · ·)j is the prediction of the model for particle j. Note that this
prediction is conditioned on all particles in the event {xi}, but the loss is computed independently for each
particle.

This energy fraction regression task is distinct from previous ML approaches to the pile-up
problem [5, 6], which treat the problem as one of classification: a particle is uniquely identified as arising
from a hard or pile-up vertex. This definition is no longer valid when considering the realistic scenario of a
detector with finite spatial and energy resolutions. A measured PF candidate is frequently the result of several
particles depositing energy in the same detector component. Accordingly, we train our models to decompose
each detected particle into co-linear LV and PU components.

We parameterize g as a deep neural network PUMA: Pile-Up Mitigation using Attention. Attention was
first introduced in 2014 [10] for neural machine translation of natural languages, and further developed as
self-attending Transformer networks [11] for a multitude of natural language tasks.

The dynamics of particle decay and hadronization at the LHC share some conceptual similarities with
natural language problems: much information of particle dynamics can be described in a local picture (in
phase space), with some information requiring higher-order global abstraction (e.g. jet hadronization). This
is analogous to a natural language sentence, where most words are closely coupled to nearby words, but some
long-range dependencies do arise. Therefore, we hypothesize that a similar model parameterization may
work in both scenarios.
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Algorithm 1.Hierarchical particle clustering algorithm: wclust is the maximum cluster size, and k is the number of
clusters at each iteration. KMEANS is a k-means clustering function that computes clusters on a cylindrical surface

Function ITERATIVECLUSTER (C, wclust, k)→ clusters :
If |C|< wclust then
return {C} ;

else
{C1, . . . ,Ck}← KMEANS(k,C) ;
FC←{} ;
for i= 1, . . . ,k do

FC← FC
∪

ITERATIVECLUSTER(Ci,wclust,k) ;
return FC ;

At the core of PUMA lie several transformer layers [11]. The full model can be written as:

hembed. =MLPembed.(X)

henc. = TRANSFORMER(hembed.)

Ŷ=MLPdec.(henc.), (3)

where X= [x1, . . . ,xN]T is the particle feature matrix, MLP are multi-layer perceptrons, and TRANSFORMER is a
stack of Transformer layers.

In defining a model that uses full self-attention, a difficulty arises: the time and memory complexity of
self-attention scales quadratically with the cardinality of the input set. In a typical particle collision with 140
pile-up interactions, the number of particles, N, can reach ten thousand. This makes training the model with
reasonable batch sizes, even on large GPUs, prohibitively difficult.

To reduce the memory consumption of the transformer, we find a way to sparsify the self-attention
mechanism. While many variants of sparse attention exist [12–14], we use the Longformer [15]
implementation. Essentially, we construct a nearest-neighbors graph among the particles, such that the
non-zero elements of the adjacency matrix are a subset of a banded-diagonal matrix. By limiting the size of
this band, w, we ensure that the attention complexity scales asO(Nw)≪O(N2).

3.1. Hierarchical particle clustering and sparsification
First, we cluster particles in a hierarchical fashion on the surface of a cylinder parameterized by
(sin(ϕ),cos(ϕ),η). The result of ITERATIVECLUSTER({xi},wclust,k) (algorithm 1) is a set of clusters of particles, of
size wclust or smaller.

Once the clusters {C1, . . . ,Cnc} have been computed, we define a unique ordering. For each cluster Ci, we
compute three quantities:

pT(C) =
∑
j∈C

p j
T, η(C) =

∑
j∈C

p j
T · η j

pT(C)
, ϕ(C) =

∑
j∈C

p j
T ·ϕ j

pT(C)
. (4)

These represent, respectively, the total transverse momentum of the cluster, the pT-weighted pseudorapidity
of the cluster, and the pT-weighted azimuthal angle of the cluster. We define a permutation of the clusters π.
It is initialized as:

π(0) = argmaxipT(Ci). (5)

Then, for a> 0:

π(a) = argmini

{
∆R(Ci,Cπ(a−1))

∣∣∣ i ̸= π(b) ∀ b< a
}
, (6)

where∆R(x,y) =
√

(ηx − ηy)2 +(ϕx −ϕy)2 is the L2 metric in (η,ϕ) space. The results of this hierarchical
clustering and ordering are shown for an example event in figure 1.

The ordering of the clusters give a natural ordering of the particles, in which the particles are first ordered
according to the cluster they belong to, and within each cluster, by decreasing pT. The particles can then be
thought of as a graph with nc complete, mutually-disconnected subgraphs. Each particle is a vertex, and two
particles are connected by an edge if they belong two the same cluster. As a consequence of our particle
ordering, the adjacency matrix Aclust is block-diagonal, as illustrated in figure 2. Furthermore, our cluster
ordering means each block is adjacent to blocks arising from clusters that are proximal in (η,ϕ)-space. With
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Figure 1. Particle assignment to clusters (indicated by color) for a certain event after one iteration, after two iterations, and after
convergence. In all three figures, k= 4 and wclust = 10. In (c), clusters are colored based on their ordering (from dark to light),
and particle marker areas are proportional to particle pT.

< nPU >= 140, the number of reconstructed particles per event averages at about 6000, with some events
having up to 9000 particles. Therefore, the sequence of particles is zero-padded up to a length of 9000 if fewer
particles are reconstructed.

3.2. Banded attention
The clustering allows us to avoid attending over particles that are far away from the query particle. However,
if we were to only allow the attention mechanism to consider keys adjacent to the query in Aclust, the model
could not consider relationships between clusters. Instead, we use a banded-diagonal matrix A with
bandwidth w> wclust. Larger values of w allow stronger cross-cluster attention within a Transformer layer.
Figure 2 illustrates the relationship between wclust,Aclust and w,A. In practice, we find that values of w two to
four times larger than wclust allow for sufficient information flow between clusters. Attention band widths
smaller than w= 100 allows us to leverage the efficient attention kernels provided by the authors of [15]. For
widths larger than 100, we encounter memory limitations on our hardware. However, by stacking
Transformer layers, we are effectively still able to increase the receptive field, as the transformed feature
vectors after layer n carry information from particles n×w away from the query particle.

PUMA is implemented in Python using PyTorch [16] and uses elements of the Transformers [17] library.
The data processing, including ITERATIVECLUSTER, is implemented in C++ using Delphes and ROOT [18].

4. Model training and evaluation

4.1. Training procedure
The standard MSE loss (equation (2)) puts all particles on equal footing. However, in a high pile-up event,
we expect the vast majority of particles to be of extremely low-momentum, while the event dynamics are
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Figure 2. Figures (a) and (b): possible adjacency matrices for a 50-particle event, with wclust = 15 and 5, respectively. Figure (c):
the minimum banded-diagonal matrix required to cover the wclust = 5 adjacency matrix. Figure (d): a slightly wider
banded-diagonal matrix that allows for longer-range attention across clusters.

dominated by a handful of high-momentum particles. To bias PUMA toward more accurate modeling of
high-momentum particles, we modify the loss:

L({xi},{yi};Θ) =
∑
j

fj||g({xi};Θ)j − yj||22

fj =
pαT,j

maxk pαT,k
, (7)

where k is the index over the particles contained in the leading cluster and α⩾ 0 is a tunable hyperparameter.
We choose α= 2 for our studies.

As vertex identification for charged particles is essentially perfect, PUMA only needs to optimize the loss
function in equation (7) for neutral particles. This is equivalent to setting fj = 0 for charged particles. In
practice, we find doing so does not improve performance on neutral particle energy regression, nor other
downstream metrics. In what follows, the loss is computed over all particles.

The loss function in equation (7) is minimized stochastically using the ADAM optimizer [19]. We employ
batch sizes between 512 and 8192, distributed across four Nvidia Tesla V100 GPUs. To achieve the higher end
of this range, we accumulate gradients over a maximum of eight iterations before applying weight updates.
The learning rate is initialized to 10−3 and follows a cyclical schedule [20], with a period of four epochs and
decay factor of 0.97. All models are trained to convergence, which typically occurs afterO(105) steps.
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4.2. Evaluationmetrics
In addition to the key metric of the weighted mean square error, we evaluate the performance of pile-up
mitigation techniques using three other metrics: the transverse momentum imbalance, (pmiss

T ); the leading jet
pT; and the RMS of the transverse component of the hadronic recoil vector.

The vector sum of the pT of all produced particles must be zero because the initial state of a hadron
collision has no net momentum in the transverse plane. We calculate this as variable as:

p⃗T
miss

=−
∑

i∈particles

p⃗T,i. (8)

In events with undetectable particles (e.g. neutrinos), we expect to find pmiss
T ≡ |p⃗T

miss|> 0. Many crucial
Standard Model measurements, e.g. of the W mass, involve neutrinos and rely on an optimal pile-up
rejection, and several beyond-SM models predict other undetectable particles (e.g. dark matter, stable SUSY
particles, gravitons). Pile-up interactions are isotropically distributed in ϕ and have minimal pmiss

T which
causes an increase of the variance of reconstructed pmiss

T . Therefore, it is of great importance to assess the
impact of pile-up, and pile-up mitigation techniques, on the missing transverse momentum. We define three
per-event metrics from the momentum imbalance:

p̂miss
x − pmiss

x , p̂miss
y − pmiss

y , p̂miss
T − pmiss

T , (9)

where p refers to the true momentum imbalance of generated particles prior to detector effects and p̂ refers to
the estimated momentum imbalance of reconstructed particles after detector effects, PF reconstruction, and
pile-up mitigation.

As the LHC is a hadron collider, many events produce jets, i.e. bundles of collimated hadrons. In some
cases, the jet is incidental to the process being studied (e.g. production of a Z boson at high pT), while in
other cases it is a fundamental signature of the process (e.g. VBF production of a Higgs boson). Pile-up
interactions typically produce soft jets. However, even if the hard interaction has produced several hard jets,
particles from the soft pile-up jets can affect the reconstruction of the hardest jets. Therefore, we also consider
misreconstruction in the mass of the dijet system in the VBF Higgs production mode as another metric:

m̂VBF
jj −mVBF

jj . (10)

We do not expect any of these metrics to reach the ideal value of zero, even with perfect pile-up
regression, because p̂ includes the effects of detector resolution and PF reconstruction. Some previous work
has neglected these effects, probably to isolate the impact of pile-up.

Finally, the measured hadronic recoil, U⃗, in a Z+jets event can be decomposed in a parallel, U||, and a
perpendicular, U⊥, component with respect to the true vector boson transverse momentum, pZT, where an
ideal measurement yields pZT +U|| = 0 and U⊥ = 0. The RMS error of the U⊥ distribution is typically taken
as a measure of the hadronic recoil resolution. However, this definition has the disadvantage that any
rescaling of the measured hadronic recoil components by some factor α also changes the resolution.

U ′
⊥ = α ·U⊥, U ′

|| = α ·U||. (11)

The width of the rescaled U ′
⊥ distribution will be smaller for α< 1, however no real gain in a physics

measurement has been achieved, because an additional bias in pZT +U|| is introduced and the sensitivity of
U|| on pZT decreases. In order to ensure a fair comparison between the different methods, the factors αi in
equation (11) for each bin of pZT have been chosen such that the average bias< pZT +U|| > in a given bin of pZT
is the same for all methods. The figure of merit is then the RMS error of the resulting U ′

⊥ distribution.
We define our gold standards as the event descriptions achievable assuming perfect pile-up regression

but imperfect particle reconstruction. That is, we consider four scenarios:

• CHS: charged-hadron subtraction: only consider charged particles if they are associated with the primary
vertex; leave neutral particles unscaled

• Puppi: scale each particle’s 4-vector by the pile-up likelihood wpuppi

• PUMA: scale each particle’s 4-vector by the estimated hard energy fraction ŷ
• Gold standard: compare to a sample generated with nPU = 0.
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Table 1. Our choice of PUMA hyperparameters.

Parameter Value

Embedding size 64
Hidden layer size 64
Number of attention heads 4
Attention band width 15
Number of transformers 12

Figure 3. Left: PUMA pile-up identification performance is not strongly sensitive to the attention band width, having fixed the
cluster size at wclust = 10. The blue points show the average loss on t̄t events, using the default PUMA model trained on t̄t events.
The light red points show the generalization of the default training to an entirely different process, VBF H(cc̄). Note that the
difference in the absolute values of the two curves is not meaningful: the loss is dependent on a number of process-specific factors,
like particle pT, η, charge, etc. The purpose of this figure is to demonstrate that in both processes, the loss is not strongly a
function of w. The dark red points show the optimal result for VBF H(cc̄), i.e. when PUMA is trained on this process instead of t̄t.
The increase in performance for this configuration is minimal considering the large improvement over PUPPI that is present for
all PUMA scenarios. Right: if the PF candidate sequence is ordered by pT, only very large attention band widths can recover the
performance of ITERATIVECLUSTER with an attention band width of 10.

5. Results

5.1. Model hyperparameters
In this section we describe the final choice of model hyperparameters selected. The cluster size used in
ITERATIVECLUSTER is set to wclust = 10. The remainder of the hyperparameters are described in table 1. The
model has 127 074 trainable parameters.

Of particular interest is the attention band width, as this is chosen to be small to limit the memory
footprint of the model. As shown in figure 3, it turns out PUMA is robust across a range of attention widths.
This holds true both for the process PUMA has been trained on, as well as for the inference for a different
physics process, namely Higgs boson production with subsequent decays of the Higgs boson to charm
quarks. We hypothesize this is due to the optimal cluster ordering, describing pile-up primarily as a local
problem; additionally, by stacking many Transformer layers and thereby increasing the receptive field, we are
sensitive to residual long-range relations between pile-up particles even with small attention band widths. As
noted in section 3.2, we do not explore w> 100 due to computational constraints.

For inference, we consequently choose the model trained for 300 epochs with an attention band width
of 15.

5.2. Physics performance
In terms of the key metrics introduced in section 4.2, we find that PUMA outperforms PUPPI across the
board. Figures 4(a) and (b) show the difference between estimated pmiss

T and true pmiss
T for the same process

that PUMA was trained on, i.e. dileptonic t̄t production. A sample that is statistically independent from the
training sample has been used for inference. Note that the gold standard (nPU = 0) does not have perfect
reconstruction, due to finite detector and PF resolution. An absolute improvement in the pmiss

T resolution,
computed as the variance of the respective distribution, of about 20% is observed compared to PUPPI.
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Figure 4. Resolutions in pmiss
T for top quark pair production with leptonic W boson decays in (a) and (b) are significantly

improved for PUMA compared to other pile-up mitigation algorithms like CHS or PUPPI. Figures (c) and (d) show the resolution
in pmiss

T in Z(νν)+jets events, i.e. for a different physics process from what PUMA was trained on. Figures (e) and (f) show the
resolution in pmiss

T and, respectively, dijet mass in VBF Higgs production events, with the Higgs boson decaying to invisible dark
matter particles. The parameter δ is estimated for each distribution and consists of the mean and the variance, reflecting the
resolution in the estimation of the respective quantity.

Alternatively, this can be characterized as PUMA bridging half of the gap between PUPPI and the theoretical
minimum gold standard.

This demonstrates for the first time that a machine learning algorithm can mitigate pile-up effects more
effectively than the currently best rule-based algorithm (PUPPI) at the event level, with a realistic detector
simulation, and without actually using the scores of traditional algorithms like PUPPI as input features.

9
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Figure 5. The RMS of the perpendicular hadronic recoil component for dileptonic top quark pair production and Z+jets

production, as a function of pmiss,gen
T and, respectively, the generated Z boson pT. The recoil is scaled to have unity response.

Figure 6. Left: comparison between two PUMA algorithms and PUPPI. An attention band width of 15 was used for both PUMA

models; the PF candidate sequence is either ordered by pT or according to ITERATIVECLUSTER, which gives the best performance.
Right: using the PUPPI weight per particle as input in addition to the variables listed in table 2 does not result in sizable
improvement over the default PUMA. In both figures, the parameter δ is estimated for each distribution and consists of the mean
and the variance, reflecting the resolution in the estimation of the respective quantity.

The same improvement is achieved for a different physics process in figures 4(c) and (d), where the
model was applied on a sample of Z(νν)+jets events. Finally, as can be seen from figures 4(e) and (f), the
dijet mass and pmiss

T for VBF Higgs production events with invisible decays of the Higgs boson—an essential
search channel when looking for dark matter at the LHC—likewise demonstrate an increase in resolution
compared to PUPPI.

The RMS error of the response-corrected U⊥ distributions in t̄t production and Z+jets production is
shown in figure 5, where a clear improvement over PUPPI is evident across the entire range of hadronic
recoil. By eliminating virtually all contributions from pile-up in the case of Z+jets, we obtain the same
resolution as observed in the gold standard sample.

Finally, figure 6 demonstrates that the particle grouping found by ITERATIVECLUSTER is necessary to
achieve the observed performance. We compare to a version of PUMA trained using pT-ordered particles.
While momentum ordering does still lead to an improvement over PUPPI, this improvement is only half of
what is observed with our optimal PUMA. This demonstrates that pile-up is to first order a local problem,
where the particles in the vicinity of the query particle contain the most information about its vertex of
origin. It also shows that attention mechanisms combined with ITERATIVECLUSTER are optimally suited to
exploit this information. The marginal improvement shown in the right panel of figure 6 when using the
PUPPI weight per particle as input feature in addition to the ones listed in table 2 suggests that PUMA

manages to capture the information contained in PUPPI and further improves on it.
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Table 2. Variables used as input to the network. While they are attributes of each particle, they resemble three categories of different
locality: variables corresponding to properties of the individual particle (pT, η, ϕ, E, particle ID, vertex ID); variables characterizing the
cluster the particle is in (cluster ID, cluster R, cluster pT); an event-wide variable (NPV).

pT particle transverse momentum
η particle pseudorapidity
ϕ particle azimuthal angle
E particle energy
particle ID particle ID
vertex ID vertex of particle,−1 if neutral
cluster ID index of cluster containing particle
cluster∆R max. pairwise distance∆R=

√
∆η2 +∆ϕ2 between particles found in cluster

cluster pchT scalar sum of pT’s of all charged LV particles in cluster containing the particle
cluster pneutT scalar sum of pT’s of all neutral particles in cluster containing the particle
NPV number of reconstructed vertices in the event

The observed improvement in the resolutions in pmiss
T for a variety of processes, which are crucial for SM

precision measurements and essential backgrounds in many searches for BSM physics, would directly
translate to a more powerful analysis of a plethora of signatures expected in LHC collisions, especially toward
the HL-LHC.

6. Summary

We have presented a highly effective pile-up mitigation algorithm PUMA based on sparse self-attention. This
method is the first machine learning approach relying only on raw reconstructed observables to demonstrate
superior performance in a realistic detector scenario over current state-of-the-art, rule-based pile-up
mitigation techniques. This holds true for both event-level and particle-level quantities. As pile-up effects
will continue to worsen as the LHC moves to increasing luminosity, this is an important step toward showing
that statistically-learned algorithms like sparse transformers can be very useful at the HL-LHC and beyond.
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