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Abstract 
The ALICE Experiment has been designed to study the 

physics of strongly interacting matter with heavy-ion 
collisions at the CERN LHC. A major upgrade of the 
detector and computing model (O2, Offline-Online) is 
currently ongoing. The ALICE O2 farm will consist of 
almost 1000 nodes enabled to readout and process on-the-
fly about 27 Tb/s of raw data. 

To increase the efficiency of computing farm operations 
a general-purpose near real-time monitoring system has 
been developed: it lays on features like high-performance, 
high-availability, modularity, and open source. The core 
component (Apache Kafka) ensures high throughput, data 
pipelines, and fault-tolerant services. Additional 
monitoring functionality is based on Telegraf as metric 
collector, Apache Spark for complex aggregation, 
InfluxDB as time-series database, and Grafana as 
visualization tool. 

A logging service based on Elasticsearch stack is also 
included. The designed system handles metrics coming 
from operating system, network, custom hardware, and in-
house software. A prototype version is currently running at 
CERN and has been also successfully deployed by the Re-
CaS Datacenter at INFN Bari for both monitoring and log-
ging. 

INTRODUCTION 
The ALICE Experiment 

ALICE (A Large Ion Collider Experiment) [1] is a de-
tector designed to study the physics of strongly interacting 
matter (the Quark–Gluon Plasma), produced in heavy-ion 
collisions at the CERN Large Hadron Collider (LHC). AL-
ICE consists of a central barrel and a forward muon spec-
trometer, allowing for a comprehensive study of hadrons, 
electrons, muons and photons produced in the collisions of 
heavy ions. The ALICE collaboration also has an ambitious 
physics program for proton–proton and proton–ion colli-
sions. After the successful Run 1 (2010-2013) and Run 2 
(2015-2018) data taking periods, the LHC entered into a 
consolidation phase (Long Shutdown 2) and ALICE started 
its upgrade to fully exploit the increase in luminosity ex-
pected in Run 3. The upgrade foresees a complete replace-
ment of the computing systems (Data Acquisition, High-
Level Trigger and Offline) by a single, common O2 
(Online-Offline) system. 

The ALICE O2 System 
The ALICE O2 computing system [2] will allow the re-

cording of Pb–Pb collisions at a 50 kHz interaction rate.  

Some detectors will be read out continuously, without 
physics triggers. Instead of rejecting events the O2 system 
will compress the data using online calibration and partial 
reconstruction. The first part of this process will be done in 
dedicated FPGA cards that receive the raw data from the 
detectors. The cards will perform baseline correction, zero 
suppression, cluster finding and inject the data into the 
memory of the FLP (First Level Processors) to create a sub-
timeframe. Then, the data will be distributed over EPNs 
(Event Processing Node) for aggregation and additional 
compression. The O2 facility will consist of 200 FLPs and 
750 EPNs. The O2 farm will receive data from the detec-
tors at 27 Tb/s, which after FLP and EPN processing will 
be reduced to 720 Gb/s. 

MONITORING SYSTEM OBJECTIVES 
The Monitoring subsystem is part of O2 and provides 

comprehensive functionality in metric collection, routing, 
processing, storage, visualization and alarming as shown in 
Fig. 1. 

 
Figure 1: Functional architecture of the system. 

Three classes of metrics (application, process and sys-
tem/infrastructure) are collected and pushed to the Collect-
ing and Routing backend. Metrics requiring processing are 
forwarded to the Processing component that injects back 
the processed values. Then, all the values are written into 
permanent storage. From that point they can be browsed 
and visualized in the historical record dashboard. Selected 
metrics are published for alarming and real-time visualiza-
tion. 

System and Infrastructure Monitoring 
The System monitoring provides probes to various oper-

ating system metrics, for example: 
• CPU 
• Memory 
• Network 
• Storage 
• Hardware status  ____________________________________________ 
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It can also query devices such as network switches, rout-
ers and power supplies via standardized or generally avail-
able protocols (SNMP, IPMI) to obtain their current status. 
System monitoring should be compatible with the CERN 
CentOS 7 and support other UNIX based systems on a best 
effort basis. 

Process Monitoring 
The Process monitoring collects performance metrics of 

each O2 process such as: 
• CPU usage. 
• Memory usage. 
• Bytes sent and received per network interface. 
• Context switches count. 
• Open file descriptors count. 
It is implemented via a library linked to the process. 

Application Metric Collection 
The Application metric collection provides an entry 

point from O2 processes to the Monitoring subsystem. It 
forwards user defined metrics to the processing backend 
via connection or connectionless transport protocols. 

Collecting and Routing 
This component collects all monitoring data coming 

from all sources and forwards them toward selected back-
ends like storage, real-time dashboard, alarming or to the 
Processing component. 

Processing 
The Processing correlates and manipulates metrics com-

ing from different origins. It may occur at any step of the 
monitoring chain, including the central collector if correla-
tions between widely different metrics are needed. Pro-
cessing is the only component that reads data from and 
writes to the Collecting and Routing component. The pro-
cessing task types are: 

• Data suppression (e.g. for link status, only store tran-
sitions on/off and off/on). 

• Data enrichment (e.g. add tags). 
• Data aggregation (e.g. cumulative metric for all FLPs 

of a given detector). 
• Data correlation (e.g. detect abnormal situations). 

Storage 
The Storage receives and writes metrics into a historical 

record. It must support large input metric rates. It accepts 
queries to retrieve stored metrics. It also provides streams 
of messages administration tools to manage its internal 
configuration. Given that the O2 Monitoring subsystem 
will receive gigabytes of metrics daily, storage needs to 
support archiving and downsampling – aggregating met-
rics in time to reduce their overall size. 

Visualization 
The Visualization dashboards display metrics in the form 

of plots, gauges, bars and data tables. They can provide 
views for different purposes: 

• Near-real-time – for shift crews, providing a summary 
view of the ongoing ALICE operations; low latency is 
of extreme importance. 

• Historical record – for experts, allowing for drill down 
and detailed views. 

Dashboards can easily be accessed on various operating 
systems and outside of the ALICE Point 2. 

Alarming 
The Alarming scans metrics passing through the moni-

toring system and detects abnormal situations: thresholds 
exceeded, value not present or more advanced detector 
and/or experiment specific logic. Two different types of 
alarming implementations are possible: 

• Late stage alarming – based on historical records by 
querying the storage. 

• Online alarming – scanning metrics directly during 
processing. 

REQUIREMENTS 
The list of requirements regarding the monitoring sub-

system has been established from the information available 
in the O2 Technical Design Report [2]. Each solution must 
meet the following mandatory requirements: 

• Compatible with the O2 reference operating system 
(currently CERN CentOS 7). 

• Well documented. 
• Actively maintained and supported by developers. 
• Run in isolation when external services and/or connec-

tion to outside of ALICE are not available. 
• Capable of handling 600 kHz input metric rate. 
• Scalable to >> 600 kHz if necessary. 
• Handle at least 1000 sources. 
• Introduce latency no higher than 500 ms up to the pro-

cessing layer, and 1000 ms to the visualization layer. 
• Impose low storage size per measurement. 
• Aligned with functional architecture specified in 

MONITORING SYSTEM OBJECTIVES section. 
In addition, some optional requirements may positively 

influence the final rating: 
• Supported by CERN or used in one of the other exper-

iments/departments. 
• Self-recovery in case of connectivity issues. 

ARCHITECTURE 
The solution aims at fulfilling the requirements specified 

in the REQUIREMENTS section by using a set of open 
source tools in a modular architecture. Such an approach 
enables the possibility of replacing one or more of the se-
lected components in case alternative options provide im-
proved performance or additional functionalities. 

Metric Collection relies on two components: Telegraf [3] 
(which replaces initially selected CollectD [4] as it intro-
duces strings support) and a custom C++ monitoring li-
brary [5] providing convenient interface in order to be used 
within different parts of O2 system. Telegraf ships a large 
set of plugins able to collect heterogeneous metrics from 
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the hardware and operating system (CPU, memory, net-
work, SNMP and IPMI). It outputs metrics in a compact 
format called InfluxDB Line Protocol [6]. This protocol 
uses labels (aka tags) to better identify carried values. As 
Telegraf covers the system and infrastructure the O2 mon-
itoring library reports process performance metrics and 
passes user-generated values to a selected backend. It has 
been already integrated in multiple parts of the O2 software 
[7]: Data Processing Layer (DPL), Quality Control and 
Readout. 

Initially, a large number of monitoring data producers 
was foreseen (as each of the 100k processes expected in O2 
at the time of the TDR would have created a monitoring 
channel over the library) and thus the Collecting and Rout-
ing component was supposed to manage a large number of 
connections. This number was reduced by having Telegraf, 
as a local metric collector on each node, gathering the val-
ues from all monitoring library instances over a Unix 
socket. This approach decreases the number of connections 
from 100k to about 1000. 

In the first version, Collecting and Routing was covered 
by Apache Flume [8] but, as it does not provide fault-toler-
ance and scalability, it was decided to replace it with 
Apache Kafka [9]. Since this new solution includes a mod-
ule (Kafka Streams [10]) that could be easily used as pro-
cessing component, it was decided to remove Apache 
Spark [11] from the initial stack. Most of the Kafka features 
(e.g. scalability, fault-tolerance and data pipelines) are ac-
complished thanks to the concept of topic: a stream of mes-
sages sharded into partitions. These partitions are repli-
cated and distributed for high availability into Kafka serv-
ers (aka brokers). Scalability is achieved by partition con-
figuration, increasing the topic partitions leads to higher 
throughput but at the expense of increased latency [12]. 
The fault-tolerance is controlled by a replication factor: the 
higher the replication factor is the more broker failures can 
be tolerated. Increasing the replication factor leads to sig-
nificantly higher I/O usage, therefore it’s crucial to esti-
mate the optimal partition and replication factor value that 
fit the target performance. Some Kafka features like pull-
based consumers, writing all data to the disks and complex 
protocol don’t fit our use-case but, as described in the next 
section, this will not impact on the final system perfor-
mance. Kafka uses Apache Zookeeper [13] to manage bro-
kers, topics and partitions dynamically and with high reli-
ability. 

Processing tasks described in the MONITORING SYS-
TEM OBJECTIVES have been implemented using Kafka 
Streams that inherits scalability and fault-tolerance fea-
tures from Kafka. Average, sum, minimum and maximum 
are the currently available aggregation functions. 

Since all monitoring data can be classified as time-series, 
InfluxDB [14], a time-series database, has been selected as 
storage. It features high performing writing, low disk oc-
cupancy and an optimised querying. The InfluxDB engine 
supports Retention Policy and downsampling via Continu-
ous Queries to limit disk usage. A custom InfluxDB Kafka 
consumer has been implemented to send the monitoring 
data from Kafka to the database over UDP. 

Grafana [15] has been chosen as the data visualisation 
tool. It supports both real-time and historical-record dash-
boards. It can also generate alarms based on values coming 
from the database and forward notifications to outside sys-
tems. 

A dedicated notification service has been created in or-
der to handle the alarm notifications from Grafana and 
those generated in real-time during the processing. The ser-
vice receives notifications either as HTTP requests or over 
Kafka protocol and passes them to email and Mattermost 
channels. Figure 2 shows the architecture of the described 
system. 

 
Figure 2: Architecture of the monitoring system. 

SYSTEM PERFORMANCE TESTS 
Test Description 

The test aims to measure to maximum performance of 
the system, find bottlenecks when possible and compare 
them with requirements. 

The first test verifies Kafka’s performance and analyzes 
bottleneck, especially: 

• Disk writes 
• Number of connections between brokers and produc-

ers. 
• Writing metrics from consumers to InfluxDB. 
Then the following tests measure: 
• Latency and percentage of lost messages at 600kHz 

metrics coming from 1000 producers. 
• Performance of aggregation task. 
• Ability to manage a broker failure. 

Testbed Description 
The testbed is composed of: 
• 3-Kafka broker machines: 

o 128 GB RAM. 
o 25 Gigabit Ethernet. 
o 100 MB/s Disk I/O (single HDD disk). 
o 32 CPU cores. 

• 1 InfluxDB server: 
o 128 GB RAM. 
o 25 Gigabit Ethernet. 
o 600 MB/s Disk I/O (single SSD disk). 
o 32 CPU cores. 

• And the remaining machines with commodity server 
hardware and 1 Gbps connection: 

o 1 machine for Zookeeper service. 
o 3 machines as consumers (writing data from 

Kafka to InfluxDB). 
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o 5 machines as producers (writing data to 
Kafka). 
 

As atomic monitoring data a message with a 100 bytes 
length has been composed since it represents the worst case 
of a single value per message with three tags. Figure 3 
shows the architecture used for the benchmarks. 

 
Figure 3: Architecture used for benchmarks. 

The number of topic partitions is 6 (2 partitions per bro-
ker). Besides, the topic replication factor is 2 which allows 
to tolerate a single broker failure at the cost of doubling the 
network and disk I/O. 

Test Procedure 
The test procedure is semi-automatized thus allowing for 

a test to be quickly repeated in any of the configurations. 
The benchmark is based on the O2 Monitoring library and 
can be deployed and controlled via Ansible [16]. Kafka sta-
tistics are exposed using Jolokia [17] and collected over 
HTTP using Telegraf. Latency was measured by passing a 
metric through the system and inserting a timestamp at 
each step. A custom script extracts statistical information 
from these values. Clock synchronization is handled with 
Network Time Protocol (NTP) daemon [18]: tests demon-
strated sub-millisecond clock mismatch among machines 
which is acceptable for the goal of this test. 

Max Input Metric Rate vs. Writes on Disks 
The test was executed using a single disk per broker. 

1000 producer instances (Monitoring Library over librd-
kafka [19) were used. Results are promising as the meas-
ured maximum input metric rate was 1.5 M msg/s and 
150MB/s in total or 500k msg/s and 50MB/s per broker. 
Considering the replication factor of 2, the actual write 
speeds on disk was 100 MB/s. In this case, the disk is the 
bottleneck, but the measured maximum input metric rate 
was significantly higher than the 600k kHz required. A 
higher maximum input rate could be obtained moving to 
higher I/O disks, adding further disks or brokers. 

Max Number of Connections vs. Complex  
Protocol 

This test measures the impact of large numbers of estab-
lished TCP connections between producers and brokers by 
increasing the number of producer instances until the limit 
is reached. The measured max number of TCP connections 

is above than 50k for the whole cluster. Using a 6-partition 
topic, each producer is connected to the 3 brokers with 4 
TCP connections. This means the maximum number of 
producers that can be managed by 3 Kafka brokers is 
around 12k, compared to 1000 in the requirement. 

Maximum Writing Rate in InfluxDB 
The test aims to measure the maximum writing rate into 

InfluxDB, which depends on the database itself but also on 
Kafka consumer configuration. A consumer is a custom 
component that retrieves metrics from brokers and passes 
them over UDP to the InfluxDB instance. The UDP proto-
col has been used (instead of default HTTP) as it is more 
performant. Table 1 shows the receiving rate as a function 
of number of consumer instances and the number of UDP 
ports. 
Table 1: InfluxDB Writing Rate in ksample/s as a Function 
of Number of Consumer and Number of Ports 

#Ports 1 consumer 2 consumers 3 consumers 

1 220 380 375 

2 310 440 540 

3 290 510 630 

4 284 520 760 

5 270 575 730 

6 276 560 750 

A single InfluxDB instance can store all 600 kHz metric 
rate. The maximum writing rate of a single consumer in-
stance is around 250-300 kHz, so 3 instances could cover 
the requirement. Although for fault-tolerant purpose it is 
recommended to have 1 spare instance as in case of failure 
2 instances will not be able to cope with the load. The num-
ber of 6 consumers might be an optimal solution since there 
are 6 partitions in use. 

Aggregation Task Performance 
The aggregation tasks are custom components relying on 

Kafka Streams library. Four aggregation functions have 
been implemented: average, sum, minimum and maxi-
mum. The components compute the aggregated value over 
selected metrics and over a configurable time window. Re-
sults are written into a dedicated topic using InfluxDB line 
protocol. The test aims to measure the maximum rate of 
each processing function. The measured value was nearly 
the same for all the functions and corresponds to 250k met-
rics/s. In the case a higher value is required, the number of 
aggregation instances could be increased. 

Ability of System to Tolerate a Broker Crash 
This test aims to verify whether the system could man-

age a failure. Brokers are core elements and their perfor-
mance affects the overall system. This test evaluates 
whether the system works with only 2 out of 3 active bro-
kers. Figure 4 shows the capability of the system to manage 
the failure of a single broker by splitting the traffic among 
the remaining active brokers and restoring the normal state 
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after a short period of time. This scenario simulates the re-
start phase of the broker by the O2 control system. 

 
Figure 4: Input metric rate per broker as a function of active 
brokers. 

Latency and Message Lost 
This test aims to measure the latency between the metric 

generation phase and the metric storing phase. The maxi-
mum allowed value is 1000ms to the visualisation layer 
and 500ms to the processing layer. Messages are sent from 
4 machines. Latency is measured as the timestamp differ-
ence between the moment the metric was created (pro-
ducer) and stored (InfluxDB). Figures 5-7 show the latency 
as a function of metric rate for 1, 100 and 1000 producers, 
respectively. On the horizontal axis the percentile of han-
dled metrics is displayed.  As expected, latency increases 
with number of producers and metric rate. 

Figure 5: Latency using a single producer. 

 

 
Figure 6: Latency using 100 producers. 

 
Figure 7: Latency using 1000 producers. 

Figure 7 represents the worst-case scenario where all 
Telegraf instances send data without local aggregation and 
Kafka does not process any values. It is foreseen that pro-
cessing will significantly reduce the rate from 600 kHz in-
put rate, with less than half being written to the database. 
In each test the percentage of lost messages never reached 
over 0.1%. 

CONCLUSIONS 
The results presented in this paper confirm that the O2 

Monitoring system design and preliminarily implemented 
custom components are capable of handling the monitoring 
traffic from the future ALICE O2 farm. The system also 
satisfies all functional requirements of metric collection, 
processing, storage, visualisation and alarming. Apache 
Kafka was able to collect, route and process all incoming 
metrics in a scalable and fault-tolerant way. In addition, a 
single InfluxDB database could store 600 kHz of metrics. 

Latency test showed our Kafka cluster is able to collect 
at least 300 kHz metrics from 1000 producers with a la-
tency lower than 500 ms. We plan to improve this value by 
decreasing the Kafka input rate via local aggregation in the 
Telegraf instances running on each node. Moreover, adding 
more performant disks and Kafka brokers will drop the la-
tency further. 

The presented system is generic enough to carry all types 
of messages (not only metrics). For conformation, a log-
ging service was implemented and successfully deployed 
by the ReCaS Datacenter at INFN Bari. 

The current implementation of the system is almost com-
plete but additional advanced features are foreseen to be 
added. More complex processing and alarming tasks, using 
correlation, derived values, multiple thresholds and ma-
chine learning algorithms, might be needed. 

The near future challenge is the collaboration with other 
subsystems and detectors to identify processing scenarios 
and efficiently implement them into the processing unit. Fi-
nally, an alarming feedback loop needs to be added to the 
system in order to autonomously adjust the system by pass-
ing signals to the O2 Control [20] system when an abnor-
mal or predefined condition occurs. 
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