CERN Accelerating science

002777804 001__ 2777804
002777804 003__ SzGeCERN
002777804 005__ 20220114155502.0
002777804 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-ICALEPCS2019-MOPHA041
002777804 0248_ $$aoai:cds.cern.ch:2777804$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002777804 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:1827699$$d2021-08-02T15:04:14Z$$h2021-08-04T04:00:09Z$$mmarcxml
002777804 035__ $$9Inspire$$a1827699
002777804 041__ $$aeng
002777804 100__ $$aFernández Adiego, [email protected]$$uCERN
002777804 245__ $$9JACoW$$aCause-and-Effect Matrix Specifications for Safety Critical Systems at CERN
002777804 260__ $$c2020
002777804 300__ $$a6 p
002777804 520__ $$9JACoW$$aOne of the most critical phases in the development of a Safety Instrumented System (SIS) is the functional specification of the Safety Instrumented Functions (SIFs). This step is carried out by a multidisciplinary team of process, controls and safety experts. This functional specification must be simple, unambiguous and compact to allow capturing the requirements from the risk analysis, and facilitating the design, implementation and verification of the SIFs. The Cause and Effect Matrix (CEM) formalism provides a visual representation of Boolean expressions. This makes it adequate to specify stateless logic, such as the safety interlock logic of a SIS. At CERN, a methodology based on the CEM has been applied to the development of a SIS for a magnet test bench facility. This paper shows the applicability of this methodology in a real magnet test bench and presents its impact in the different phases of the IEC 61511 safety lifecycle.
002777804 540__ $$3publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002777804 542__ $$3publication$$dJACoW$$f© JACoW 2019
002777804 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002777804 6531_ $$2JACoW$$aoperation
002777804 6531_ $$2JACoW$$aPLC
002777804 6531_ $$2JACoW$$acontrols
002777804 6531_ $$2JACoW$$aSCADA
002777804 6531_ $$2JACoW$$acryogenics
002777804 690C_ $$aARTICLE
002777804 690C_ $$aCERN
002777804 700__ $$aBlanco Viñuela, Enrique$$iINSPIRE-00657753$$jJACoW-00030894$$uCERN
002777804 700__ $$aBonet, [email protected]$$uSanta Catarina U.
002777804 700__ $$aCharrondiere, [email protected]$$uCERN
002777804 700__ $$aHamisch, [email protected]$$uSanta Catarina U.
002777804 700__ $$aSperoni, [email protected]$$uCERN
002777804 700__ $$ade Queiroz, [email protected]$$uSanta Catarina U.
002777804 773__ $$01827643$$c285$$qICALEPCS2019$$wC19-10-05.1$$y2020
002777804 8564_ $$82314399$$s514650$$uhttps://cds.cern.ch/record/2777804/files/10.18429_JACoW-ICALEPCS2019-MOPHA041.pdf$$yFulltext
002777804 960__ $$a13
002777804 962__ $$b2690621$$k285$$nnew york20191005
002777804 980__ $$aARTICLE
002777804 980__ $$aConferencePaper