
BENEFITS OF LOW CODE DEVELOPMENT ENVIRONMENTS ON
LARGE SCALE CONTROL SYSTEMS

B. Lefort, V. Costa, CERN, Geneva, Switzerland

Abstract
The rapid evolution of science and of scientific projects

usually implies high levels of mobility among research-
ers, engineers and applied scientists. In parallel, software
development has been getting easier as computing tech-
nology has evolved. A direct consequence of these two
paradigms is the proliferation of custom, sometimes
small, ad-hoc software. This software, usually quickly
developed and with low code hygiene, later becomes a
burden to the organization, especially if the original de-
veloper and responsible departs. Based on this experience
many organizations are now successfully adopting low-
code application development. Inspector is a low-code
development platform to design control interfaces. It
features a visual interface composer, a visual program-
ming language and supports small integrated scripts in
Python. More than 600 Inspector applications are actively
used at CERN. We explain how developers with little
experience of writing software can create applications
that they could not otherwise explicitly code for them-
selves. Finally, we demonstrate how Inspector offers
enhanced security, higher productivity and maintenance
relief by delegating the core software development and
maintainability to high skill developers and IT members.

INTRODUCTION
The number of PhDs and postdocs in science has

grown substantially. A report in Nature reported a jump
by 150% in the number of postdocs between 2000 and
2012 (see Fig. 1) and the growth shows no sign of slow-
ing since then. [1]

PhD graduates and Postdocs confront a dwindling
number of academic jobs. As an example, only 15% of
PhD graduates can attain academic positions in the USA
[2]. Many of them go the entrepreneurial route and be-
come involved in start-ups, research labs or commercial
R&D centres.

Figure 1: Annual number of science and engineering
doctorates graduating from US universities.

The typical maximum funding period for doctoral stu-
dents is four years. There is no set length for a postdoc-
toral researcher as it depends on a number of factors such

as the university, country of research, PI, or funding. That
being said, most positions are two to three years even it
they can be extended up to 6 years.

Over the past 15 years, the number of public workers
on short-term contracts has increased. In France they now
represent 35% of university staff and 27% at research
institutions. Contracts tend to be very short. 80% of them
are lasting less than 2 years [3].

Consequently, Academia is facing a high employment
turnover rate combined with short-term contracts. In re-
gards to software engineering, such conditions make
quality and productivity competing objectives. Code
quality is naturally seen as less important when compared
to fast/cheap development, as such, software projects are
showing signs of poor code quality, undetected vulnera-
bilities and low code readability – contrary to the funda-
mentals of software maintainability.

Considering the trends, we will show how a low-code
application, such as Inspector, a Rapid Application De-
velopment (RAD) framework, gives access to application
development for people with little experience of writing
software and how it reduces the number of Lines Of Code
(LOC) that has to be maintained when the person who
developed and maintains it departs.

To boost the productivity, Inspector proposes a separa-
tion between the UI and the software technology, essen-
tially allowing the creation of zero code GUI in order to
diminish the cost of developing and maintaining such
applications. Inspector itself is built on proven technolo-
gies (such as Java) and takes care of critical software
aspects such as multithreading, data communication and
application reliability. Final application developers don’t
need to worry about these aspects; they can create their
entire application using the GUI and tiny scripts for com-
plex operations. This concept also introduces indirect
benefits, for instance all Inspector applications are uni-
form. They’ll look and behave the same way. This helps
create a sense of familiarity and control that helps users
going seamlessly from one application to another without
the need to learn new ropes to get around.

LINES OF CODE AND CODE QUALITY
Capers Jones, an American specialist in software engi-

neering methodologies, has compared many methodolo-
gies (RUP, XP, Agile, Waterfall, etc.) and programming
languages over thousands of projects and has determined
that programmers write between 325 and 750 production
lines of code (LOC) per month. [4, 5] These numbers
apply to software scientists working in teams that follow
a strict development cycle where specification is followed
by development and precede unit & integration tests.

Short-term contracts workers in a lab environment are
typically result driven. User stories such as “develop a

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

WEDPR02
976

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

driver that controls this hardware so I can start doing
science with it”; “This data reduction pipeline has to work
so I can see my results” are commonly heard. In such
cases, the specification phase is replaced by a trial and
error loop (develop > test > repeat) and the final code
only reflects an interpretation of a problem and a solution
for it with too little considerations about the fact that
it has to be used and maintained by others.

A clear indication of a code quality braking point is
when, trying to squeeze an unforeseen use-case in a clear-
ly incompatible design, one promises to “clean it up later,
when I have the time”. Beyond this point, the develop-
ment cycle slows down, complexity goes up and quality is
lost. Technical debt is easily generated in R&D environ-
ments and really difficult to overcome. A side effect is
toil. These applications typically require intensive
maintenance and are a burden for development
teams. Badly designed software also affects all its de-
pendencies and, indirectly, the everyday life of the corre-
sponding developers and users.

COMMONLY REINVENTED WHEELS
Most of the scientific applications can be resumed to a

simple list of actions: Sample, process and display.
Data sampling is generally limited to a few calls to

driver setup functions before starting the acquisition. This
part of the process is hardware specific but access can be
generalised using standard APIs. In more complex cases
handling data subscriptions or polling may be required.
Handling high-rate data streaming can be hard for less
experienced programmers, leading to less reliable and less
secure systems.

For very complex processing one usually relies on a
scripting or programming language. When the processing
is simple, it can be addressed using a visual programming
language like LabView (from National Instruments) or
the ones offered by Inspector.

When it comes to GUI, even if new reality-based inter-
actions are being explored [6], we still rely on the “Win-
dows, Icons, Menus, and Pointer (WIMP)” graphical
elements to represent information [7].

In academic software productions the final GUI will
probably be an afterthought and the basic graphical ele-
ments set will have to be extended with scientific plotting
capabilities. A nice and functional GUI is usually hard to
implement and requires a fair amount of LOC. The actual
trend is to delegate this task to a GUI builder that simpli-
fies the creation by allowing the designer to arrange
widgets using drag-and-drop (DnD) gestures. Once de-
signed, the builder automatically generates all the source
code. These tools are effective but require a non-
negligible learning phase.

The development of GUI is time-consuming. It can rep-
resent about 48% of the source code, and 45% of the
development time and covers 37% of the maintenance
time [4]. If we stick to our academic goal, which is pro-
ducing results, these tasks are repetitive and can be con-
siderate as rebarbative by many programmers.

LOW-CODE DEVELOPMENT
 PLATFORMS

Low-code development platforms provide an environ-
ment to create applications through graphical user inter-
faces and configuration instead of the traditional pro-
gramming. They are based on the principles of model-
driven design and visual programming and nearly anyone
can learn how to use them. Most of these platforms keep
the ability to let the user insert custom code when needed.

Forrester, an American market research company that
provides advice on existing and potential impact of tech-
nology to its clients and the public, estimates that the total
market for low-code development platforms is growing
by 50% every year [8] (see Fig. 2).

Figure 2: Low-code platforms forecast (US$ billions).

Gartner Inc., a public global research and advisory firm
has developed methods to demonstrate market trends,
such as direction, maturity and participants. Gartner pre-
dicts, due to continued demand for applications and a
shortage of skilled developers, that low-code develop-
ment tools will be used for most application development
by 2024 [9].

CERN CONTROL MIDDLEWARE
INFRASTRUCTURE

The CERN accelerator complex control systems are
fully data-driven thanks to the Controls Configuration
Database (CCDB) [10]. All the accelerators equipment
can be accessed as a device. A device is a named entity of
the control system, which usually corresponds to a physi-
cal equipment. Using an identifier, the logical interface of
a device can be retrieved from the CCDB.

Communication is made through the Java API for Pa-
rameter Control (JAPC) [11]. JAPC is an abstraction
communication layer that unifies CERN control systems
thanks to the concept of JAPC parameters. A parameter
represents a controlled value of an accelerator. Client
programs can access JAPC parameters with set and get
functions in an asynchronous way. They can also sub-
scribe to them in order to be notified when values change.
JAPC also serves as a wrapper for Java applications hid-
ing the complexity of different protocols.

Access authorization is provided by a Role-Based Ac-
cess Control (RBAC) that restricts the access to a system
only to authorized users [12]. Each user has assigned

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

User Interfaces, User Perspective, and User Experience(UX)
WEDPR02

977

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

roles that specify what he is allowed to do in the system.
Every get, set or subscription demand is subject to the
authorization process and its execution can be denied
when a user has insufficient privileges.

INSPECTOR
Inspector is a Low-Code IDE developed at CERN [13].

Inspector allows users to concentrate their efforts on the
data presentation, rather than on implementation details.
It takes responsibility of making the applications portable,
within the production environment, handles data acquisi-
tion and streaming, multithreading processing and pro-
vides a reliable common experience for users of all skill
sets (see Fig. 3).

The Inspector uses the CCDB to automatically expose
and control all the properties of a device without the need
for any manual configuration. Users can select devices
and their properties. These elements can be drag-and-
dropped into a canvas called Panel to start creating a
GUI. Inspector internally obtains the property metadata,
such as data type and access mode. Based on this infor-
mation a visual menu appears with all the available
graphical elements that can display or interact with the
property value. Such Visual elements are called Monitors.

The vast assortment of monitors, including polar plots,
multi-state switches, buttons, dials, etc. can be organized
via automated layout options. Visual elements can also be
organized in a grid system and layout constraints can be
applied to them.

INSPECTOR AS AN INTERFACE FOR
OPERATORS

On a large-scale control system, when it comes to tune
a process or to investigate a failure, one needs versatile
tools that can quickly and easily display and correlate
data. Especially during machine upgrade or commission-
ing where many changes can suddenly be required. In
Inspector, every single functionality is available as soon
as the property is dropped into the panel. There is no
separation between the design phase and the deployment
of the application. This feature allows inspector to be
used as a black board where properties from multiple
devices are shown at once. Panels and monitors are easily
created and disposed. In many cases Inspector applica-
tions are created temporary given its flexibility, ease to
use and low development effort. This low commitment
allows operators to use Inspector to perform quick meas-
urements, debugging and create temporary dashboards
and control panels, an important feature in the ever-
changing CERN accelerator complex.

Figure 3: Simple example of applications developed with
Inspector. Development time for this kind of application
may vary from a few minutes to a few hours.

INSPECTOR AS AN INTERFACE FOR
ENGINEERS AND SCIENTISTS

Inspector is developed to be flexible. It was built fol-
lowing modern development practices, with modularity in
mind. It was developed at CERN but is not highly cou-
pled with any CERN system - it can be adapted for any
other complex and can be extended. With that in mind,
Inspector was also built to be generic - it allows quick and
easy application development but also supports complex
data processing and closed loop control. Monitors allow
for simple data transformation, such as ranges, format-
ting, blinking, etc. Inspector introduces two distinct
scripting modules for data transformation and control.

A visual equation editor is included in the application
(see Fig. 4). This equation editor facilitates the creation of
mathematical equations that are executed on the server
side. Equations may receive inputs from properties and
can apply functions to values or other properties. The
computation happens based on a timer or an event.

Figure 4: The equation editor allows processing the data
subscription in real time (simple arithmetic, averaging,
FFT).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

WEDPR02
978

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

For more complex logic and data processing, Inspector
includes a specialised module called Blueprint (see
Fig. 5). Blueprints are small programs on their own that
combine visual scripting, for users with limited program-
ming knowledge, and high-level integrated language
scripting, including Python support. Blueprints execute in
the client Inspector application and can interact with visu-
al elements and properties. Visual elements, such as
monitors, can be configured in runtime with Blueprints,
for instance: visual components can be altered when a
state of a device changes or controls can be hidden or
displayed based on user access permissions.

Figure 5: Example of Blueprints that read all the faults
from a device, log them in a local folder and reset the
device if there are any faults.

Blueprints also support Python scripting (see Fig. 6).
Python code can be externally invoked or it can be direct-
ly integrated in Blueprints. A Python bridge is provided in
order to be able to access all the Inspector features from
Python scripts (including getting/setting variables, sub-
scribing to properties and interacting with the GUI ap-
pearance) (see Fig. 7). This Python bridge allows scien-
tists to run their simulation algorithms against real hard-
ware with almost no need of code modification while
Inspector graphical capabilities can show the results of
the running code.

Figure 6: In This example Python is used to read a device.
The value is returned into a Blueprint variable.

INSPECTOR AS AN INTERFACE FOR
AUTOMATION SPECIALISTS

The Programmable Logic Controllers (PLCs) are essen-
tial components of the CERN accelerator complex control
system. PLCs typically offer custom communication
protocols and therefore are difficult to integrate into a
control system using a single communication strategy.

CERN Software Infrastructure for Low-level Equip-
ment Controllers (SILECS) framework offers one API to
communicate with most of the PLC brands and models.
[14].

At CERN, several steps are needed to integrate a PLC
into the control infrastructure. First, the PLC has to be
programmed by an automation specialist. Then the PLC
interfaces have to be detailed in an XML file in order to
be exposed using SILECS. Finally, using SILECS stubs, a
middleware process, integrating the communication pro-
tocol, has to be manually generated, compiled and de-
ployed on a server. After these mandatory steps the device
can be accessed through JAPC and Inspector. SILECS
and all the other upper layers are tightly coupled to the
PLC interface. This means that any modification to the
PLC interface map implies a modification in all the men-
tioned layers - including manual code compilation and
deployment.

Figure 7: A low-level application with embedded Blue-
prints processing that shows the status of the control elec-
tronic and PLCs.

While Inspector was developed to use JAPC as a first-
class data acquisition interface, it contains a modular Data
Access Layer (DAL) that provides other access interfaces.
A module for SILECS allows Inspector applications to
access data directly from SILECS enabled PLCs. There-
fore, automation specialists can develop graphical control
interfaces to test the PLC functionality before performing
its costly integration in the control infrastructure - where
they have to manually create and deploy an acquisition
server. The very same graphical interfaces can be reused
and easily modified to use JAPC instead of SILECS.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

User Interfaces, User Perspective, and User Experience(UX)
WEDPR02

979

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

INSPECTOR AS AN INTERFACE FOR
NON-IT EXPERTS

A survey on Inspector has revealed that 60% of the us-
ers come from non-IT disciplines (like electrical, elec-
tronics, civil, chemical…). A majority of these users have
no prior knowledge on visual programming and only have
basic programming knowledge, usually acquired by
scripting and running simulation software.

The survey shows that being able to create applications
without the need to rely on expert developers for help is a
very positive aspect. The stakeholders have no need to
transmit any requirements to developers – which typically
is not a lossless communication process, and there is no
need for lengthy acceptance procedures. For simple appli-
cations it means shortened development cycle and signifi-
cantly decreased cost for the organisation.

For users with absolutely no grip in programing, CERN
has created a one-day course that covers the concepts and
methodology of Inspector. It covers how to perform a full
development cycle of creating and deploying an Inspector
application. The feedback questionnaires of the course
shown that most of the attendees find one day enough to
be autonomous while some people would have been in-
terested in doing another day specifically dedicated to
complex aspects, such as Python integration.

THE BENEFITS OF THE
PROCRASTINATION PRINCIPLE

The procrastination principle dictates that one should
wait for problems to arise before solving them. Opera-
tional applications are designed to check the status of the
apparatus in the accelerator complex in real time. Many
supervision applications are composed of synoptics that
show green when everything is nominal and that start
showing red when something goes wrong. The status of
an apparatus can be complex to process. Parameters can
be interdependent and, when it comes to beam produc-
tion, there are qualitative aspects that can depend on an
infinite number of causes.

Because Inspector applications are easily modifiable it
has been noticed that operators were continuously adapt-
ing them according to their knowledge so that they react
when a newly discovered set of conditions is reached.
Like the Wikipedia encyclopaedia, Inspector operational
applications become more accurate with time due to their
collaboration openness. Authorized individuals can adapt
and improve Inspector applications with little effort.

Based on this observation, and considering the im-
portance of the operational applications, when it comes to
saving modifications, history tracking and versioning,
Inspector has direct integrations with version control
systems for application storage.

INSPECTOR APPLICATION
MAINTENANCE

Inspector provides an environment for low-code appli-
cation development. It also provides a runtime for execut-

ing these applications. Each application is saved as an
XML file and contains no dependency. Every Inspector
release is backwards compatible. Therefore Inspector not
only lessens development effort but also reduces the
maintenance costs. Existing applications don’t need to be
updated as long as the model - device and property inter-
faces, stays the same.

The Inspector development team takes responsibility
for security updates, fixing defects and providing new
features regularly. Unit and integration tests are used in
development and deployment pipelines for quality and
compliance assurance.

The deployment environment at CERN [15] also en-
sures that every user is always running the latest version
of Inspector without manual and disrupting updates.

OBSERVED BENEFITS OF USING
INSPECTOR

The Inspector project was established at CERN over 4
years ago. Nowadays there are more than 600 mission
critical Inspector based applications in use at CERN.
Inspector is used in several accelerators throughout the
complex, such as the LHC and Linac 4. Its uses range
from replacing legacy applications in LabView or for the
development of control applications for the SM18 test
area [16] up to the creation of first-class control applica-
tions for new accelerators and subsystems.

Inspector is also the main software for development of
dashboards and control applications for the Radio Fre-
quency group. Inspector was used to successfully port and
augment legacy LabView applications for the LHC RF as
part of the upgrade of the high-level control of the super-
conducting cavities of the LHC [17]. This work, under-
taken in 2018, included porting over 25 different Lab-
View applications. It was completed in less than 6
months, from the conception of the project, understanding
of LabView functionality, development of Inspector based
applications and final commissioning. It was estimated
that using GUI frameworks with programming languages
(Java, Python, etc.) would amount to at least double the
effort that would be required for the porting of such ap-
plications. Subsequent training and maintenance efforts
would also be necessary for these types of applications.

CONCLUSION
Developing portable applications with Inspector is fast

and simple, look and feel is consistent and no mainte-
nance is required if the hardware interfaces remain un-
changed. Because Inspector core in under skilled devel-
opers’ responsibility it globally offers enhanced security
and reduces shadow IT.

Inspector allows non-IT experts to provide subsystems
along with an engineering interface to test them. It allows
accelerator operators to efficiently correlate information
coming form different data sources. It allows anyone to
improve any existing application and, finally, it allows
scientist to easily test simulation code against real hard-
ware.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

WEDPR02
980

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Inspector development has required 6 man/year of de-
velopment. Maintenance and users support now only
require 0.2 man/year. The 600 mission-critical applica-
tions can generates up to 8000 data subscriptions on the
Inspector servers. The servers are responsible to handle
the subscriptions to the final hardware but also to execute
the soft-real-time computations required by the users.
Even if the Inspector architecture is distributed, the actual
deployment holds on one $4000 40 threads bi-Xeon blade
computer with 128 gigabytes of RAM.

Inspector is a cost effective way to develop high-level
control system portable applications that will never be-
come a burden to the Organization as long as Java is
supported.

REFERENCES
[1] Nature, https://www.nature.com/news/the-future-

of-the-postdoc-1.17253

[2] National Center for Science and Engineering Statistics,
https://www.nsf.gov/statistics/srvydoctoratew
ork

[3] Enquête sur les conditions d'emploi des personnels non
permanents de l’Enseignement Supérieur et la Recherche,
http://sciencesenmarche.org/fr/wp-
content/uploads/2017/06/270617-bilan-enquete-
SeM-Emploi-non-permanent.pdf

[4] C. Jones, Mcgraw-Hill, Programming Productivity. ISBN
978-0-07-032811-2, 1986.

[5] C. Jones, O. Bonsignour, The Economics of Software Quali-
ty, Addison Wesley, 2011.

[6] R. Jacob et al., “Reality-based Interaction: A Framework
for post-WIMP Interfaces”, in Proc SIGCHI Conference on
Human Factors in Computing Systems. CHI '08, New
York, NY, USA: ACM. pp. 201–210.

[7] B. A. Myers and M. B. Rosson, “Survey on user interface
programming”, in Proc. SIGCHI Conference on Human
Factors in Computing Systems, CHI ’92, pages 195– 202,
New York, NY, USA, 1992. ACM.

[8] Forrester,
https://www.forrester.com/report/Vendor+Lands
cape+The+Fractured+Fertile+Terrain+Of+LowCode
+Application+Platforms/-/E-RES122549

[9] Gartner,
https://www.gartner.com/doc/reprints?id=1-
1FKNU1TK&ct=190711

[10] Z. Zaharieva, M. M. Marquez, and M. Peryt, “Database
Foundation for the Configuration Management of the
CERN Accelerator Controls Systems”, in Proc. 13th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'11), Grenoble, France, Oct.
2011, paper MOMAU004, pp. 48-51.

[11] V. Baggiolini et al., “JAPC - the Java API for Parameter
Control”, in Proc. ICALEPCS’05, Geneva, Switzerland, Oc-
tober 2005.

[12] P. Charrue et al., “Role-Based Access Control for the
Accelerator Control System at CERN”, in Proc. 11th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'07), Oak Ridge, TN, USA,
Oct. 2007, paper TPPA04, pp. 90-92.

[13] V. Costa and B. Lefort, “Inspector, a Zero Code IDE for
Control Systems User Interface Development”, in Proc.
16th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS'17), Barcelona,
Spain, Oct. 2017, pp. 861-865.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA184.

[14] SILECS,
https://be-dep-co.web.cern.ch/content/silecs

[15] L. Cseppento, V. Baggiolini, E. Fejes, Zs. Kovari, and N.
Stapley, “CBNG - The New Build Tool Used to Build Mil-
lions of Lines of Java Code at CERN”, in Proc. 16th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct.
2017, pp. 789-793.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA163.

[16] N. Stapley et al., “CERN's SRF Test Stand for Cavity
Performance Measurements”, presented at the 19th Int.
Conf. RF Superconductivity (SRF'19), Dresden, Germany,
Jun.-Jul. 2019, paper THP078.

[17] Y. Brischetto, V. Costa, D.C. Glenat, L. Arnaudon, D.
Landr, “Upgrade of the Control System for the LHC High
Level RF”, presented at the 17th Int. Conf. on Accelerator
and Large Experimental Physics Control Systems
(ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
MOPHA019.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR02

User Interfaces, User Perspective, and User Experience(UX)
WEDPR02

981

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

