
ENERGY CONSUMPTION MONITORING WITH GRAPH DATABASES
AND SERVICE ORIENTED ARCHITECTURE
A. Kiourkos†, S. Infante, K. Seintaridis, CERN, Geneva, Switzerland

Abstract

CERN is not only the biggest particle physics laboratory
in the world but also a major electricity consumer. In 2018
alone, CERN consumed 1.25 TWh, equivalent to 1/3 the
consumption of the canton of Geneva. Reliable monitoring
of this consumption is crucial, not only for obvious opera-
tional reasons but also for raising the awareness of users
regarding their energy utilization. This monitoring is cur-
rently done via a web based system, developed internally
at CERN that is quite popular within the community. In or-
der to accommodate the increasing requirements, a migra-
tion is underway that utilizes the latest technologies for
data modelling and processing. The architecture of the new
energy monitoring system with an emphasis on the data
modelling, versioning and the use of graphs to store and
process the model of the electrical network for the energy
calculations is presented. The algorithms that are used are
also presented and a comparison with the existing system
is performed in order to demonstrate the performance im-
provements and flexibility of the new approach. The sys-
tem embraces the Service Oriented Architecture principles
and it is illustrated how these have been applied in its de-
sign. The different modules and possibilities are also pre-
sented with an analysis of their strengths, weaknesses, and
integration within the CERN infrastructure.

MOTIVATION
Energy Management

Energy Management has become an essential element of
operations management and allows the users to plan and
make decisions based on the historical data about their en-
ergy consumption [1]. The management of energy in the
industry and facilities like CERN is very context specific,
as it largely depends on the process. This implies that en-
ergy management solutions from other industries cannot be
easily copied. It is therefore important that users are able to
get accurate, reliable and easily accessible information
about the energy across the site and the different accelera-
tor installations.

Current Solution & Data Flow
To accommodate the energy management needs, a web

based application was developed at CERN (WebEnergy)
more than five years ago, Fig. 1. This application extracts
data archived by the SCADA system that is responsible for
the monitoring of the electrical network. These are energy
consumption measurements that are provided by the pro-
tection relays (IEDs) installed at the high voltage level of
the electrical network. These measurements are then col-
lected by the SCADA and subsequently archived to an in-
ternal long term data storage system.

Using APIs provided by the archiving system, WebEn-
ergy pulls the measurement data and combines it with the
electrical network model. The model has been defined and
is maintained by the system administrator within the sys-
tem. The application uses this combined data to calculate
the energy consumption at the different levels of the net-
work and for different consumers. The calculations occur
daily with help of a scheduled task and with the system
containing data up to the previous day.

Figure 1: WebEnergy dataflow.

The users can access the previously calculated data via
various dashboards where there are categorised and visual-
ized in various charts.

Weaknesses
The application is used daily by numerous people at

CERN. The results are quite accurate and have been vali-
dated over time against the energy consumption bills gen-
erated by the electricity suppliers.

Despite its success though, there are still opportunities
for further enhancements and a number of additional fea-
tures that will boost performance and add value for the us-
ers of the application and the organization.

The major area of improvement of the current applica-
tion is the data model. Although simple to understand it is
purely hierarchical, Fig. 2, allowing single parent-child re-
lationships and most importantly: it is missing the notion
of time.

Figure 2: WebEnergy data model.

The electrical network in a facility like CERN changes
continuously in order to accommodate the emerging needs.
Storing only the energy consumption over time is not
enough, the state of the model at any point in time is re-
quired in order to make meaningful comparisons. Because

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

Data Management
TUBPL06

719

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

of the rigidity of the current structure, retrospective calcu-
lations or corrections are tedious, error prone and in many
cases not feasible. Overall the current model leads to data
loss with regards to the electrical network evolution over
time, and is quite “expensive” to keep updated.

To address these issues several different concepts and
technologies have been examined with an emphasis on
open source technologies, maintainability and future proof
design. An introduction on the most important ones and the
ones chosen for the implementation of WebEnergy 2.0 is
attempted in the sections that follow.

A GRAPH THEORY & GRAPH
DATABASES PRIMER

History
Graphs have existed for centuries with the most famous

example dating back to 1736. It was when Leonhard Euler
solved the “Seven Bridges of Königsberg” problem. In
brief, the problem in question was whether it was possible
to visit all four areas of the city connected by seven bridges,
while only crossing each bridge once. This lead to the
groundwork of graph theory and its mathematics by Euler
[2].

Basic Concepts & Terminology
Graphs and their use in graph databases consist usually

of the following four building blocks:
Nodes or Vertices – These are the objects that make up

the graph, the “nouns” in object oriented terms.
Relationships or Edges – These are links between the

nodes, the “verbs” that give context to the nodes.
Labels – Labels are a mechanism to logically group

nodes.
 Properties – These are attributes that can contain a va-

riety of data types providing the state of the model.

Graph Types
Graphs exist almost everywhere and they come in differ-

ent shapes and sizes. Although in classic graph theory
nodes have one relationship between nodes, most real-
world graphs have many relationships and can contain
even self-referencing edges [3], Fig. 3.

Figure 3: Graph types.

Table 1: Graph Types
Graph properties Description

Connected A path between any two
in the graph exists

Disconnected Nodes many not have a
path between them

Weighted The relationships be-
tween the nodes contain
domain specific values

Unweighted The relationships be-
tween the nodes do not
contain any values

Directed The edges have direction
Undirected The edges do not have a

direction
Acyclic A graph with no cycles

(starting and ending in the
same node)

Cyclic A graph with cycles
Sparse A graph with few edges
Dense A graph with many edges

Monopartite, bipartite
or k-partite

Whether nodes connect to
one or many other node
types

Graph Algorithms
The number of graph algorithms is vast [4] and it would

be impossible to list them all here but they can be very
broadly grouped into the following four categories:

Graph search algorithms – Algorithms used for trav-
ersing the graph either for searching a specific item or gen-
eral exploration (e.g. Breadth First Search, Depth First
Search).

Pathfinding algorithms – Algorithms that allow you to
find the optimum path between nodes (e.g. Dijkstra’s algo-
rithm).

Graph centrality algorithms – Algorithms to identify
the most important nodes within a graph and their impact
on the overall network (e.g. PageRank, Eigenvector Cen-
trality).

Community detection algorithms – Detection commu-
nity formation in networks (e.g. Louvain algorithm, Bal-
anced Triads).

Graph vs Relational Databases
Relational databases (RDBMS) have existed for decades

and have been the workhorse of the industry for storage in
data oriented applications. Their value is undisputed with
features like concurrency control, transaction management,
data integrity mechanisms, common query language
(SQL), abundance of tools, frameworks and expertise.

In the recent years though, due to the size, speed and
complexity of the data, the relational model has shown its

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

TUBPL06
720

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

weaknesses that are particularly evident when complex in-
terconnected data is involved. Furthermore, the schema
based data model sets limits on how the data will be stored,
requiring extensive normalization and filtering in order to
handle the vast amounts of unstructured data that is gener-
ated today [5].

RDBMS use foreign keys to mark relationships between
tables. This is fine for “shallow” relationships but when
“deep” relationships are involved the limitations of join op-
erations become apparent, with performance and complex-
ity implications. Foreign keys are not “real relationships”
as context information missing, Fig. 4.

Figure 4: Relational model for capturing connections.

In comparison graphs databases are more performant
with connected data, Fig. 5. The relationships in graph da-
tabase systems are first class citizens and their schema-less
approach allows to move very quickly from the drawing-
board to the database without elaborate normalising steps.

Figure 5: Graph model for capturing connections.

There are two prevalent models in the realisation of the
graph in modern graph databases, the Labelled property
graph and the Resource Description Framework [6]. De-
scription of these models is beyond the scope of this paper
but it is sufficient to say that the Labelled Property graph
is the most popular form of graph model and is used by the
most popular graph database currently, Neo4j [7].

SERVICE ORIENTED ARCHITECTURE &
MICROSERVICES

Definition
Service Oriented Architecture (SOA) is a software archi-

tecture style that aims to achieve loose coupling between
interacting software components and reusability in differ-
ent contexts. This takes the form of services that are pro-
vided by the different application components. These com-
ponents usually communicate via a specific communica-
tion protocol over the network [8]. One of the defining

principles of a service in SOA is that it owns the data under
its responsibility and operations on that data.

The concept is not new and has existed in many forms
over years, some examples are:

• Web services
• OPC-UA
• gRPC
• Messaging (ActiveMQ, JMS etc.)
The main focus of SOA systems has been the loose cou-

pling between the components and in order to accomplish
this in many occasions some type of communication bus is
involved, Fig.6. This is called an Enterprise Service Bus
(ESB).

Figure 6: Service Oriented Architecture.

Microservices
The latest architectural trend in software systems is mi-

croservices. The concept can be considered an evolution of
the SOA with the main differences being the communica-
tion patterns, granularity of the services and stronger em-
brace of cloud technologies that are now ubiquitous [9].

Microservices communicate directly with each other us-
ing lightweight protocols and messaging. This allows to
have separate release cycles between services and different
teams working independently with clearly defined inter-
face points, Fig.7. This modularization aims to also im-
prove reusability and lead to shorter release cycles allow-
ing to deliver new features in shorter times. On the other
hand the presence of a greater number of “moving parts”
within a microservice based system increases the operation
overhead and makes integration testing more complicated.

Regarding the granularity of microservices there is no
universal consensus and it is highly dependent on the sub-
ject domain. In general the service should not be too small
so that the runtime overhead complexity exceed its bene-
fits.

Figure 7: Microservices Architecture.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

Data Management
TUBPL06

721

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

WEBENERGY 2.0
Design Goals & Architecture

The main goals that were set for the design of the new
system have been:

• Increase data model flexibility so that different ver-
sions of the network model can co-exist.

• Introduce the notion of time in the network model so
that past calculations can be matched to the corre-
sponding layout of the network.

• Split the system into clearly defined services to allow
to mix different technologies in order to benefit from
different frameworks and tools.

• Explore the possibility of power calculations.
• Introduce live energy monitoring consumption (last 15

~ 30 minutes) compared to only the previous day of
the current system.

• Explore energy consumption forecasting.
• Integrate virtual invoicing to make the users aware of

their energy usage.
The architecture of WebEnergy 2.0 has been designed

around separate services that collaborate and make the
complete energy management system. The layout of these
architecture and the interaction between the different ser-
vices is explained in the sections that follow.

Hybrid Data Management
WebEnergy 2.0 uses two data management paradigms,

relational and graph. The redesigned data model with the
support of versioning is stored in a relational database
along with all other application data (settings, statistics
etc.), and as it is demonstrated later is exposed to the dif-
ferent services of the system via a dedicated REST API.

The graph database (Neo4j) is used as an ephemeral data
store, where the different versions of the model are loaded
in order to utilise its powerful traversal algorithms and per-
form the energy consumption calculations quickly and ef-
ficiently.

This approach allows to utilise existing infrastructure for
availability and data consistency and at the same time use
more modern approaches for the data handling and calcu-
lations.

Services
The services have been designed to be self-contained,

represent a specific business entity and act as black box for
the consumers of the service, Fig. 8.

Data REST API – With the use of Spring Data REST,
this service exposes the different tables of the database as
REST endpoints following the HATEOAS principles. The
hypermedia format supported by Spring Data REST is
HAL. These endpoints will be used by the different ser-
vices to access the relational database.

Data Sanitization Service – This service is responsible
for the detection of abnormalities in the incoming measure-
ment data from the devices. It can happen that there is a
faulty equipment reporting erroneous measurements or an

IED that is replaced which causes its internal energy coun-
ter to be reset. These events impact the correctness of the
energy consumption calculation and it is important that
they are filtered out.

Data Import Service – The data import service is for im-
porting the raw data from the long term archiving system
and/or HDFS. The new long term archiving system
(NXCALS) is heavily based on Apache Spark and at the
same time the archive data from the SCADA archive data-
base is imported daily into HDFS as parquet files. This im-
plies that the data can be imported via two sources, as re-
quired, either from the long term archive storage or directly
via HDFS. The service will be able to handle both data
sources.

Graph & Calculation Service – The existing WebEn-
ergy application uses iterative algorithms for the calcula-
tion of the energy consumption at the different levels of the
network model. This although simple to implement, suffers
in terms of performance.

During the investigation for the new architecture, a
graph database (Neo4j) was examined as the engine for the
energy calculations. Neo4j supports user-defined functions
that can be used to take advantage of it power graph engine
to offload tasks to the graph database [10]. The electrical
network model consists of highly interconnected data, thus
suitable use case for a graph database.

We have developed a user function inside Neo4j that
uses recursion to calculate the energy consumption in var-
ious versions of the network model. The tests showed that
for any version of the network, with approximately 5000
nodes and 10000 relationships, the computation of the en-
ergy consumption for the complete model takes less 20ms.
This gives the possibility to the users to perform on the fly
calculations for any version of the network model.

The graph and calculation service is responsible for the
following tasks:

• Loading the model from the relational database and
import to Neo4j for the energy calculations.

• Retrieve the results for the calculation of the different
versions of the model from Neo4j and save to the da-
tabase or serve them to the Administration or User ser-
vice for displaying in the Administrator or User Inter-
face.

• Receive alternative representations of the model from
the administrative service and import to Neo4j for the
energy calculations.

Administration Service – The Administration Service
takes care of the functionalities related to the management
of the model, like:

• Modifying the existing network model
• Creating different versions of the model
• Launching calculations
User Stats service – The User Stats service is responsible

for retrieving information from the user interface of the ap-
plication and store usage data via the REST API to the da-
tabase. This enables the analysis in order to further under-
stand how the application is utilised by the users, identify
potential problems and in general provide relevant usage
analytics

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

TUBPL06
722

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

Figure 8: WebEnergy 2.0 Architecture.

Real Time Service – This service is responsible for cal-

culating the status on network model in terms of energy
consumption using real time telemetry data.

This allows the visualisation of the current energy data-
flow within the last hour or less.

The service will be implemented using the actor model
[11] where every actor is responsible for maintaining the
status of the different nodes in the network model. The ser-
vice exposes http endpoints for the monitoring, control and
data feed for the visualisation of the current values

User Interface Service - The user interface service shall
be responsible for serving the user interface of the system.
This would be equivalent to an API gateway in micro-
services terms. It will be implemented using Spring Boot
and a number of REST endpoints shall be exposed for mon-
itoring, control and serving the front end.

CONCLUSIONS
The development of WebEnergy 2.0 is underway with

some services of the application completed and others be-
ing developed. The microservices approach has provided
benefits in terms of independent work streams and early
delivery, as some services are operational without the need

for the whole system to be in place. In addition the modu-
larity of the codebase has enabled us to introduce new
members to the project in less time when compared to mon-
olithic applications where the new members require signif-
icant time to get acquainted with large codebases. The ad-
ditional operational overhead has also become visible as
additional infrastructure is required to deploy and monitor
these services. The hybrid approach for the data model (re-
lational + graph) has allowed us to use the best of both
worlds and address the shortcomings of the previous data
model.

REFERENCES
[1] K. Vikhorev, R. Greenough, and N. Brown, "An advanced

energy management framework to promote energy aware-
ness," Journal of Cleaner Production, vol. 43, pp. 103-112,
2013/03/01/ 2013, doi:
https://doi.org/10.1016/j.jcle-
pro.2012.12.012.

[2] I. Gribkovskaia, Ø. Halskau Sr., and G. Laporte, "The
bridges of Königsberg—A historical perspective," Net-
works, vol. 49, no. 3, pp. 199-203, 2007, doi:
10.1002/net.20159.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

Data Management
TUBPL06

723

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[3] M. Needham and A. E. Hodler, Graph Algorithms: Practical
Examples in Apache Spark and Neo4j. O'Reilly Media,
2019.

[4] "Graph algorithms." https://en.wikipe-
dia.org/wiki/Category:Graph_algorithms (ac-
cessed 2019/08/21, 2019)

[5] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D.
Wilkins, A comparison of a graph database and a relational
database: A data provenance perspective. 2010, p. 42.

[6] R. Angles and C. Gutierrez, "Survey of graph database mod-
els," ACM Comput. Surv., vol. 40, no. 1, pp. 1-39, 2008,
doi: 10.1145/1322432.1322433.

[7] "Graph DB Engines ranking." https://db-en-
gines.com/en/ranking/graph+dbms/ (accessed
2019/08/21, 2019).

[8] H. He, "What is service-oriented architecture," Publicação
eletrônica em, vol. 30, pp. 1-5, 2003.

[9] N. Dragoni et al., "Microservices: Yesterday, Today,
and Tomorrow," in Present and Ulterior Software Engi-
neering, M. Mazzara and B. Meyer Eds. Cham: Springer In-
ternational Publishing, 2017, pp. 195-216.

[10] Extending Neo4j with User-defined functions.
https://neo4j.com/docs/java-reference/cur-
rent/extending-neo4j/procedures-and-func-
tions/functions/ (accessed 2019/08/21, 2019).

[11] P. Haller, " On the integration of the actor model in main-
stream technologies: the scala perspective," in Proceedings
of the 2nd edition on Programming systems, languages and
applications based on actors, agents, and decentralized con-
trol abstractions, 2012: ACM, pp. 1-6..

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL06

TUBPL06
724

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

