Charmless b-meson and b-baryon decays at LHCb

Laís Soares Lavra on behalf of the LHCb collaboration

Université Clermont Auvergne, LPC-Clermont, IN2P3/CNRS

European Physical Society Conference on High Energy Physics Online Conference, 26th July 2021

Charmless b-meson decays

• Involve both Tree $b \rightarrow u$ and Penguin $b \rightarrow s, d$ transitions

- Dominant tree-level and penguin diagrams contribute in the same order of magnitude
- Sensitive to CP violation studies
- Multi-body decays possess rich resonant structures
 - Large CP violation signatures found in regions of the phase space
- Interesting to search for new sources of CP violation

Outline

- Measurement of the relative branching fractions of $B^+ \rightarrow h^+ h'^+ h'^-$ decays
 - Published as Phys. Rev. D102(2020) 112010 (arXiv:2010.11802)
- Search for CP and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$
 - Published as Phys. Rev. D102(2020) 051101 (arXiv:1912.10741)
- Search for CP violation in $\Xi_b^- \to p K^- K^-$
 - Submitted to Phys. Rev. D (arXiv:2104.15074)

< □ > < 同 > < 回 > < 回 > < 回 >

Measurement of the relative branching fractions of $B^+ \rightarrow h^+ h'^+ h'^-$ decays $(B^+ \rightarrow K^+ K^+ K^-, B^+ \rightarrow \pi^+ K^+ K^-, B^+ \rightarrow K^+ \pi^+ \pi^-, B^+ \rightarrow \pi^+ \pi^+ \pi^-)$ Phys. Rev. D102(2020) 112010 (arXiv:2010.11802)

.

Motivation

- Large integrated CP asymmetries and CP signatures in localized regions of the phase space
- Confirmed with recent amplitude analyses:
 - $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ (PRL 124(2020)031801) (PRD 101(2020)012006)
 - $B^+ \to \pi^+ K^+ K^-$ (PRL 123(2019)231802)
- Fit fractions from amplitude analysis are converted into quasi-two-body branching fractions
 - Precise knowledge of three-body branching fraction is needed
 - Current knowledge of branching
 - fraction not suficient given the

sensitivity of the Dalitz plot analyses

 $B^+
ightarrow \pi^+\pi^+\pi^-$ and $B^+
ightarrow \pi^+K^+K^-$ (PRD 90(2014)112004)

Current knowledge BF $B^+ \rightarrow h^+ h'^+ h'^-$ (PDG)

Decay	PDG average (10^{-6})
$B^+ \rightarrow K^+ K^+ K^-$	34.0 ± 1.4
$B^+ \rightarrow \pi^+ K^+ K^-$	5.2 ± 0.4
$B^+ \rightarrow K^+ \pi^+ \pi^-$	51.0 ± 2.9
$B^+ \to \pi^+ \pi^+ \pi^-$	15.2 ± 1.4

< ロ > < 同 > < 回 > < 回 >

Charmless b-meson and b-baryon decays

Measurement of the relative branching fractions of $B^+ \to \, h^+ h'^+ \, h'^-$

- Performed with Run 1 dataset: $3fb^{-1}$ from 2011+12
- Relative branching fraction ratios determined by

$$\frac{\mathcal{B}(B^+ \to h^+ h'^+ h'^-)}{\mathcal{B}(B^+ \to K^+ K^+ K^-)} = \frac{\mathcal{N}_{hh'h'}^{corr}}{\mathcal{N}_{KKK}^{corr}}$$

 $\mathcal{N}^{\textit{corr}} \rightarrow$ signal yield efficiency corrected

• Obtained as a function of Dalitz plot position

< ロ > < 同 > < 回 > < 回 > < 回 > <

Signal Yields

Extraction of the signal and background yields from a simultaneous fit to all channels

Charmless b-meson and b-baryon decays

Results

Measured relative branching fractions

\mathcal{B} ratio	Value
$\mathcal{B}(B^+\!\rightarrow\pi^+K^+K^-)/\mathcal{B}(B^+\!\rightarrow K^+K^+K^-)$	$0.151 \pm 0.004 \pm 0.008$
$\mathcal{B}(B^+\!\to K^+\pi^+\pi^-)/\mathcal{B}(B^+\!\to K^+K^+K^-)$	$1.703 \pm 0.011 \pm 0.022$
$\mathcal{B}(B^+\!\rightarrow\pi^+\pi^+\pi^-)/\mathcal{B}(B^+\!\rightarrow K^+K^+K^-)$	$0.488 \pm 0.005 \pm 0.009$
$\mathcal{B}(B^+ \to K^+ K^+ K^-) / \mathcal{B}(B^+ \to \pi^+ K^+ K^-)$	$6.61 \ \pm 0.17 \pm 0.33$
$\mathcal{B}(B^+\!\to K^+\pi^+\pi^-)/\mathcal{B}(B^+\!\to\pi^+K^+K^-)$	$11.27 \pm 0.29 \pm 0.54$
$\mathcal{B}(B^+\!\rightarrow\pi^+\pi^+\pi^-)/\mathcal{B}(B^+\!\rightarrow\pi^+K^+K^-)$	$3.23 \pm 0.09 \pm 0.19$
$\mathcal{B}(B^+ \to K^+ K^+ K^-) / \mathcal{B}(B^+ \to K^+ \pi^+ \pi^-)$	$0.587 \pm 0.004 \pm 0.008$
$\mathcal{B}(B^+ \to \pi^+ K^+ K^-) / \mathcal{B}(B^+ \to K^+ \pi^+ \pi^-)$	$0.0888 \pm 0.0023 \pm 0.0047$
$\mathcal{B}(B^+\!\rightarrow\pi^+\pi^+\pi^-)/\mathcal{B}(B^+\!\rightarrow K^+\pi^+\pi^-)$	$0.2867 \pm 0.0029 \pm 0.0045$
$\mathcal{B}(B^+ \to K^+ K^+ K^-) / \mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^-)$	$2.048 \pm 0.020 \pm 0.040$
$\mathcal{B}(B^+\!\rightarrow\pi^+K^+K^-)/\mathcal{B}(B^+\!\rightarrow\pi^+\pi^+\pi^-)$	$0.310 \pm 0.008 \pm 0.020$
$\mathcal{B}(B^+ \to K^+ \pi^+ \pi^-) / \mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^-)$	$3.488 \pm 0.035 \pm 0.053$

- Large systematic uncertainties:
 - Dominant source from background modelling

< □ > < □ > < □ > < □ > < □ > < □ >

Results

Comparison with the current world averages

Branching fractions ratios obtained (violet) compared to the PDG (green)

- All measurements in good agreement
- Significant improvement in the precision of all measured ratios

Results applied to quasi-two-body BEs from $B^{\pm} \rightarrow \pi^+ \pi^+ \pi^$ amplitude analysis $\mathcal{B}(B^{\pm} \to \rho^0(770)\pi^+)$ improves relative error from 16% to 6% Current world average (arXiv:1612.07233): • $\mathcal{B}(B^{\pm} \to \rho^0(770)\pi^+) =$ $(8.3^{+1.2}_{-1.3}) \times 10^{-6}$ Improved measurement: • $\mathcal{B}(B^{\pm} \to \rho^0(770)\pi^+) =$ $(9.5\pm0.6)\times10^{-6}$

(日)

Charmless b-baryon decays

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

3

A D N A B N A B N A B N

Introduction

 Theory predicts large CP violation asymmetries in some charmless b-baryon decays (Phys. Rev. D91,116007(2015))

Theory prediction

- $A_{CP}(\Lambda_b \to pK^-) = (5.8 \pm 0.2)\%$
- $A_{CP}(\Lambda_b \to p\pi^-) = (-3.9 \pm 0.2)\%$
- $A_{CP}(\Lambda_b \to pK^{*-}) = (19.6 \pm 1.3)\%$
- $A_{CP}(\Lambda_b \to p \rho^-) = (-3.7 \pm 0.3)\%$
- CP violation not yet observed in any b-baryon decay
- Abundant production of b-baryons in pp collisions at the LHC

< □ > < 同 > < 回 > < 回 > < 回 >

Search for CP and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays Phys. Rev. D102(2020) 051101 (arXiv:1912.10741)

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays 26th Ju

$\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-$

Search for CP and P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

- $\Lambda^0_b \to p \pi^- \pi^+ \pi^-$ has contributions of many resonances
 - Possibility of CP asymmetries in regions of the phase space
- First evidence of CPV in baryons found in this decay with 3.3σ using Run 1 data (Nature Phys. 13 (2017) 391)
- Updated result using 6.6 fb⁻¹ from Run 1+Run 2 (2011+12+15+16+17)
- Search for CPV with 2 methods:
 - Triple Product Asymmetries (TPA)
 - Unbinned energy test
- Published as PRD 102(2020)051101

Run 1+Run 2 (PRD 102(2020)051101)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Triple Product Asymmetries and Energy Test method

Triple Product Asymmetries $A_{\hat{T}}$

Based on scalar triple products $C_{\hat{T}} \equiv \vec{p}_p \cdot (\vec{p}_{\pi_{fast}} \times \vec{p}_{\pi_+})$ CP and P violating asymmetries observables:

$$a_{CP}^{\hat{T}-odd} = rac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}}) \qquad a_{P}^{\hat{T}-odd} = rac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}})$$

Measurements in bins and integrated over the phase space

Energy Test

- Sensitive to local asymmetries
- Relies on a test statistic to calculate the differences between two samples

Measurements in regions of the phase space

< □ > < □ > < □ > < □ > < □ > < □ >

$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$

Results

Integrated measurements (TPA)

$$a_{CP}^{\hat{T}-odd} = (-0.7 \pm 0.7 \pm 0.2)\%$$

No evidence for CPV

 $a_P^{\hat{T}-odd} = (-4.0 \pm 0.7 \pm 0.2)\%$ P violation observed with 5.5 σ

Phase space bins measurements (TPA)

- No evidence for CPV in regions of the phase space
- Local P violation at 5.1σ

Energy Test

- No evidence for local CPV
- Confirms local P violation observed at 5.3σ

Laís Soares Lavra (LPC-Clermont)

Charmless b-meson and b-baryon decays

26th July 2021 15 / 32

Search for CP violation in $\Xi_b^- \rightarrow pK^-K^-$ Submitted to Phys. Rev. D (arXiv:2104.15074)

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

э

Search for CP violation in $\Xi_{h}^{-} \rightarrow pK^{-}K^{-}$

- Large local CPV observed in $B^{\pm} \rightarrow 3h$. Can similar behaviour be observed in baryonic modes?
- $\Xi_{h}^{-} \rightarrow pK^{-}K^{-}$ was first observed by LHCb in 3 fb $^{-1}$ from 2011+12 (PRL 118(2017)112004)
- First amplitude analysis of $\Xi_b^- \rightarrow pK^-K^-$
 - Run 1: 3 fb⁻¹ from 2011+12
 - Run 2: 2 fb⁻¹ from 2015+16
 - First amplitude analysis of any baryon decay accounting for CP violation
- Search for $\Omega_{h}^{-} \rightarrow pK^{-}K^{-}$ decays
 - New upper limit set on

$$\mathcal{R} = \frac{f_{\Omega_b}}{f_{\Xi_b}} \times \frac{BF(\Omega_b^- \to pK^-K^-)}{BF(\Xi_b^- \to pK^-K^-)}$$

Run 1 $N^{\pm b} = 193 \pm 21$

Charmless b-meson and b-baryon decays

Amplitude Analysis of $\Xi_b^- o p K^- K^-$

- Model-dependent amplitude analysis
- Signal region: $m(\Xi_b^-)\pm 40$ MeV
 - Signal purity: 63%(Run 1) 70%(Run 2)
- Phase space of $\Xi_b^- \rightarrow p K^- K^-$ has 5 degrees of freedom
 - Assumption: Ξ_b produced unpolarised, decay characterised by 2 variables
- Resonant structures observed in $m_{low}^2(pK)$
 - Λ^* and Σ^* resonances expected

Fit to data

Baseline model:

- Contributions from Λ^* and Σ^*
 - Λ(1520) used as reference
 - modelled as Breit-Wigner
- Nonresonant components
 - modelled as exponential
- Fit to data:
 - Simultaneous fit to Run1 & Run2
 - No significant difference between Ξ_b^- and Ξ_b^+

э

A D N A B N A B N A B N

Results: Ratio \mathcal{R} of Ω_b^- and Ξ_b^- branching fractions

Combined Run1+Run2 results

Branching Fraction Limit

$$\mathcal{R} \equiv \frac{f_{\Omega_b^-}}{f_{\Xi_b^-}} \times \frac{\mathcal{B}(\Omega_b^- \to pK^-K^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)} = (24 \pm 21(stat) \pm 14(sys)) \times 10^{-3}$$

Consistent and more precise than the previous LHCb measurement performed on Run 1 data (PRL 118(2017) 071801)

No observation of $\Omega_b^- \to p K^- K^-$ decay mode

Upper limit on the ratio of fragmentation and branching fractions:

$$\mathcal{R} \equiv \frac{f_{\Omega_b^-}}{f_{\Xi_b^-}} \times \frac{\mathcal{B}(\Omega_b^- \to pK^-K^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)} < 62(71) \times 10^{-3}$$

Laís Soares Lavra (LPC-Clermont)

Results: Amplitude Analysis

CP-asymmetry

Component	A^{CP} (10 ⁻²)
$\Sigma(1385)$	$-27 \pm 34 \; (\text{stat}) \pm 73 \; (\text{syst})$
$\Lambda(1405)$	$-1 \pm 24 \; (\text{stat}) \pm 32 \; (\text{syst})$
$\Lambda(1520)$	$-5 \pm 9 (\text{stat}) \pm 8 (\text{syst})$
$\Lambda(1670)$	$3 \pm 14 \text{ (stat)} \pm 10 \text{ (syst)}$
$\Sigma(1775)$	$-47 \pm 26 \; (\text{stat}) \pm 14 \; (\text{syst})$
$\Sigma(1915)$	$11 \pm 26 \; (stat) \pm 22 \; (syst)$

No significant A^{CP} is observed

Quasi 2-body Branching Fraction

$\mathcal{B}\left(\Xi_b^- \to \Sigma(1385)K^-\right)$	=	$(0.26 \pm 0.11 \pm 0.17 \pm 0.10) \times 10^{-6}$,
$\mathcal{B}\left(\Xi_b^- \to \Lambda(1405)K^-\right)$	=	$(0.19 \pm 0.06 \pm 0.07 \pm 0.07) \times 10^{-6}$,
$\mathcal{B}\left(\Xi_b^- \to \Lambda(1520)K^-\right)$	=	$(0.76 \pm 0.09 \pm 0.08 \pm 0.30) \times 10^{-6},$
$\mathcal{B}\left(\Xi_b^- \to \Lambda(1670)K^-\right)$	=	$(0.45 \pm 0.07 \pm 0.13 \pm 0.18) \times 10^{-6}$,
$\mathcal{B}\left(\Xi_b^- \to \Sigma(1775)K^-\right)$	=	$(0.22 \pm 0.08 \pm 0.09 \pm 0.09) \times 10^{-6}$,
$\mathcal{B}\left(\Xi_b^- \to \Sigma(1915)K^-\right)$	=	$(0.26 \pm 0.09 \pm 0.21 \pm 0.10) \times 10^{-6}$,

 $\mathcal{B}(\Xi_b^- \to R^-) = \mathcal{B}(\Xi_b^- \to pK^-K^-) \times \mathcal{F}_i$ $\mathcal{B}(\Xi_b^- \to pK^-K^-) = (2.3 \pm 0.9) \times 10^{-6}$

Uncertainties

- statistical
- systematic
- knowledge of $\mathcal{B}(\Xi_b^- \to pK^-K^-)$

Laís Soares Lavra (LPC-Clermont)

Charmless b-meson and b-baryon decays

26th July 2021 21 / 32

Summary

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

イロト イポト イミト イミト 一日

Summary

 $B^+ \rightarrow h^+ h'^+ h'^-$

- Measurements of all combinations of $B^+
 ightarrow h^+ h'^+ h'^-$ relative branching fractions
- All measurements in good agreement with their world-average results
- Significant improvement in the precision

 $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$

- Two different methods to search for CP and P violation: TPA and Energy Test
- No evidence of CP violation
- Observation of P violation over 5σ locally and integrated over all phase space.

 $\Xi_b^-
ightarrow pK^-K^-$

- First amplitude analysis of a baryon accounting for CP violation
- No evidence of CP violation
- Meausurement of six quasi two-body branching fraction of $\Xi_{h}^{-} \rightarrow pK^{-}K^{-}$
- No significant signal of $\Omega_b^- \rightarrow p K^- K^-$
- Set a new upper limit on the ratio of fragmentation and branching fraction of $\Xi_{b}^{-} \rightarrow pK^{-}K^{-}$ and $\Omega_{b}^{-} \rightarrow pK^{-}K^{-}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you for your attention

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

э

Backup slides

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

26th July 2021

< □ > < □ > < □ > < □ > < □ >

25 / 32

 $\Lambda_b^0
ightarrow p \pi^- \pi^+ \pi^-$

$\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$: Triple Product Asymmetries

Triple products are \hat{T} -odd¹ observables built combining the momentum \vec{p} of three final states particles in the Λ_b^0 frame:

$$C_{\hat{T}}\equiv ec{p}_{
ho}\cdot \left(ec{p}_{\pi_{fast}} imesec{p}_{\pi_{+}}
ight)$$

Triple product asymmetries (TPA):

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)} \qquad \qquad \bar{A}_{\hat{T}} = \frac{\bar{N}(\bar{C}_{\hat{T}} > 0) - \bar{N}(\bar{C}_{\hat{T}} < 0)}{\bar{N}(\bar{C}_{\hat{T}} > 0) + \bar{N}(\bar{C}_{\hat{T}} < 0)}$$

 $N, \overline{N} \rightarrow \text{number of } \Lambda_b^0, \Lambda_b^{\overline{0}} \text{ decays}$ Clean CP and P violating asymmetries observables are defined as:

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}})$$
 $a_{P}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}})$

Measurements in bins and integrated over the phase space

 \hat{T} is an operator called motion-reversal that reverts momentum and helicities. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Charmless b-meson and b-baryon decays

26th July 2021 27 / 32

$\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$: Triple Product Asymmetries

Phase space bins measurements:

- Scheme A: asymmetries measured as function of the polar and azimuthal angles of p(Δ⁺⁺) in the Δ⁺⁺(N^{*+}) rest frame
- Scheme B: asymmetries measured as a function of the angle $|\Phi|$, between the decays planes $p\pi_{fast}^-$ and $\pi^+\pi_{slow}^-$
- $A_1, B_1
 ightarrow m(p\pi^+\pi^-_{slow}) > 2.8~{
 m GeV}/c^2$ dominated by a_1 resonance
- A2,B2 ightarrow $m(p\pi^+\pi^-_{slow}){<}2.8~{
 m GeV}/c^2$ dominated by N*+ decay

$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$: Energy Test

- Model independent unbinned test sensitive to local asymmetries
- Statistical test T used to calculate the differences between two samples:

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{i \neq j}^{\bar{n}} \psi_{ij} - \frac{1}{n\bar{n}} \sum_{i=1}^{n} \sum_{j=1}^{\bar{n}} \psi_{ij}$$

 $n(\bar{n}) \rightarrow$ number of $\Lambda_b^0(\bar{\Lambda}_b^0)$ candidates and $\psi_{ij} = e^{-d_{ij}^2/2\delta^2} \rightarrow d_{ij}$ is the distance in phase space of each pair of candidates ij and δ is the distance scale (free parameter)

• 4 subsamples defined \rightarrow 3 tests performed (2 for CPV + 1 for P violation)

p-value results obtained for each test in 3 different δ

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{\rm GeV^2}/c^4$	$13~{ m GeV^2}/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
p-value (CP conservation, P odd)	1.5×10^{-1}	6.9×10^{-2}	6.5×10^{-2}
p-value (P conservation)	1.3×10^{-7}	4.0×10^{-7}	1.6×10^{-1}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\Xi_b^-
ightarrow p K^- K^-$

Laís Soares Lavra (LPC-Clermont) Charmless b-meson and b-baryon decays

$\Xi_b^- ightarrow p K^- K^-$: Total PDF of the phase space

$$\mathcal{P}_{tot}^{Q}(\Omega) = \frac{1}{N_{tot}} [N_{sig} \mathcal{P}_{sig}^{Q}(\Omega) + N_{comb} \frac{(1 - QA_{comb})}{2} \mathcal{P}_{comb}(\Omega) + \frac{N_{cf}}{2} \mathcal{P}_{cf}(\Omega)]$$

 $\Omega \rightarrow$ Phase space in terms of DP variables

Signal PDF

$$\mathcal{P}_{sig}^{Q}(\Omega) = rac{\epsilon^{Q}(\Omega)}{\Gamma} rac{d\Gamma^{Q}}{d\Omega}$$

- dΓ/dΩ (differential decay density)
 Helicity formalism to parametrise the decay dynamics and isobar formalism to coherently sum all intermediate states
- $\epsilon(\Omega)$: signal efficiency

Combinatorial Background PDF

- Modelled using neural networks
- Training in the right sideband region
- PDF is predicted by extrapolating the model at Ξ_b mass

Cross-Feed PDF

• $\equiv_b^- \rightarrow pK^-\pi^-$ simulated samples weighted according to a model consisting of Λ and N resonances

$\Xi_b^- \rightarrow p K^- K^-$: Outputs of the amplitude analysis

Decay density defined using helicity and isobar formalism:

$$\frac{d\Gamma^{Q}}{d\Omega} = \frac{1}{(8\pi m_{\Xi_{b}})^{3}} \sum_{M_{\Xi_{b}},\lambda_{p}} |\sum_{R} \mathcal{A}^{Q}_{R,M_{\Xi_{b}},\lambda_{p}}|^{2}$$

• $A \rightarrow$ symmetrised decay amplitude

Dalitz Plot fit output:

Laís Soares Lavra (LPC-Clermont)

Charmless b-meson and b-baryon decays

26th July 2021 32 / 32