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Abstract
Two of the most well-known quantum algorithms, those introduced by Deutsch–Jozsa
and Bernstein–Vazirani, can solve promise problems with just one function query,
showing an oracular separation with deterministic classical algorithms. In this work,
we generalise those methods to study a family of quantum algorithms that can, with
just one query, exactly solve promise problems stated over Boolean functions. We also
show that these problems can be naturally ordered, inducing a partially ordered set of
promise problems. We study the properties of such a poset, showing that the Deutsch–
Jozsa and Bernstein–Vazirani problems are, in a certain sense, extremal problems in it,
determining some of its automorphisms and proving that it is connected.We also prove
that, for the problems in the poset, the corresponding classical query complexities can
take any value between 1 and 2n−1 + 1.
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1 Introduction

Since the dawn of quantum computing [7,9,14], special attention has been paid to
promise problems defined over Boolean functions. In fact, Deutsch’s algorithm [7],
which is arguably the first quantum algorithm, its generalisation in Deutsch–Jozsa
algorithm [8] and the famous Bernstein–Vazirani [1] algorithm are all of themmethods
of this kind. The interest of these algorithms lies in the fact that they can exactly
solve promise problems with just one function query (through the use of a quantum
oracle that can be queried in superposition), whereas classical deterministic algorithms
require a number of queries that grows (even exponentially, as in the case of the
Deutsch–Jozsa problem) with the size of the function input in order to complete the
same task.

Although the importance of these problems and algorithms is mainly theoretical,
they prepared the ground, together with related methods such as the one used to solve
Simon’s problem [18], for later quantum computing breakthroughs, including the
celebrated Grover algorithm [11] and the famous Shor’s methods for factoring and for
finding discrete logarithms [17].

Studying these and other quantum algorithms under a common framework is also
interesting because it can lead to the discovery of new algorithms and to a better
understanding of their properties. For instance, both Shor’s and Simon’s algorithms
are particular cases of quantum solutions to the Hidden Subgroup Problem [13] and it
has also been shown (see [6]) that both Grover’s algorithm and a number of quantum
walks [16,19,20] can be seen as instances of a family of methods called quantum
abstract detecting systems, something that can help achieve better detection rates in
some practical problems [4,5].

In this work, we introduce an extension of the concept of promise problem over
Boolean functions and study in which cases they can be solved in the quantum setting
with just one query by using the same scheme as in Deutsch–Jozsa and Bernstein–
Vazirani algorithms. We show that these problems naturally form a partially ordered
set and we study some of its properties, such as its maximal and minimal elements.
We also prove that in the deterministic classical case, these problems may require any
number of queries from 1 to 2n−1 + 1.

The rest of the paper is organised as follows. In Sect. 2, we define the type of
promise problems that we will be studying in this work and show that the problems
solved by Deutsch–Jozsa and Bernstein–Vazirani algorithms are particular cases of
them.We also prove some useful results about these problems. In Sect. 3, we show that,
by defining a natural binary relationship, the set of these problems can be partially
ordered and we study some of the properties of the resulting poset, including its
minimal and maximal elements, some of its automorphisms and showing that it is
connected. Section 4 states and proves one of the main theorems of this work: That
the range of complexities of deterministic classical algorithms for solving the promise
problems considered in this paper is as diverse as possible. After that, in Sect. 5, we
present numerical results of the execution on actual quantum computers of some the
problems introduced in this paper. Finally, in Sect. 6, we raise some conclusions and
present some ideas for future research.

123



On a poset of quantum exact promise problems Page 3 of 17   214 

2 Quantum exact promise problems

The problems that are solved with the Deutsch–Jozsa and Bernstein–Vazirani algo-
rithms are promise problems defined over Boolean functions. In the first of these
algorithms, we are given a Boolean function f which is either constant or balanced
(that is, f takes value 0 on exactly half of inputs and value 1 on the other half) and
we need to determine which of the two cases we are in; in the second, we are given
a linear Boolean function f and we are asked to find the Boolean string s such that
f (x) = x · s mod 2.
In this paper, we study a generalisation of this kind of problems that is given in the

following definition.

Definition 1 A promise problem over Boolean functions of n variables is given by
a collection of m ≥ 2 non-empty and pairwise disjoint subsets of functions f :
{0, 1}n → {0, 1}. That is, a collection {Fi }mi=1 with m ≥ 2 such that

– Fi �= ∅ for i = 1, . . . ,m
– Fi ∩ Fj = ∅ if i �= j
– Fi ⊆ 2{0,1}n for i = 1, . . . ,m

The problem we are asked to solve is, given (a black box for computing) f ∈ F =⋃m
i=1 Fi , determine the unique i such that f ∈ Fi .
When the size n is clear from the context, we will call {Fi }mi=1 simply a promise

problem.

Notice that, for a fixed n, both Deutsch–Jozsa and Bernstein–Vazirani solve
problems as those considered in Definition 1. In the case of Deutsch–Jozsa, we
have m = 2, F1 = { f : f ∈ 2{0,1}nand f is constant} and F2 = { f : f ∈
2{0,1}nand f is balanced}. In the case of Bernstein–Vazirani, m = 2n and Fi = { fsi },
where fsi (x) = x · si mod 2 and si is the string of length n that gives the binary
expansion of i .

Of the possible promise problems over Boolean functions, we are especially inter-
ested in those that can be solved exactly with quantum algorithms that have access
to a quantum oracle implementing the Boolean function f whose set Fi we need to
determine. This is formalised in the following definition.

Definition 2 Consider P = {Fi }mi=1, a promise problem over Boolean functions of n
variables and a quantum algorithm A that has access to an oracle O f for a Boolean
function f of n variables and gives a string r ∈ {0, 1}n as output. We say that A is
exact for P if there exists a partition {Bi }mi=1 of {0, 1}n such that when f is taken from⋃m

i=1 Fi we have

Pr(A outputs a string in Bi | f ∈ Fi ) = 1

That is, if O f is a quantum oracle for a function f in Fi , then A will always return a
string from Bi .
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Fig. 1 Quantum circuit for the
Deutsch–Jozsa and
Bernstein–Vazirani algorithms

Fig. 2 Quantum circuit with
phase oracle

Remark 1 The partition {Bi }mi=1 in Definition 2 is not necessarily unique. For instance,
there may exist strings which are never output by the algorithm, so they can belong to
any of the Bi ’s with no effect on its exactness.

If we have a quantum algorithm A that is exact for a promise problem P , then we
can, obviously, solve P by using A once. Given f , we just need to run A with oracle
O f and determine which Bi the output belongs to. This is the case of the Deutsch–
Jozsa and Bernstein–Vazirani algorithms, which use the circuit given in Fig. 1 to
solve their promise problems. In the case of Deutsch–Jozsa, the partition is given by
B1 = {0n} and B2 = {0, 1}n\{0n}. If the algorithm returns 0n , we know that f is
constant; otherwise, the function is balanced. For the Bernstein–Vazirani algorithm,
the partition is clearly {Bi }2n−1

i=0 with Bi = {si } (and, si , as above, the binary expansion
of i). In fact, both algorithms use just one query to the oracle O f , which leads us to
our main definition.

Definition 3 A promise problem P over Boolean functions of n variables is said to
be 1-quantum exact (or, simply, 1-qe) if the algorithm that uses one query to oracle
following the circuit of Fig. 1 is exact for P .

It is a well-known fact that the ancillary lowermost qubit in the circuit of Fig. 1 is
only used to facilitate a phase kickback when the Boolean function f implemented
by the oracle returns 1. Thus, such an ancillary qubit can be removed if we replace
the usual Boolean oracle with a phase oracle (see, for instance, [10]). That is, instead
of considering O f a unitary such that O f |x〉|y〉 = |x〉|y ⊕ f (x)〉 we define O f by
O f |x〉 = (−1) f (x)|x〉 (which is clearly unitary). Then, the circuit with phase oracle
is the one depicted in Fig. 2.

Wewill consider all our oracles to be phase oracles fromnowon, something thatwill
greatly simplify our definitions and proofs. We redefine, accordingly, 1-qe algorithms
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in terms of the quantum circuit of Fig. 2. We will also identify Boolean functions with
their phase oracles so, for instance, the constant function f = 0 will be identified with
the identity I and the constant function f = 1 will be identified with −I .

Our goal in the rest of this section is to prove some necessary and sufficient con-
ditions that promise problems need to verify in order to be 1-qe. We start by fixing
some notation and by stating and proving a useful lemma about the representation of
phase oracles.

Definition 4 For a fixed non-negative integer n,s we denote by Zi , with 1 ≤ i ≤ n,
the tensor product of matrices

i−1
︷ ︸︸ ︷
I ⊗ . . . ⊗ I ⊗Z ⊗

n−i
︷ ︸︸ ︷
I ⊗ . . . ⊗ I

where I is 2×2 identity matrix and Z is the Pauli matrix

(
1 0
0 −1

)

. For a binary string

t of length n, we denote

Zt =
n∏

i=1

Zti
i

where ti is the ith bit in t .

The following, very useful lemma follows from the results in [3]. For the sake of
completeness, we provide here a different, self-contained proof.

Lemma 1 If O f is the phase oracle of a Boolean function f of n variables, then

O f =
∑

t∈{0,1}n
at Z

t

with at = 1
2n T r(Z

t O f ).
In particular, if f is a linear form given by f (x) = x · s mod 2 for some s ∈ {0, 1}n,

then O f = Zs.

Proof It is clear that O f can be expressed as

O f = I − 2
∑

f (x)=1

|x〉〈x |

We also know (see [15], for instance) that any 2n ×2n matrix can be written as a linear
combination of tensor products of n Pauli matrices. Thus, O f = ∑

bP P where the
matrices P are tensor products of Paulis. If Q is also a tensor product of Paulis, we
have

Tr(Q · O f ) =
∑

bPTr(Q · P) = bQTr(Q
2) = bQTr(I ) = 2nbQ

123



  214 Page 6 of 17 E. F. Combarro et al.

because the product of two different tensor products of Paulis is traceless and the
square of a tensor product of Paulis is the identity.

Now, suppose P contains at least one X or one Y . Then

bP = 2−nT r(P · O f ) = Tr(P) − 2
∑

f (x)=1

Tr(P|x〉〈x |) = 0 − 2
∑

f (x)=1

〈x |P|x〉 = 0

since 〈0|X |0〉 = 〈0|Y |0〉 = 〈1|X |1〉 = 〈1|Y |1〉 = 0.
Thus, it holds that if bP �= 0 then P is of the form Zt for some binary string t .
Finally, if f (x) = x · s mod 2, since for every x ∈ {0, 1}n we have O f |x〉 =

(−1) f (x)|x〉 = (−1)x ·s mod 2|x〉 = Zs |x〉, we get O f = Zs . ��
Now, we prove a couple of lemmas that relate the expression for phase oracles that

we have found in Lemma 1 with the probabilities of measuring certain outcomes with
the circuit of Fig. 2.

Lemma 2 If we use the phase oracle O f of a Boolean function of n variables in the
circuit of Fig. 2, then the probability of measuring s is

(
Tr(ZsO f )

2n

)2

In particular, if f (x) = x · s mod 2 for some t ∈ {0, 1}n, then the probability of
measuring s is 1 if s = t and 0 otherwise.

Proof The probability of measuring s is given by

Pr(s) = |〈sH⊗nO f H
⊗n0〉|2

But, from Lemma 1 we get

H⊗nO f H
⊗n =

∑

t∈{0,1}n
at H

⊗n Z t H⊗n =
∑

t∈{0,1}n
at X

t

and, consequently, it holds that

Pr(s) =
∣
∣
∣
∣
∣
∣
〈s|

∑

t∈{0,1}n
at X

t |0〉
∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

∑

t∈{0,1}n
at 〈s|Xt |0〉

∣
∣
∣
∣
∣
∣

2

= |as |2

because 〈s|Xt |0〉 = 〈s|t〉 = δs,t . The result now follows from the expression of at
given in Lemma 1 and the fact that both Zs and O f are real operators. ��
Lemma 3 Consider f a Boolean function of n variables and define S = {s ∈ {0, 1}n :
f (s) = 1}. For a fixed binary string t �= 0, define also T0 = {s ∈ S : s · t = 0} and
T1 = S\T0. Then
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a) Tr(I · O f ) = 0 ⇐⇒ |S| = 2n−1 ( ⇐⇒ f is balanced)

b) For t �= 0, T r(Zt · O f ) = 0 ⇐⇒ |T0| = |T1| = |S|
2

Proof Toprove thefirst equivalence,we just need to notice thatO f = I−2
∑

s∈S |s〉〈s|
and thus

Tr(I · O f ) = Tr(I ) − 2
∑

s∈S
T r(|s〉〈s|) = 2n − 2|S|

For the second equivalence, notice that if t �= 0 then

Tr(Zt · O f ) = Tr(Zt ) − 2
∑

s∈S
T r(Zt |s〉〈s|) = 0 − 2

∑

s∈S
〈sZ t s〉

= −2
∑

s∈S
〈s(−1)t ·ss〉 = −2

∑

s∈S
(−1)t ·s = −2

⎛

⎝
∑

s∈T0
1 −

∑

s∈T1
1

⎞

⎠

= −2(|T0| − |T1|).

��
As a consequence of these lemmas, we have the following necessary condition for a
Boolean function to be part of a 1-qe promise problem.

Proposition 1 If f is a Boolean function of n variables that is in a 1-qe promise
problem, then the size of S = {s ∈ {0, 1}n : f (s) = 1} must be even.
Proof Suppose that {Fi }mi=1 is 1-qe promise problem and that f ∈ Fi . Then, there
exists a partition {Bi }mi=1 of {0, 1}n such that when we use O f in the circuit of Fig. 2
we always obtain as a result a string in Bi . It is clear from Definition 2 that every Bi
is non-empty, and since m ≥ 2, there exists a string s ∈ {0, 1}n such that s /∈ Bi .
Then, the probability of obtaining s when using O f in the circuit of Fig. 2 is 0 and it
follows from Lemma 2 that Tr(ZsO f ) = 0. This implies, on virtue of Lemma 3, that
|S| must be even. ��

The condition in Proposition 1 is not sufficient for a function to be part of a 1-qe
problem, as the next example shows.

Example 1 The Boolean function f on 4 variables that takes value 1 on 0110, 0111,
1001, 1011, 1101, 1110 and 0 on the rest of strings is not part of any 1-qe problem.
Indeed, it can be readily seen that Tr(Zt O f ) �= 0 for every string t ∈ {0, 1}4.

However, we can give some sufficient conditions for Boolean functions to be
included in 1-qe problems. We state and prove them in the following proposition.

Proposition 2 Consider f a Boolean function on n variables and S = {s ∈ {0, 1}n :
f (s) = 1}. Then, if any of the following conditions holds, there exists a 1-qe promise
problem that includes f :
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1. |S| = 0
2. |S| = 2n

3. |S| = 2n−1

4. |S| = 2
5. |S| = 2n − 2
6. |S| = 4
7. |S| = 2n − 4
8. n = 1
9. |S| is even and n = 2

10. |S| is even and n = 3

Proof 1. f (s) = 0 for every string s, so f is part of Deutsch–Jozsa.
2. f (s) = 1 for every string s, so f is part of Deutsch–Jozsa.
3. f is balanced, so f is part of Deutsch–Jozsa.
4. Let s1 and s2 be the two strings on which f takes value 1. They differ on at least

a bit, say in position i . If we consider the string t which is 0 on every bit but the
i th, then Zt verifies condition b) in Lemma 3 and we have Tr(Zt O f ) = 0. Thus,
the promise problem with F1 = { f } and F2 = {g}, where g is the linear Boolean
function g(s) = t · s mod 2, is 1-qe (with B1 = {0, 1}n\{t} and B2 = {t}).

5. Consider g(s) = f (s)⊕1 and notice that Og = −O f and that f verifies condition
4.

6. Let s1, s2, s3 and s4 be the four strings on which f takes value 1. If there exists a
position in which two of them are 0 and the other two are 1, we can proceed as in
4. In other case, for each position in which the strings differ, there are exactly 3
which are equal and the other one is different. Consider a position i in which those
three strings differ from the fourth.We can suppose, without loss of generality, that
s1 is 0 on that position while the other three strings are 1. (If not, we can reorder
the strings, and the case in which the value of the bit is 1 is analogous.) Now,
there must be another position j in which s2, s3 and s4 differ. Again without loss
of generality, we can suppose that s2 is different from s3 and s4 on that position.
Then, s1 must be equal to s3 and s4 in position j . We consider the string t that is 1
on positions i and j and 0 everywhere else. Then, if we define h(s) = t · s mod 2
we have h(s1) = h(s2) �= h(s3) = h(s4) and we can apply case b in Lemma 3.

7. As in 5, consider g(s) = f (s) ⊕ 1 to reduce to case 6.
8. All Boolean functions on 1 variable are included in Deutsch’s problem.
9. We have 2n = 4 and thus |S| is either 0, 2 or 4 and we are in one of the previous

cases.
10. We have 2n = 8 and thus |S| is either 0, 2, 4, 6 or 8 and we are in one of the

previous cases. ��

Observe that because of Proposition 2, Example 1 is minimal in the number of
variables and size of S.

To close this section, we give a characterisation of 1-qe promise problems. To do
that, we first need to define a notion that will also prove useful in the rest of this paper.
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Definition 5 Given f a Boolean function of n variables, we denote

T ( f ) := {s ∈ {0, 1}n : Tr(ZsO f ) �= 0}

and if F is a set of Boolean functions we define

T (F) := ∪ f ∈FT ( f ).

Theorem 1 Consider, P = {Fi }mi=1, a promise problem on Boolean functions of n
variables. Then P is 1-qe if and only if T (Fi ) ∩ T (Fj ) = ∅ whenever i �= j .

Proof ⇐ We can define

– Bi = T (Fi ), for i = 1, . . . ,m − 1
– Bm = {0, 1}n\ ∪m−1

i=1 Bi

Lemma 2 shows that this partition makes the problem 1-qe.

⇒ Since P is 1-qe, there exists a partition {Bi }mi=1 of {0, 1}n such that when we take
f ∈ Fi and we use the circuit of Fig. 2 with O f we always obtain a string from
Bi . Lemma 2 then implies that T (Fi ) ⊆ Bi and the result follows because the sets
Bi are pairwise disjoint. ��

3 A poset of quantum exact promise problems

In this section, we define a natural order relationship among promise problems and we
show that Deutsch–Jozsa and Bernstein–Varizirani aremaximal andminimal elements
in the poset of 1-qe problems for a fixed number of variables. Then, we study some
of the automorphisms of the poset. We also introduce some notions that allow us to
prove that it is connected.

We begin by defining the order relationship.

Definition 6 Let {Fi }m1
i=1 and {G j }m2

j=1 be promise problems on n variables. We say
that {Fi } ≤ {G j } if for each i there exists j such that Fi ⊆ G j .

Obviously,≤ is reflexive and transitive. It is also antisymmetric, for suppose {Fi } ≤
{G j } and {G j } ≤ {Fi }. Then, for every Fk we know that there exists Gl such that
Fk ⊆ Gl . Also, there exists Fi such that Gl ⊆ Fi , which implies Fk ⊆ Fi . But all
the sets in {Fi } are pairwise disjoint, so this implies Fk = Fi and, hence, Fk = Gl .
Therefore, {Fi } = {G j }.

As an example of this order relationship, notice, for instance, that for fixed n,
Bernstein–Vazirani ≤ Deutsch–Jozsa, because all nonzero linear functions are bal-
anced.

Now, we define some additional notions that will help us proving properties of the
poset of 1-qe problems.

Definition 7 Consider a 1-qe problem {Fi }mi=1. We say that the problem is complete if
for every f /∈ ∪m

i=1Fi there exist i �= j such that T ( f )∩T (Fi ) �= ∅ �= T ( f )∩T (Fj ).
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Fig. 3 Hasse diagram of the poset of 1-qe problems for n = 1

The intuitive meaning of this definition is that if a problem is complete, then you
cannot extend it, to form another 1-qe problem, by including a new Boolean function
in any of its sets (for it already includes all the Boolean functions that can be exactly
distinguished with those outputs).

A related notion is given in the following definition.

Definition 8 Consider a promise problem {Fi }mi=1 on n variables. We say that it is
exhaustive if for every s ∈ {0, 1}n there exists i such that s ∈ T (Fi ).

Notice that a complete problem is also exhaustive. In fact, suppose that {Fi }mi=1 is not
exhaustive. Then, there exists s ∈ {0, 1}n such that s /∈ T (Fi ) for every i = 1, . . . ,m.
Then, we can consider f = Zs and we have T ( f ) = {s} and, thus, T ( f )∩T (Fi ) = ∅
for every i and the problem cannot be complete. However, the converse is not true.
For instance, both Deutsch–Jozsa and Bernstein–Vazirani are exhaustive, but only
Deutsch–Jozsa is complete (notice that −I is not in Bernstein–Vazirani but T (−I ) =
0n , which only intersects one of the T (Fi ) of the problem).

In the following, we are interested in studying the structure of the poset of 1-
qe problems for a fixed number of variables n. We will focus first on its minimal
and maximal elements, because it is clear that in general, there are no minimum or
maximum elements. For instance, it is easy to see that {{I }, {Z1}} and {{−I }, {Z1}}
are incomparable and there cannot be any element that is strictly smaller than any
of them. For n = 1, the poset (see Fig. 3 for its structure) possesses a maximum
element, which is Deutsch–Jozsa because it contains all possible Boolean functions
and they cannot be partitioned in a different way because T (I ) = T (−I ) = {0} and
T (Z1) = T (−Z1) = {1}. However, for n > 1 there is no maximal element. To see it,
we first prove the following proposition.

Proposition 3 For n ≥ 1, Deutsch–Jozsa is a maximal element of the poset of 1-qe
problems (and also a maximum element if n = 1).

Proof It follows easily from noticing that Deutsch–Jozsa only has two elements and
it is complete. ��

If we now consider n > 1 and define

F1 = { f ∈ 2{0,1}n : T ( f ) ⊆ {(0, . . . , 0, 0), (0, . . . , 0, 1)}}

and

F2 = { f ∈ 2{0,1}n : T ( f ) ⊆ {0, 1}n\{(0, . . . , 0, 0), (0, . . . , 0, 1)}}
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then it is clear that {F1, F2} and Deutsch–Jozsa are incomparable and that {F1, F2}
is also maximal (it is complete and has only two elements).

The number ofmaximal elements can be determinedwith the following proposition.

Proposition 4 The poset of 1-qe problems on n variables has 22
n−1 − 1 maximal

elements.

Proof Clearly, any maximal problem must have exactly two sets of functions. (Other-
wise, we can obtain join two of the sets to obtain a new problem which is above the
original one.) For any ∅ � B � {0, 1}n , we can consider

F1 = {T ( f ) ⊆ B}

and

F2 = {T ( f ) ⊆ {0, 1}n\B}

It is easy to see that {F1, F2} is maximal and that any maximal problem must be of
this form. There are 22

n − 2 choices for B. However, choosing B and {0, 1}n\B leads
to the same problem. Thus, the total number of possibilities is 22

n−1 − 1. ��
Notice, also, that every maximal element is necessarily complete and thus exhaus-

tive.
Now, we turn our attention to minimal elements. It is easy to see that if f1 and f2

are Boolean functions such that T ( f1) ∩ T ( f2) = ∅ then {{ f1}, { f2}} is minimal in
the poset of 1-qe problems. A situation a little bit more interesting appears when we
restrict ourselves to exhaustive problems. This is addressed in the next proposition.

Proposition 5 There are at least 22
n
minimal elements in the poset of 1-qe exhaustive

problems on n variables and Bernstein–Vazirani is one of them.

Proof For s ∈ {0, 1}n , we define Fs as either {Zs} or {−Zs}. It is clear that, then, {Fs}
is exhaustive and that there is no other exhaustive problem G such that G < {Fs}.
The number of such problems is exactly 22

n
and when choose Fs = {Zs} for all s we

obtain the Bernstein–Vazirani problem. ��
We now consider two natural transformations of 1-qe problems that, in fact, induce
automorphisms of the poset (that is, bijective transformations that preserve the order
of the elements). We start with the simplest one, which simply takes each function f
in a problem to its complement (i.e. the function that is 0 when f is 1 and 1 when f
is 0).

Theorem 2 Consider the transformation I that takes {Fi }mi=1 to {F ′
i }mi=1 given by

F ′
i = { f ⊕ 1 : f ∈ Fi }

Then, I is an automorphism of the poset of 1-qe problems and Deutsch–Jozsa is one
of its fixed points.
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Proof Notice that if the oracle associated with f is O f , then the oracle associated
with f ⊕ 1 is −O f . As a consequence, {F ′

i }mi=1 is a 1-qe problem and if F ≤ G,
then I(F) ≤ I(G). Also, I is bijective because it is its own inverse, so it is an
automorphism. Finally, it is clear that I takes Deutsch–Jozsa to itself, because the
complement of a balanced function is balanced and the complement of the constantly
0 function is the constantly 1 function. ��

The other transformation of 1-qe problems depends on the choice of a string s ∈
{0, 1}n and it is given in the following theorem.

Theorem 3 Given s ∈ {0, 1}n, consider the transformation Ls that takes {Fi }mi=1 to
{F ′

i }mi=1 given by

F ′
i = { f ⊕ ls : f ∈ Fi }

where ls is the linear form ls(x) = x · s mod 2. Then, Ls is an automorphism of the
poset of 1-qe problems and Bernstein–Vazirani is one of its fixed points.

Proof The proof is similar to the one of the previous theorem. We only need to note
that if the oracle associated with f is O f , then the oracle associated with f ⊕ ls is
O f Zs . From this, it follows easily that {F ′

i }mi=1 is 1-qe and thatLs preserves the order.
Moreover, Ls is its own inverse and, hence, an automorphism. Since the xor of linear
Boolean functions is, again, a Boolean linear function, it also follows that Ls fixes the
Bernstein–Vazirani problem. ��

It is interesting to note that if we apply Ls to the Deutsch–Jozsa problem, then we
recover the generalised Deutsch–Jozsa problems introduced in Section 4 of [3].

Another property of these automorphisms is that they preserve the properties of
being exhaustive and complete.

Proposition 6 If F is a 1-qe complete (resp. exhaustive) problem, then Ls(F), for all
s ∈ {0, 1}n and I(F) are complete (resp. exhaustive).

Proof Suppose that F = {Fi }mi=1 is complete. Consider I(F) = {F ′
i }mi=1. Then,

T (F ′
i ) = T (Fi ) and, hence, I(F) is also complete. The same argument shows that if

f is exhaustive, then I(F) is exhaustive.
Now, fix s ∈ {0, 1}n and consider Ls(F) = {F ′′

i }mi=1. It is easy to see that T (F ′′
i ) =

T (Fi ) ⊕ s, from which, again, it follows that Ls(F) is complete if F is complete and
exhaustive if F is exhaustive. ��

To complete this section, we are now going to prove that the poset of 1-qe problems
is connected.

Theorem 4 For each fixed n, the poset of 1-qe problems on n variables is connected.

Proof It is enough to prove that, given F = {Fi }mi=1, it is connected to Bernstein–
Vazirani. Define G by

Gi = { f ∈ 2{0,1}n : T ( f ) ⊆ T (Fi )}
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for i = 1, . . . ,m − 1 and

Gm = { f ∈ 2{0,1}n : T ( f ) ⊆ {0, 1}m\ ∪m−1
i=1 T (Fi )}.

Clearly, F ≤ G and G is complete and, thus, exhaustive. Then, in particular, every
Zi is in some set of G and, thus, Bernstein–Vazirani is below G and, consequently,
connected to F . ��

4 Complexity with classical deterministic algorithms

This section shows that the classical query complexity of the 1-qe problems we have
been studying can have a wide range of values. In fact, in the two theorems of this
section we give constructions to obtain 1-qe problems with particular classical query
complexities.

Theorem 5 Fix n ≥ 1 and consider k such that 1 ≤ k ≤ 2n−1 +1. Then, there exists a
1-qe problem that, with a deterministic classical algorithm, requires exactly k queries
to be solved.

Proof Consider A a set of exactly k binary strings of length n. Consider, also, B the
set of Boolean functions f such that f is balanced and there exists s ∈ A such that
f (s) = 1.
Clearly, {{I }, B} is a 1-qe problem, because if f ∈ B, then f is balanced and thus

the probability of obtaining 0 when using the circuit of Fig. 2 is 0, while for I that
probability is 1.

Obviously, the problem can be solved with k classical queries because, given f ,
it is enough to check f (s) for every s ∈ A. If f (s) = 1 for some s, then f ∈ B.
Otherwise, f = I (remember that we are using phase oracles and, hence, I is the
Boolean function that is identically 0).

However, k − 1 classical queries are not sufficient to solve the problem. In fact, for
any set C of k − 1 strings there exists f ∈ B such that f (s) = 0 for every s ∈ C . To
see this, notice that k − 1 ≤ 2n−1 and then we can define f such that

1. f (s) = 0 for every s ∈ C
2. f (s) = 1 for every s ∈ A\C
3. f is balanced

In order to prove this, we need to consider two possible cases. If A ∩ C = ∅ then
necessarily k − 1 ≤ 2n−1 − 1, because if we had k−1 = 2n−1 then we would have
|C | = 2n−1 and |A| = 2n−1 + 1 and then these two sets would not be disjoint. Then,
f is 0 on k − 1 strings, 1 on k strings and since k + (k − 1) = 2k − 1 ≤ 2n − 1 we
have enough “unset” strings to make f balanced.

On the other hand, if A∩C �= ∅ then |C | = k−1 ≤ 2n−1 and |A\C | ≤ k−1 ≤ 2n−1

so, again, we have enough free strings to make f balanced. ��
The construction used in the proof of the previous theorem can be extended to

obtain uniform families of 1-qe problems with given classical query complexities, as
the following corollary shows.
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Fig. 4 Original circuits with phase oracles

Corollary 1 If g : N → N is a computable function such that 1 ≤ g(n) ≤ 2n−1+1 for
each n, then there exists a uniform family of 1-qe problems Fn such that the classical
query complexity of Fn is exactly g(n).

Proof We can simply use the construction in the proof of Theorem 5 with A = An =
{The first g(n) strings in {0, 1}n} to construct Fn . Then, the classical query complexity
of Fn is exactly g(n). ��

5 Experiments on quantum hardware

In this section,we present some experiments thatwehave conducted on actual quantum
computers with the type of problems that we have introduced in this paper. Although,
as we have shown, 1-qe problems can be solved exactly with just one quantum query,
this presupposes the existence of fault-tolerant quantum computers, while the devices
that are available today are still subject to noise and gate and readout errors.

To test the possibility of solving 1-qe problems on current quantum computers,
we have designed phase oracles for the four Boolean functions involved in the 1-qe
problems of Fig. 3 and implemented them on one of the quantum devices accessible
through IBM Quantum [12]. Namely, we have used ibmq_armonk, an IBM Quantum
Canary Processor of one qubit. The implementations of these phase oracles were then
integrated in the circuit of Fig. 2 to obtain the circuits shown in Fig. 4. We have
included barriers on both sides of the oracle to prevent cancellation or simplifications
of the Hadamard gates with the gates of the oracle (which must be treated as a black
box). This leads to the transpiled circuits shown in Fig. 5, which are the ones actually
executed on the quantum computer.

Notice that the IBM Quantum transpiler detects the presence of a physically irrel-
evant global phase in the circuits for −I and −Z and generates exactly the same
transpiled circuits for I and −I and for Z and −Z . For this reason, we only need to
actually run the circuits of Fig. 5a, b. We executed these two circuits on both the simu-
lator and on the ibmq_armonk quantum processor, where we run each circuit 75 times
with 8192 shots (or samples) each time. These are the maximum numbers allowed at
IBM Quantum. The simulator always obtained the correct results, as expected from
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Fig. 5 Transpiled circuits with phase oracles

Table 1 Results on the actual
quantum computer

Circuit Probability of 0 Probability of 1

I/− I 0.9345 ± 0.0029 0.0655 ± 0.0029

Z/− Z 0.0945 ± 0.0030 0.9054 ± 0.030

our mathematical proofs. The average and standard deviations of the results on the
actual quantum computer are shown in Table 1.

The average probability of success for solving any of the 1-qe problems of Fig. 3
would, then, be the average of the probability of measuring 0 with either I or −I and
of the probability of measuring 1 with either Z or−Z , giving a final result of 0.91995.
This is strictly less than the probability 1 predicted by our mathematical results (and
obtained with the simulator) and can be explained by the gate and readout errors and
the noise present in actual quantum hardware. Moreover, the values obtained here are
consistent with the ones reported in [2] for similarly simple circuits executed on the
same quantum processor. In fact, in that work, it was also observed that a readout error
of obtaining 0 when the correct value was 1 is usually higher than a readout error of
obtaining 1 when 0 is the correct value.

6 Conclusions and future work

In this paper, we have introduced a generalisation of promise problems such as
Deutsch–Jozsa or Bernstein–Vazirani and we have shown that all of them can be
solved with just one oracle query in the quantum circuit model. We have also studied
necessary and sufficient conditions for Boolean functions on n variables to be part of
such promise problems.

Then, we have defined a natural order relationship among these problems and we
have proved that the Deutsch–Jozsa and Bernstein–Vazirani problems are, under some
conditions, maximal and minimal elements in the poset of these promise problems.
We have also studied some of the automorphisms of the poset and shown that it is
always connected.

Finally, we have proved that, although in the quantum setting one oracle query is
enough to solve these promise problems, if we only use classical resources then the
query complexity can vary from 1 to 2n−1 + 1, taking all the values in between, and
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we have also presented numerical results of the execution of some 1-qe problems on
actual quantum hardware.

There are some open questions that we would like to explore in future works. An
interesting problem is to give a more explicit characterisation of the Boolean functions
that can take part in 1-qe problems. Also, we are interested in determining all the
automorphisms of the poset of such problems. Finally, we would like to extend the
study done in this paper to other quantum schemes (with different quantum circuits)
that also allow to solve some promise problems with a small number of oracle queries.

Acknowledgements This work was supported in part by the Ministry of Economy, Industry and Compet-
itiveness from Spain/FEDER under Grants TIN2017-87600-P, Grant MTM-2017- 83506-C2-2-P, by the
Regional Ministry of the Principality of Asturias under Grants FC-GRUPIN-IDI/2018/000226 and Grant
FC-GRUPIN- IDI/2018/000193, and by Campus de Excelencia Internacional of the University of Oviedo in
collaboration with Banco de Santander, as part of the “ayudas económicas de movilidad de excelencia para
docentes e investigadores de la Universidad de Oviedo”. MINECO (Grant No. MINECO-16-TEC2015-
67387-C4-3-R), MICINN (Grant No. RTI2018-098085-B-C44).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997).
https://doi.org/10.1137/S0097539796300921

2. Combarro, E.F., Carminati, F., Vallecorsa, S., Ranilla, J., Rúa, I.F.: On protocols for increasing the
uniformity of random bits generated with noisy quantum computers. J. Supercomput. (2021) in press

3. Combarro, E.F., Piñera Nicolás, A., Ranilla, J., Rúa, I.F.: An explanation of the Bernstein–Vazirani
and Deustch–Josza algorithms with the quantum stabilizer formalism. Comput. Math. Methods e1120
(2020)

4. Combarro, E.F., Ranilla, J., Rúa, I.F.: A quantum algorithm for the commutativity of finite dimensional
algebras. IEEE Access 7, 45554–45562 (2019)

5. Combarro, E.F., Ranilla, J., Rúa, I.F.: Quantum walks for the determination of commutativity of finite
dimensional algebras. J. Comput. Appl. Math. 354, 496–506 (2019)

6. Combarro, E.F., Ranilla, J., Rúa, I.F.: Quantum abstract detecting systems. Quantum Inf. Process. 19,
258 (2020)

7. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc.
R. Soc. Lond. Ser. A 400, 97–117 (1985)

8. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A
Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)

9. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
10. Figgatt, C., Maslov, D., Landsman, K.A., et al.: Complete 3-Qubit Grover search on a programmable

quantum computer. Nat. Commun. 8, 1918 (2017)
11. Grover, L.K.: A fast quantummechanical algorithm for database search. In: Proceedings of the Twenty-

eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, NewYork,
NY, USA (1996)

12. IBM Quantum (2021). https://quantum-computing.ibm.com/

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/S0097539796300921
https://quantum-computing.ibm.com/


On a poset of quantum exact promise problems Page 17 of 17   214 

13. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. Electron. Colloq. Comput.
Complex.: ECCC 3 (1995)

14. Manin, Y.: Vychislimoe i nevychislimoe. Sov. Radio, pp. 13–15 (1980)
15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary.

Cambridge University Press, Cambridge (2011)
16. Santos, R.A.M.: Szegedy’s quantum walk with queries. Quantum Inf. Process. 15(11), 4461–4475

(2016)
17. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of

FOCS, pp. 124–134 (1994)
18. Simon, D.R.: On the power of quantum computation. In: Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, SFCS ’94, pp. 116–123. IEEE Computer Society, USA (1994).
https://doi.org/10.1109/SFCS.1994.365701

19. Szegedy,M.: Quantum speed-up ofMarkov chain based algorithms. In: Proceedings of the 45thAnnual
IEEESymposiumonFoundations ofComputer Science, FOCS ’04, pp. 32–41. IEEEComputer Society,
Washington, DC, USA (2004)

20. Wong, T.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(68) (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/SFCS.1994.365701

	On a poset of quantum exact promise problems
	Abstract
	1 Introduction
	2 Quantum exact promise problems
	3 A poset of quantum exact promise problems
	4 Complexity with classical deterministic algorithms
	5 Experiments on quantum hardware
	6 Conclusions and future work
	Acknowledgements
	References




