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Abstract

In this paper a general approach to reconstruct three dimensional field solutions in particle accelerator
magnets from distributed magnetic measurements is presented. To exploit the locality of the measurement
operation a special discretization of the Laplace equation is used. Extracting the coefficients of the field
representations yields an inverse problem which is solved by Bayesian inversion. This allows not only to
pave the way for uncertainty quantification, but also to derive a suitable regularization. The approach is
applied to rotating coil measurements and can be extended to any other measurement procedure.
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1. Introduction

Beam-physics simulations require evaluations of magnetic potentials or flux densities in the neighbour-
hood of a reference trajectory of the particle beam. Consequently, a suitable representation of the magnetic
field has to be found. A local field description is needed whenever the effect of longitudinal field compo-
nents is not neglectable for particle beam stability and dynamics calculations. Three dimensional field maps
are required for spectrometer magnets, where the ratio between aperture and length does not admit a ho-
mogenity region inside the magnet [1]. Recent studies also investigate the impact of fringe fields in focusing
quadrupole magnets to nonlinear beam dynamics [2, 3]. While the latter example is still in the phase of
study, the longitudinal field profiles must be measured to determine the need and efficiency of correction
strategies [2].

For this reason, we present an approach to reconstruct the three-dimensional longitudinal field distri-
bution in a cylindrical region inside the magnet’s air gap, based on sampled measurement data. We make
use of a rotating coil, short in length with respect to the magnets extend, at different longitudinal positions
to infer magnetic field information and reconstruct a field solution in the air gap of the magnet satisfying
Maxwell’s equations. This extends the work in [4], but we complement the analysis with two important
features: (i) a novel discretization of the Laplace problem [5], to avoid coupling of local measurement errors
with globally supported field solutions, and (ii) the methodological framework to propagate measurement
uncertainties towards field quantities, by means of Bayesian inversion [6]. As this field representation is
suited for fast evaluations and implies the regularity conditions of the magnetic field, it constitutes a direct
link between particle beam dynamics and measurement data. This approach can be extended to other
field representations, such as harmonic expansions or boundary element methods. The inverse problem,
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i.e., the extraction of the expansion coefficients from measurement data, is ill-posed and requires a suitable
regularisation, which is derived by Bayesian inversion.

In section 2 we give an introduction on rotating coil measurements with focus on radial coil arrays.
In section 3 we introduce the disctrization technique, based on spline basis functions along the magnets
longitudinal axis. We then focus on the field solutions extraction from measurement data and uncertainty
quantification in section 4. Finally, the theory is applied to measurement data taken in a dipole magnet in
section 5.

2. Rotating Coil Measurements

Rotating coils are among the most popular devices for field measurement in accelerator magnets. They
can be easily calibrated in reference magnets and they determine the field harmonics with a high accuracy.
Looking at multipole errors in the range of units of 10 000 with respect to the main field component, any
imperfection in the coils rotational motion will introduce spurious harmonics in the measured signals. Un-
fortunately, small vibrations are inevitable in a real rotating coil setup. For this reason, special treatment
to suppress the influences of transversal and torsional vibrations is indispensable for rotating coil measure-
ments in the < 10−4 accuracy. As shown in [7] in detail, one can combine the signals of multiple coils on
the shaft in ways to reduce the sensors sensitivity towards specific multipole components. Applying such
compensation for the main and lower multipole contribution yields compensation schemes for spurious so-
lutions from transversal and torsional vibrations and also shaft deformations [8]. Of course, a perfect main
field suppression would require identical geometrical properties of the coils involved. Printed-circuit-board
(PCB) technology allows for highly accurate coil manufacturing and enables reducing the main field sensi-
tivity Kn below 10−3 [9]. In this way, even small deviations from multipole errors in the 10−4 range can
be identified with a high resolution. We therefore focus on radial, rotating coil arrays built on a solid PCB,
rather than less accurate flexible PCB technology as it was done in [10]. In addition to transversal and
torsional vibrations, an unsteady angular velocity also contributes to spurious harmonics in the acquired
signals. As most systems use shafts optimized for mechanical stiffness, the largest impact is attributed to
effects in the bearings. Approaches to improve the motion of rotating coils, therefore focus on optimizing the
intersection beween shaft and bearing [8]. Integrating the signals in time and trigger the integration periods
by angular encoders yelds measurements of flux over angular position. In this way any time dependency is
eliminated. The approach presented in this article is therefore based on flux increments as provided from
fast digital integrators (FDIs) [11].

Moving a single wire loop surface A with the velocity v in a static magnetic field B, induces the
voltage [12]

Uind(t) =

∫
∂A(t)

(v(t)×B) · ds, (1)

by Faraday’s law. Considering a radial coil as illustrated in Fig. 1, this translates to

Uind(t) =

∫
∂A(t)

(v(t)×B) · ds = ϕ̇(t)

∫
S1

r1B · ds+

∫
S2

rB · ds+

∫
S3

r3B · ds+

∫
S4

rB · ds

 , (2)

where Si = Si(t), i = 1, ..., 4 are the boudaries of ∂A(t). The angular velocity ϕ̇(t) is difficult to stabilize
or measure. This is why it is common practice to integrate Uind(t) in time between two angular positions
ϕk = ϕ(tk) and ϕk+1 = ϕ(tk+1). The integration period is started at tk and stopped at tk+1 by trigger
pulses generated by a rotary encoder. Integrating Eq. (2) in time, we obtain the flux increment

δΦ(ϕk+1, ϕk, zm) =

∫
A1

B · da+

∫
A2

B · da+

∫
A3

B · da+

∫
A4

B · da = −
∫
A6

B · da−
∫
A5

B · da, (3)

2



x

y

z

B

B

Bz
ds4

ds3

ds A

A3

 

 

φ

φ 

φ

 

φ 

φ φ

Figure 1: Reparameterisation of the integral involved in computing the flux linkage in a radial rotating coil. The physical
phenomenon is based on v ×B, and thus, occurs on the blue surfaces. The integration, however, can be carried out over the
red areas A5 and A6.

where we have applied Gauss’ law to the areas Ai = Ai(ϕk+1, ϕk, zm), i = 1, ..., 6 illustrated in Fig. 1 (right)
and zm denotes the position of the center of the coil (where the measurement is performed). For a particular
axial position zm, one can obtain the total flux intercepted at position ϕk+1 by

Φ(ϕk+1, zm) = Φ(ϕ1, zm) +

k∑
j=1

δΦ(ϕj+1, ϕj , zm), (4)

where Φ(ϕ1, zm) is the flux linkage at the beginning of the summation. After a full rotation of the coil,
having sampled at K angular positions, a discrete Fourier transformation yields an ensemble of harmonic
coefficients

Ψn(zm) =

K∑
k=1

Φ(ϕk, zm) exp

(
−2πi

K
(k − 1)n

)
, (5)

for n = 1, ..., N, where usually a sufficient approximation accuracy is already obtained for N < 20. Contrary
to classical rotating coil measurement analysis, which treats the Fourier transform of Φ(ϕ, zm) as raw data,
we are taking the flux increments directly into account. This allows for a straight-forward treatment of
transversal coil offsets, by field translation (see section 3). Throughout this paper we aim for a determination
of the three-dimensional field distribution in the air gap of an accelerator magnet. We therefore shift a short
rotation coil scanner though the longitudinal extension as illustrated in Fig. 2, and measure step-wise the
flux linkages for different axial positions.

3. Lobatto Spline Fourier Expansion

Consider the current-free, cylindrical domain with homogeneous permeability

D = {(x, y, z)> : x2 + y2 < R2, zmin < z < zmax}, (6)

with radius R and axial extent [zmin, zmax], inside the air gap of the magnet and the cylindrical coordinates
%, ϕ and z. The Laplace equation

∆φ = 0, (7)

holds for the magnetic scalar potential B = ∇φ in D. Exploiting cylindrical coordinates we use a discretiza-
tion in the forms:

φ(%, ϕ, z) ≈ Re

∑
m,n,k

dm,n,kPm(%)einϕbk(z)

 , (8)
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Figure 2: Measurement procedure based on longitudinally sampling the magnetic field in the air gap of the magnet with a
radial rotating coil. Here Ψ1 denotes the dipole component of the field.

where {Pm(%)}m=1,...,N%
are Lobatto shape functions [13] scaled to [0, R0], {bk(z)}k=1,...,Nz

is a B-spline
basis [14] defined by a given knot vector scaled to [zmin, zmax] and dm,n,k are the corresponding degrees
of freedom (DoF). The radial flux density component B% = ∂%φ at the domain boundary % → R can be
approximated by a projection in the discrete space

u(ϕ, z) = B%(ϕ, z) ≈ Re

∑
n,k

un,ke
inϕbk(z)

 , (9)

and relates to the Neumann data as a boundary condition for φ.
The discretized solution in the form (8) for problem (7) with BC (9) is obtained by a Galerkin approxi-

mation, leading to [13, 15]:
Ld = Pu, (10)

where L ∈ RN%NϕNz×N%NϕNz is the discrete Laplace operator, d ∈ RN%NϕNz is the vector corresponding to
the DoF of the scalar potential approximation, P ∈ RN%NϕNz×NϕNz is the extension operator and u ∈ RNϕNz

are the DoF of the Neumann data. Due to the tensor-product format of the basis, the operator L can be
reshaped into a block diagonal structure, making its inversion computationally affordable. Given the discrete
representation of the Neumann data u, we can get the field inside the domain by solving (10).

In our case, however, u is an unknown quantity, and needs to be determined from flux measurements in
D. The flux measurement process presented in Sec. 2 can also be constructed from Eq. (8) by integration
over the coil surface. For a single-wired coil of length lc, width w and center at (%c, ϕ(t), zm), this means:

Φ(ϕ, zm) =

zm+lc/2∫
zm−lc/2

%c+w/2∫
%c−w/2

Bϕ(%, ϕ, z) d%dz = Re

∑
m,n,k

dm,n,k

zm+lc/2∫
zm−lc/2

%c+w/2∫
%c−w/2

in

%
Pm(%)einϕbk(z)d%dz

 .

(11)

In (11), the offset of the rotation axis can also be taken into account by translating the coordinate system
(see Fig. 3). The origin of the reference coordinate system is denoted as 0 and the offset of the rotation axis
is denoted as 0′ and has the coordinate (x0, y0). The transformed coordinates are

%(%′, ϕ′) =
√

(%′ sinϕ′ + y0)2 + (%′ cosϕ′ + x0)2, (12a)

ϕ(%′, ϕ′) =sgn(%′ sinϕ′ + y0)acos

(
%′ cosϕ′ + x0)

%(%′, ϕ′)

)
. (12b)
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Figure 3: Coordinate transformation.

Equations (12a) and (12b) can be used as a parametrization of the coil and Eq. (11) can be adapted using
the change of variables in order to get the flux measured around a point r0 = (x0, y0, z0)>. The resulting
flux is linear with respect to the DoFs and can be formally represented using the measurement operator

Φ(ϕl, r
0) = Re

∑
m,n,k

dm,n,kMl,m,n,k(r0)

 , (13)

where l = 1, ...,M .
Note that the rotating coil is made by multiple windings, which are not placed at the same position.

The real layout can thus be much more complex (see Fig. 6) than a single-turn induction coil, for which
Eq. (11) and Eq. (13) were derived. However, the real coil layout can be modelled by superimposing Eq. (13)
for multiple windings with varying geometrical properties. The overall measurement operator can then be
reshaped into an M × (N%NϕNz) matrix M(r0) which relates the DoF vector d to the flux measurements
performed for M angles and concatenated into a vector y ∈ RM . Combining the operators, we get the
discrete observation operator:

Sr0 = M(r0)L−1P , (14)

that gives the predicted measurement for a given boundary data from the discrete space:

u −→
L−1P

d −→
M(z,x0,y0)

y.

4. Bayesian Inversion

In this section, we focus on the identification of the DoF vector of the field representation using the
measured flux increments. In a more general setting, we consider a system described by a state which can
be observed indirectly by measurements. Using the governing mathematical model, one can predict the
observation for a given state. This procedure is called a forward problem [6]. Contrarily, an inverse problem
refers to the estimation of a state given an observation, effectively inverting the model that maps states to
observations [6]. Inverting this map to get the causing state of a typically noisy observation is in most cases
an ill-posed problem.

For the magnetic field reconstruction, the state of the system is the radial component of the magnetic
field on the boundary, while the observations are the measured flux increments over the radial coil at different
positions. The field has to fulfil Maxwell’s equations inside the domain of interest, i.e. in the cylinder inside

5
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Figure 4: Forward and inverse problem.

the aperture. Since the field inside the domain is uniquely described by the radial component B% for % = R
together with the 0 Dirichlet condition at the ends of the cylinder, the problem is well-posed if we take into
account the zero field conditions at the ends of the cylinder. In this case, the forward problem consists of
computing the flux increments from the boundary data by first computing the field solution (see Fig. 4)
and then applying the measurement operator, denoted with Sr0(u) = S(r0)u.

Considering the inverse problem, an additive Gaussian noise model is assumed for the observations.
Given the forward operator Sr0 corresponding to a rotation center r0 and the state (boundary data) u, the
measurement model has the following form:

Y = Sr0(u) + ε, (15)

where ε is a normal distributed random variable with zero mean and covariance matrix ΛN (we write
ε ∼ N (0,ΛN)). The conditional probability density function (PDF) of Y given a state is called the likelihood
function [16, Chapter 5] and can be expressed as:

pY |U (y|u, r0) ∝ exp

(
−1

2
(Sr0(u)− y)

>
Λ−1N (Sr0(u)− y)

)
.

In the Bayesian setup, the unknown states are also considered to be random variables, denoted in the
following with U . The model in (15) becomes

Y = Sr0(U) + ε (16)

and the goal is to update the probability density function of U , by incorporating the information obtained
from a new measurement ỹ ∈ RM . The distribution of the state U given a measurement is called posterior
and its probability density function pU |Y can be related to the likelihood function through the Bayes rule
[6, 17]

pU |Y (u|y, r0) ∝ pY |U (y|u, r0)pU (u), (17)

where pU (u) is called the prior and represents the PDF of the state before the observation was performed.
The prior can be provided from an ideal model of the state or estimated from previous measurements. If
the operator Sr0 is linear with respect to u, Sr0(u) = S(r0)u and the prior is normally distributed with
mean u0 and covariance matrix Σ, the posterior is again Gaussian [16]:

pU |Y (u|y, r0) ∝ exp

(
−1

2
(u− µ′)>Σ′−1 (u− µ′)

)
, (18)

where

µ′ = L(S>Λ−1N y + Σ−1u0), (19)

Σ′ =
(
S>Λ−1N S + Σ−1

)−1
. (20)
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Figure 5: Corrector dipole magnet (yellow) installed on the measurement bench. The motor unit is hosting a stepper motor as
well as a rotary encoder.

4.1. Kalman filter

The mean and the covariance of the Gaussian posterior (18) can be reformulated to obtain the equations
of the Kalman filter [6, 18]. Using the matrix inversion rule [19], the posterior covariance matrix is

Σ′ =
(
S>Λ−1N S + Σ−1

)−1
= Σ−ΣS>(ΛN + SΣS>)−1SΣ = Σ−KSΣ = (I −KS)Σ, (21)

where K = ΣS>
(
ΛN + SΣS>

)−1
is called Kalman gain. The mean can be reformulated as

µ′ = (I −KS)Σ(S>Λ−1N y + Σ−1µ) = µ+K(y − Sµ). (22)

The previous two equations compute the mean µ′ and the covariance matrix Σ′ given a measurement under
the assumption that the prior is Gaussian. The resulting µ′ and Σ′ can also be taken as priors for a new
Bayesian update. For the magnet measurement, we have NT radial coil measurements {ŷ(k)}k=1,...,NT

, each
corresponding to rotation centers {r(k)}k=1,...,NT . Starting from a Gaussian prior N (µ(0),Σ(0)), the Kalman
filter update scheme can be performed [18]:

K(k+1) =Σ(k)S>r(k+1)

(
ΛN + Sr(k+1)Σ(k)S>r(k+1)

)−1
, (23a)

µ(k+1) =µ(k) +K(k+1)
(
ŷ(k+1) − Sr(k+1)µ(k)

)
, (23b)

Σ(k+1) =
(
I −K(k+1)Sr(k+1)

)
Σ(k). (23c)

5. Example: Magnetic Measurements of a Corrector Dipole

Consider again the current-free, cylindrical domain from (6) with homogeneous permeability. Our ap-
proach was used to measure the longitudinal field profile in a corrector dipole magnet. The measurement
setup is shown in Fig. 5. The shaft, fixing the rotating coil array, is mounted in a tube, which is held by two
alignment stages. Moving the alignment stages longitudinally, the sensor position is modified between the
measurements. This is done by hand and requires a reasonable amount of time. In this way, 175 positions
were scanned by the sensor, which took around 4 hours. The proposed strategy is designed to continue
learning from more data whenever it is available. It is expected that the uncertainties in the local field
reconstruction converge to a lower limit when feeding the algorithm with more data. At each position, the

7



outer length inner length outer width inner width effective surface
38 mm 35 mm 8.4 mm 5.4 mm 0.0317 mm2

Table 1: Designed geometric properties of the coils on the PCB. The effective surface is calculared by w × l × turns × layers,
whereas w and l are averaged length and width over turns.

Figure 6: The PCB coil array. Only one outer coil and the
central coil were used to compensate for the main dipole
component.

Figure 7: The shaft hosting the PCB array. There are mul-
tiple radial and tangential coils mounted on this sensor. For
the tests presented in this article, only one of the radial coil
arrays was used.

sensor was rotated by 20 turns and an FDI was used to acquire 512 flux increments per turn. The rotational
center as well as the coil’s rotational axis at each position were measured with a laser tracker targeting a
retro-reflector which is mounted on the shaft’s end. The coil array is built on a PCB (see Fig. 6). It includes
5 coils made out of 7 turns on 18 layers, which are identically designed. Table 1 gives the geometric param-
eters of the 5 coils. The PCB in use is standardized measurement equipment at CERN and usually used for
quadrupole measurements using a compensation scheme which employs 4 of the 5 coils. However, for this
test, only one of the outer coils and the central coil are used and the dipole compensation scheme is applied,
i.e. the central and outer coils are connected in counter-series to suppress the main dipole component. The
shaft is illustrated in Fig. 7. The signal-to-noise ratio is proportional to the coil area. However, larger coils
yield less localized measurement kernels. For local field measurements a trade-off between signal to noise
ratio and localization has to be found. The sensor applied in this work has a length of 36 mm, yielding a
high sensitivity field distributions with longitudinal frequencies below ∼ 0.027 [1/mm2]. For steeper roll offs
requiring higher frequencies, short coils or superpositions as mentioned in [10] can be used.

As our field reconstruction is based on shifting a short rotating-coil sensor through the air gap, sensor
alignment is critical for the quality of the field reconstruction. The position of a retroreflector mounted on
the shaft was measured with an absolute laser tracker. Mounting the reflector off centered allows to estimate
the center and the axis of rotation. The accuracy of the device is in the range of 10 um. The known coil
alignment can then be accommodated in our model similar to the transversal offset. We therefore introduce
the unit vector:

nc =

 sinαy cosαx

− sinαx

cosαy cosαx

 (24)

with αx and αy as illustrated in Fig. 8. The flux Φ(ϕl, zm) is then computed for a rotation around nc.
As illustrated in Fig. 9, the coil offset was kept below 0.3 mm and the rotational axis diverged less than

than 0.25 mrad over the full length of the scan. Note that the possibility for such precise alignment is not
always available, especially for long magnets that cover a larger part of the tube. However, as long as it is
possible to access the coil from one side by means of a laser tracker, misalignments can be measured and
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Figure 9: Sensor alignment over the longitudinal axis. Top: transversal offset of the rotational center. Bottom: angular
misalignment of the rotational axis.

included in our post-processing.
To quantify the main field suppression we look at the compensation ratio (in Fig. 10)

Rcomp(z) =
Ψabs

1 (z)

Ψcomp
1 (z)

, (25)

where Ψcomp
1 (z) are Ψabs

1 (z) are the dipole components obtained with and without compensation, respec-
tively. A large compensation ratio can be traced back to matching geometric properties of the coils involved.
As expected, using two coils build on a single solid PCB, Rcomp reaches values as high as 5000 in the ho-
mogeneity region of the magnet. The compensation scheme is based on the scaling of ∼ ρ|n| over ρ and
thus performs badly in the fringe field region, where Rcomp drops to 250. Interestingly, it reaches a local
maximum in the fringe field where Ψ1,comp evolves linearly over the coil’s surface. In Fig. 11 we illustrate
the dominant field harmonics expanded in Bϕ, over z, starting from the center. For comparison, we include
the ”naive” approach, which divides the measured flux by the integrated sensitivity factors s0,n:

s0,n = l
(%c + w/2)

|n| − (%c − w/2)
|n|

|n| , (26)
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Figure 10: Compensation ratio over the length of the magnet. The compensation scheme is based on the scaling of ∼ %|n|

over % and thus only applies when B is homogeneous along z. As expected from the geometric properties of absolute and
compensated coil, the compensation ratio (25) of inside the magnet reaches values of ∼ 5000.

for a coil rotating of length l, width w and the center at % = %c. All the harmonics are evaluated for a radius
% = 0.018 m. For this relatively small radius, most of the discrepancy between the naive approach and the re-
construction by field-based Bayesian inversion is attributed to the convolution of Bϕ over the area of the coil.

In Fig. 12 we include the ±2σ credible intervals for the highest multipole coefficients. The uncertainties
reach the maxima at the domain’s ends. This uncertainty originates from a limited accessible z interval due
to the maximum displacement of the alignment stages. Future measurement campaigns will be carried out
on longer test benches to circumvent this issue. The 2σ credible intervals are below 1 unit of 10000 with
respect to the maximum field, for all the multipole components.

The main harmonic contributions for the integral and local fields are sextupole and decapole. Quadupole
and octupole component are in the small unit range and below. The differences between the two field
reconstructions are visible mostly in the fringe field, where the field evaluated nonlinearly over the coil
surface. Moreover, the analysis presented in this paper is capable to handle the measured sensor position
and therefore correctly includes the effect of sensor misalignment. Classical feed-down corrections fail to
correct misalignments in the fringe fields. This effect is clearly visible in the difference with respect to
the naive approach for the quadrupole component. Local field distributions can be validated by integrated
field measurements (Fig. 13). In this case, a single stretched wire measurement was used to benchmark the
analysis. This comparision is shown in Figure 13. Sextupole and decapole component are match within
subunit level. The differences in even ordered harmonics are slightly higher. These multipoles are highly
sensitive to alignment errors between the systems.
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Figure 11: Multipole components of Bϕ at R = 0.018 m. The higher order components are represented in units of 10 000
with respect to the main field component. The solid lines show the reconstruction with Bayesian inversion. The dashed lines
represent the naive reconstruction.
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Figure 12: Mean Bϕ multipole components (solid lines) and ±2σ intervals (dashed lines).12
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Figure 13: Comparing the field reconstruction to integrated field measurements. Here we plot the absolute of the Fourier
expansion coefficients cn(r = 18mm) in units of 10 000 with respect to the integrated dipole field.

6. Conclusion

Conventional approaches to measure the magnetic flux density distribution in particle accelerator mag-
nets are based on fitting the results of rotating coil measurements to general field solutions of the Laplace
equation in cylindrical coordinates. Difficulties arise due to the sensor’s blind eye towards field components
with steep variations along z, as well as the failure of classical sensor offset corrections in the fringe field
region. For this reason we presented an approach that uses a special B-spline basis for the longitudinal
variation of the transverse multipoles in order to maintain the measurement’s locality. The fullfillments of
Maxwell’s equations is achieved via a standard Galerkin approach on the proposed discretization. Recover-
ing the DoF based on the measurement data yields an inverse problem which is solved by Bayesian inversion.
This not only enables us to infer measurement data from arbitrary measurement sources, it also paves the
way for the quantification of uncertainties in the field reconstruction from noisy measurement data. As a
particularity of Bayesian inversion, the DoF of the boundary data are represented as random variables and
the goal is to characterize their joint distribution given the measured data set. If the forward problem is
linear and the noise distribution as well as the prior are assumed to be Gaussian, the Kalman filter equations
can be derived. This gives the mean and the covariance of the DoF. One significant advantage of the pro-
posed method is that it also provides confidence information for the coefficients of the boundary data basis
representation, which is incorporated into the covariance matrix of the posterior. One further advantage is
the fact that any linear measurement operator can be used. In the case of nonlinear operators, the Kalman
filter is no longer applicable, however, several alternatives are presented in the literature [16, 20, 21]. As a
comparison, the method is validated against the classical naive reconstruction method. The approach com-
petes to local field measurement provided by 3D Hall probes. In view of the autors, the proposed method
using a rotating coil measurement system is superior, due to the high maintainance needed to provide Hall
probe measurements within the same accuracy. A detailed comparison between the approaches is currently
in preparation.
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integrator for magnetic field measurements at cern, 2006, pp. 67 – 71. doi:10.1109/IMTC.2006.328175.

[12] S. Russenschuck, Maxwell’s Equations and Boundary Value Problems in Magnetostatics, John Wiley & Sons, Ltd,
2011, Ch. 4, pp. 137–185. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527635467.ch4, doi:10.

1002/9783527635467.ch4.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527635467.ch4

[13] P. Solin, K. Segeth, I. Dolezel, Higher-Order Finite Element Methods, Studies in Advanced Mathematics, Taylor & Francis,
2003.
URL https://books.google.de/books?id=qIiCngEACAAJ

[14] P. Dierckx, Curve and surface fitting with splines, Oxford University Press, 1995.
[15] P. Monk, P. Peter Monk, P. Department of Mathematics Sciences Peter Monk, O. U. Press, Finite Element Methods for

Maxwell’s Equations, Numerical Analysis and Scientific Computation, Clarendon Press, 2003.
URL https://books.google.de/books?id=zI7Y1jT9pCwC

[16] J. Bardsley, Computational Uncertainty Quantification for Inverse Problems, Computer Science and Engineering, Society
for Industrial and Applied Mathematics, 2018.
URL https://books.google.de/books?id=mfV1DwAAQBAJ

[17] A. Klenke, Probability Theory: A Comprehensive Course, Springer London, 2013.
[18] M. Grewal, A. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, Wiley, 2011.

URL https://books.google.de/books?id=sZbxLK-NKb0C

[19] W. W. Hager, Updating the inverse of a matrix, SIAM review 31 (2) (1989) 221–239.
[20] J. Bardsley, A. Solonen, H. Haario, M. Laine, Randomize-then-optimize: A method for sampling from posterior distribu-

tions in nonlinear inverse problems, SIAM Journal on Scientific Computing 36 (4) (2014) A1895–A1910. arXiv:https:

14

http://dx.doi.org/10.1016/j.nima.2019.04.086
http://dx.doi.org/10.1016/j.nima.2019.04.086
https://doi.org/10.1016/j.nima.2019.04.086
https://doi.org/10.1016/j.nima.2019.04.086
http://dx.doi.org/10.1016/j.nima.2019.04.086
http://www.sciencedirect.com/science/article/pii/S0168900220307476
http://www.sciencedirect.com/science/article/pii/S0168900220307476
https://doi.org/https://doi.org/10.1016/j.nima.2020.164350
https://doi.org/https://doi.org/10.1016/j.nima.2020.164350
http://www.sciencedirect.com/science/article/pii/S0168900220307476
http://www.sciencedirect.com/science/article/pii/S0010465519300359
http://www.sciencedirect.com/science/article/pii/S0010465519300359
https://doi.org/https://doi.org/10.1016/j.cpc.2019.01.018
https://doi.org/https://doi.org/10.1016/j.cpc.2019.01.018
http://www.sciencedirect.com/science/article/pii/S0010465519300359
http://www.sciencedirect.com/science/article/pii/S0168900298015186
https://doi.org/https://doi.org/10.1016/S0168-9002(98)01518-6
http://www.sciencedirect.com/science/article/pii/S0168900298015186
http://tuprints.ulb.tu-darmstadt.de/11687/
http://tuprints.ulb.tu-darmstadt.de/11687/
http://arxiv.org/abs/1511.00524
https://cds.cern.ch/record/1246517
https://doi.org/10.5170/CERN-1998-005.175
https://cds.cern.ch/record/1246517
https://www.sciencedirect.com/science/article/pii/S0168900220309967
https://doi.org/https://doi.org/10.1016/j.nima.2020.164599
https://www.sciencedirect.com/science/article/pii/S0168900220309967
https://jsss.copernicus.org/articles/9/99/2020/
https://jsss.copernicus.org/articles/9/99/2020/
https://doi.org/10.5194/jsss-9-99-2020
https://jsss.copernicus.org/articles/9/99/2020/
https://doi.org/10.1038/s41598-018-37371-3
https://doi.org/10.1038/s41598-018-37371-3
https://doi.org/10.1038/s41598-018-37371-3
https://doi.org/10.1038/s41598-018-37371-3
https://doi.org/10.1109/IMTC.2006.328175
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527635467.ch4
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527635467.ch4
https://doi.org/10.1002/9783527635467.ch4
https://doi.org/10.1002/9783527635467.ch4
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527635467.ch4
https://books.google.de/books?id=qIiCngEACAAJ
https://books.google.de/books?id=qIiCngEACAAJ
https://books.google.de/books?id=zI7Y1jT9pCwC
https://books.google.de/books?id=zI7Y1jT9pCwC
https://books.google.de/books?id=zI7Y1jT9pCwC
https://books.google.de/books?id=mfV1DwAAQBAJ
https://books.google.de/books?id=mfV1DwAAQBAJ
https://books.google.de/books?id=sZbxLK-NKb0C
https://books.google.de/books?id=sZbxLK-NKb0C
https://doi.org/10.1137/140964023
https://doi.org/10.1137/140964023
http://arxiv.org/abs/https://doi.org/10.1137/140964023
http://arxiv.org/abs/https://doi.org/10.1137/140964023


//doi.org/10.1137/140964023, doi:10.1137/140964023.
URL https://doi.org/10.1137/140964023

[21] J. Vondřejc, H. G. Matthies, Accurate computation of conditional expectation for highly non-linear problems, arXiv
e-prints (2018) arXiv:1806.03234arXiv:1806.03234.

15

http://arxiv.org/abs/https://doi.org/10.1137/140964023
http://arxiv.org/abs/https://doi.org/10.1137/140964023
https://doi.org/10.1137/140964023
https://doi.org/10.1137/140964023
http://arxiv.org/abs/1806.03234

	1 Introduction
	2 Rotating Coil Measurements
	3 Lobatto Spline Fourier Expansion
	4 Bayesian Inversion
	4.1 Kalman filter

	5 Example: Magnetic Measurements of a Corrector Dipole
	6 Conclusion

