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Abstract: The liquid argon time projection chamber (LArTPC) detector technology has an excellent
capability to measure properties of low-energy neutrinos produced by the sun and supernovae and
to look for exotic physics at very low energies. In order to achieve those physics goals, it is
crucial to identify and reconstruct signals in the waveforms recorded on each TPC wire. In this
paper, we report on a novel algorithm based on a one-dimensional convolutional neural network
(CNN) to look for the region-of-interest (ROI) in raw waveforms. We test this algorithm using data
from the ArgoNeuT experiment in conjunction with an improved noise mitigation procedure and a
more realistic data-driven noise model for simulated events. This deep-learning ROI finder shows
promising performance in extracting small signals and gives an efficiency approximately twice that
of the traditional algorithm in the low energy region of ∼0.03-0.1 MeV. This method offers great
potential to explore low-energy physics using LArTPCs.
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1 Introduction

The Liquid Argon Time Projection Chamber (LArTPC) detector is a proven technology that has been
adopted by many accelerator-based neutrino experiments, including the Short-Baseline Neutrino
program at Fermilab [1, 2] and DUNE [3]. It offers millimeter-scale spatial resolution and excellent
calorimetric capabilities in the detection of particles traversing the liquid argon and the measurement
of their properties.

Understanding and optimizing the signal and noise discrimination capabilities of LArTPCs is
crucial in performing charge reconstruction and, ultimately, for achieving a wide range of physics
goals. This is especially critical for low-energy physics, such as low-energy neutrino cross-section
measurements [4], the study of Michel electrons [5], MeV-scale photons [6], solar neutrinos in
the ∼1 MeV range and core-collapse supernova neutrinos in the ∼10 MeV range [3, 6]. There are
also new physics scenarios at low energies, such as millicharged particles, which can be studied
in LArTPCs [7]. The threshold for extracting small signals such as these is largely determined
by the signal-to-noise ratio (SNR). The ArgoNeuT experiment, with its good SNR, has already
demonstrated the ability to reconstruct activity at the MeV-scale in a LArTPC [6]. It is important,
however, to continue pushing the limits to achieve even lower thresholds in the detection of low-
energy interactions, to make a broader range of exciting physics analyses accessible.

The LArTPC technology provides many advantages with its fine-grained images of neutrino
events as well as the wealth of detailed information that can be extracted from the data through
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automated event reconstruction. However, the capability for detecting low-energy activity has
received relatively less attention. In reality, LArTPCs excel in this regard, due to the ∼23.6 eV
mean energy to ionize an electron in liquid argon, the high ionization electron collection efficiency,
and the low level of noise achievable in modern electronics readouts [8]. Beyond this fundamental
capability, the threshold for detecting low-energy activity depends mainly on the signal processing
algorithms used in LArTPC event reconstruction. These include noise mitigation and the detection
and localization of signals in the raw waveforms.

Traditionally, the detection of the presence of signals in raw wire waveforms is based on
an over-threshold algorithm that selects signal candidates with pulse heights above a predefined
threshold. This method has the disadvantage of discarding true signals below certain energies.
In this paper, we introduce a novel deep-learning approach based on the application of a simple
one-dimensional convolutional neural network (1D-CNN) to the task of finding regions-of-interest
(ROIs) in minimally processed LArTPC waveforms, as described in Ref. [9]. Deep learning
techniques are widely used in high energy physics and play a significant role in the reconstruction
of neutrino interactions. However, most algorithms rely on two-dimensional images as inputs to
classify the neutrino interactions [10–12]. The 1D-CNN ROI finder we describe here can be applied
to raw wire waveforms prior to any high-level event reconstruction, thereby preserving the potential
for maximizing signal detection efficiency in the initial stages of data analysis, which is absolutely
essential for achieving the overall high efficiency required in low-energy physics studies. Since it
does not rely on the artificially imposed cuts used in traditional over-threshold algorithms, it has
the potential to extend sensitivities to regions below these cuts. Its use can, therefore, substantially
enhance the ability to study low-energy physics in LArTPC experiments, as well as help us determine
the threshold for detecting low-energy activity in LArTPCs.

ArgoNeuT is a small LArTPC placed 100 m underground in the Neutrinos at the Main Injector
(NuMI) beamline at Fermilab just upstream of the MINOS near detector [13]. It has dimensions
of 40 × 47 × 90 cm3 [vertical, drift, horizontal (beam)] with a volume of 170 L. The electric field
inside the TPC along the drift direction is 481 V/cm. There are two readout wire planes of 240
wires each (the induction and collection planes) angled at ±60 degrees to the beam direction with a
plane spacing and wire pitch of 4 mm. Each wire channel is sampled every 198 ns with 2048 time
samples (“time ticks")/trigger, for a total readout window of 405.5 𝜇s. Triggering for the readout
window is determined by the NuMI beam spill rate of 0.5 Hz. ArgoNeuT collected neutrino and
antineutrino events from September, 2009 through February, 2010. A more detailed description of
the ArgoNeuT detector and its operations can be found in Ref. [14].

This paper is organized as follows: Section 2 describes the signal and noise characteristics
of raw LArTPC waveforms, followed by the noise mitigation procedure and the data-driven noise
model for noise simulation; Section 3 describes the 1D-CNN ROI finder for signal and noise
discrimination; Section 4 provides the results from the application of the 1D-CNN ROI finder to
ArgoNeuT data and the comparison of its performance with that of the traditional over-threshold
algorithm; and finally, Section 5 presents our conclusions.
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2 Signal and Noise in Raw LArTPC Waveforms

In LArTPC detectors, the shape of the raw signal waveform is determined by how the charge signal
is formed. As the ionizing electrons drift towards the wire planes under the influence of the external
electric field, they pass through the wires of the induction plane before finally being collected by
the wires on the collection plane. This leads to induction wire signals that are usually bipolar and
collection wire signals that are usually unipolar [15].

Figure 1 shows an event display of an electron neutrino interaction candidate in ArgoNeuT
data based on raw waveforms. Although the signal regions are quite distinct due to the ArgoNeuT
detector’s good SNR, several noise components are still visible. First is the negative tail (under-
shoot), shown as the dark blue bands above the signal regions on the collection plane in Figure 1.
Those tails originate from the capacitive coupling discharge in the ADCs. Second is the coherent
noise found across neighboring wire channels on each plane at the same time tick, as shown in
Figure 1, which is mainly due to power supply line noise, digital noise from readout electronics
common to channels occupying the same board or nearby boards, or some external interference.
Last is the external noise contribution that only affects the induction plane occasionally, as shown
in the bottom right corner of the induction plane view in Figure 1. This is related to the charge
collected by the bias voltage distribution cards in the liquid argon, which can be released back into
the medium.
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Figure 1. Event display of an electron neutrino interaction candidate in ArgoNeuT data (raw): right view
for induction plane and left view for collection plane. The horizontal axis indicates wire number; the vertical
axis indicates time ticks; color scale represents the charge measured in ADC counts.

2.1 Noise Mitigation

The negative tail and coherent noise components can cause problems for charge reconstruction and
need to be removed before further signal and noise discrimination. The noise caused by the charge
released from the bias voltage distribution cards is not considered here, since it occurs occasionally
and only on the induction plane.

The tails are related to the ADC capacitive coupling discharge. In each TPC wire channel,
the amplifier and ADC are AC-coupled through a high-pass RC filter, whose time constant is
different for the induction and collection planes. Since signals produced by charged tracks usually
occur on short time scales, this AC coupling implies the observed signals will be followed by long
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tails of opposite sign, whose areas cancel those of the initial signals. This effect is pronounced
in the collection plane, but negligible in the induction plane because of the bipolar nature of its
signal shape. We make use of an adaptive baseline subtraction method in this paper to deal with
the problem in ArgoNeuT. Each TPC wire channel on the collection plane is divided into 64-tick
regions and a linear interpolation is performed using the average ADC values in each region and
their variances to determine the baseline subtraction applied to the tail regions.

In order to remove the coherent noise, we first determine the wire channel correlation by
calculating the Pearson correlation coefficients of noise waveforms between different channels
using empty data events with no visible signal. The formula for Pearson’s correlation coefficient,
𝑟𝑎𝑏, is given by:

𝑟𝑎𝑏 =

∑
𝑎𝑖𝑏𝑖 −

∑
𝑎𝑖

∑
𝑏𝑖√︃

𝑛
∑
𝑎2
𝑖
− (∑ 𝑎𝑖)2

√︃
𝑛
∑
𝑏2
𝑖
− (∑ 𝑏𝑖)2

, (2.1)

where 𝑛 = 2048 is the sample size; 𝑎𝑖 and 𝑏𝑖 are the ADC values from two different wire channels
at time tick 𝑖. The wire channels are grouped according to this correlation and the coherent noise
removal is performed separately for each time tick by subtracting the median ADC values of all
channels in a group from the ADC value of each channel in that group. Although the wire channel
correlation exhibits a slight time dependence related to the running conditions, the performance of
the electronics, or occasional external interference, the impact on coherent noise removal is small.

The tail and coherent noise removal steps outlined above minimize unwanted artifacts from
the data that can complicate the task of signal and noise discrimination in the next stage. They
are applied to all ArgoNeuT data used in this work. However, the removal of coherent noise is
not applied to simulated events, since this contribution is not included in the simulations. Figure 2
shows the display after tail and coherent noise removal for the event shown in Figure 1.
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Figure 2. Event display after tail and coherent noise removal for the event shown in Figure 1.

2.2 Data Driven Noise Model

In order to understand the noise features better as well as improve the ArgoNeuT noise simulation,
we study the noise frequency distribution and develop a data driven noise (DDN) model. We use
noise waveforms from selected empty data events and perform a Fast Fourier Transform (FFT) on
them. Figure 3 shows the profiled noise frequency distribution on the induction plane, where the
error bar in each bin represents the standard deviation (RMS) of the magnitude of the corresponding
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frequency component. The spikes in the spectrum are due to the remnant coherent noise that is not
completely removed.

We account for both the mean value of each noise frequency component and the fluctuation
around that mean in ArgoNeuT data with the DDN model as follows. First, we describe the mean
of the noise frequency component with the modified exponential function given below:

𝑝0 × 𝑒
−0.5×

(
𝑥−𝑝1
𝑝2

)2

×
(

𝑝3
𝑥 + 𝑝4

+ 1
)
+ 𝑝5 + 𝑒−𝑝6×(𝑥−𝑝7) , (2.2)

where 𝑥 represents frequency and 𝑝𝑛, with 𝑛 = 0–7, are the parameters determined by fitting this
expression to the means of each noise frequency component in ArgoNeuT data for each plane
separately. The results are very similar between the two planes and the fitted result for the induction
plane is shown in Figure 3. The mean-normalized magnitude 𝑦 of each frequency component
follows a Poisson-like distribution. We choose to parameterize the fluctuation with a weighted
Poisson function given by:

𝑞0 ×
(
𝑞1
𝑞2

) 𝑦

𝑞2 × 𝑒
− 𝑞1

𝑞2

Γ

(
𝑦

𝑞2
+ 1

) , (2.3)

where Γ(𝑧) =
∫ ∞
0 𝑡𝑧−1𝑒−𝑡𝑑𝑡 is the Gamma function, and the parameters 𝑞𝑛, with 𝑛 = 0–2, are

determined from a fit to the mean-normalized magnitude of the frequency components, as shown
in Figure 4 for the induction plane. Equation (2.3) works very well for almost all frequency bins
on both planes. The mean of the noise frequency component can vary with wire length, which
is also observed in MicroBooNE [16]. For ArgoNeuT, this effect is less than about 5%. The
mean-normalized magnitude 𝑦 of each frequency component does not change with wire length. All
simulation results reported in this paper are based on the DDN model.
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Figure 3. Noise frequency on the induction plane after noise removal: error bar in each bin represents the
standard deviation (RMS) of the magnitude of the corresponding frequency component; “spikes" are remnant
coherent noise that is not completely removed; red line indicates the fitted result using Eq. (2.2).
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the induction plane: red line indicates the fitted result using Eq. (2.3).

3 A Deep-learning Based ROI finder

The ROIs in LArTPC waveforms represent regions that contain ionization electron signals. The
deep-learning based waveform ROI finder described in this paper is a one-dimensional convolutional
neural network that classifies waveform regions as likely containing signals or not. Unlike most
other CNNs used in the classification of neutrino interactions, which rely on two-dimensional
images derived from multiple channels in the wire planes, our network looks directly at the one-
dimensional waveforms coming from individual channels. Such a 1D-CNN ROI finder can be
applied in the earliest stages of reconstruction as a very effective filter to detect ROIs and perform
zero-suppression, while maximizing efficiency for usable signals. However, zero-suppression
algorithms for a LArTPC with typical wire readouts should be addressed carefully to avoid possible
loss of charge.

3.1 Network Architecture

The architecture of the 1D-CNN used in our study is shown in Figure 5. It is a lightweight network
that consists of two convolutional layers, each followed by a max pooling layer, a third convolutional
layer followed by a global max pooling layer, and a single output neuron with a sigmoid activation
function. The network’s kernel size and strides for convolutional operations are chosen in order to
be as fast as possible, while achieving the highest accuracy. Overall the network has only 21217
trainable parameters. The output from the network is a score representing the probability that the
input presented to the network contains a signal or not.

The inputs presented to the first layer of the network are partial single-channel LArTPC
waveforms with a fixed size of 200 time ticks. For convenience, we will use the word waveform in
this paper to refer to these partial 200-tick waveforms.

3.2 Network Training Samples

In order for the network to classify these input waveforms properly, they are trained using both
classes of waveforms from simulated events – signal referring to those containing signals, and noise
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Figure 5. Diagram of the 1D-CNN architecture for finding ROIs in raw waveforms.

referring to those that do not. We define what constitutes a signal within the context of simulated
events as a contiguous sequence of time ticks in which there is energy deposition from ionization
electrons. Each signal is characterized by a start time tick 𝑡start, end time tick 𝑡end, the time tick 𝑡max
with the greatest number of ionization electrons, and its value 𝑛max

𝑒 in that time bin. For simplicity,
we use 𝑛max

𝑒 to represent the size of the signal. Furthermore, if the ionization electrons in a signal
originate from more than one parent track, only the parent having the largest contribution to 𝑛max

𝑒 is
associated with the signal. A simulated waveform is labeled as signal if 𝑡max lies within its 200-tick
frame.

Noise waveforms are selected randomly from simulated pure noise samples based on the DDN
model discussed in Section 2.2. For signal waveforms, since our focus is the low energy region,
we simulate the 𝛽-decay of 39Ar to generate the signal component and select waveforms whose
number of electrons range from 200 to 11,000. This allows us to focus on optimizing sensitivity in
the sub-MeV region. Waveforms produced by >11,000 ionization electrons can easily be identified
as signal waveforms, as shown in Section 4.2. The noise component of these signal waveforms is
based on the same DDN model in the noise waveforms.

Because the induction plane and collection plane have different signal shapes, as discussed in
Section 2, separate networks are trained for each plane. The networks in our setup are running on
a GPU (consumer Nvidia RTX 2070 SUPER). For about 1,300,000 windows of 200 time ticks, the
inference time is ∼1.2 seconds, so around 1 microsecond for each 200 time-tick window. More
details of the networks can be found in Ref. [9].

3.3 ROI Reconstruction

In ArgoNeuT, the full raw waveform from a wire channel has a time window size of 2048 ticks.
On the other hand, as mentioned earlier, the inputs to 1D-CNN are 200-tick waveforms. In order to
cover the full waveform, we subdivide it into 14 overlapping 200-tick windows, where each window
after the first (whose left edge is aligned with the start of the waveform) is offset from the previous
window by a stride length of 150 ticks as shown in Figure 6. The exception is the last window
which is offset from the previous one by only 48 ticks so that its right edge coincides with the end
of the waveform. This overlap between neighboring windows helps in dealing with signal pulses
close to the edge of a window.
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Figure 6. Schematic of applying ROI finder with a window size of 200 ticks and a stride size of 150 ticks
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Figure 7. 1D-CNN scores for simulated noise and signal wavefoms in the induction plane (right) and the

collection plane (left).

Figure 7 shows the 1D-CNN scores representing the signal probability for simulated noise and

signal waveforms in the induction and collection planes. When applying the 1D-CNN ROI finder

to reconstruct ROIs, predefined cuts are chosen to select the signal candidates. If two consecutive

windows are both flagged as signal candidates, they are merged into one ROI.

4 Results

In this section, we present the results of applying our 1D-CNN ROI finder in ArgoNeuT. The

ArgoNeuT data we have used is from the antineutrino mode run lasted 4.5 months with 1.25× 1020

protons on targets (POT) acquired. For the current analysis, the ArgoNeuT data set and Monte Carlo

(MC) simulation generated for the analysis present in Ref. [6] are used. As in Ref. [6], the selected

events are charged-current pion-less events with one muon and up to 1 proton (𝜈𝜇CC 0𝜋, 0 or 1

proton events) and the MC data set is produced using the FLUKA neutrino interaction generator

[17–19]. We choose the simulation of neutrino-argon interactions from FLUKA rather than the

GENIE neutrino interaction generator [20] because our goal is to prove that our method efficiently

reconstruct low-energy signals. Low-energy photons produced in neutrino-argon interactions by

the de-excitation of the target nucleus after a neutrino interaction (de-excitation gammas), which are

one of the main source of low-energy activities in neutrino interactions, are simulated in FLUKA

but not in GENIE. Details of the FLUKA MC simulation event selection can be found at Ref. [6].

In order to establish a baseline relative to which we can evaluate its performance, we also

compare our deep learning based method with the traditional over-threshold algorithm mentioned
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Figure 8. Event display after applying the 1D-CNN ROI finder for the event shown in Figure 1 and Figure 2.

in Section 1. In the traditional over-threshold algorithm, we use the same strategy described in
Section 3.3 of subdividing the full 2048-tick waveform into partial overlapping 200-tick waveforms.
However, instead of feeding these partial waveforms to the 1D-CNN for classification, we search for
the maximum ADC value within the waveform and flag it as a signal (noise) candidate if it is above
(below) a certain threshold. For ArgoNeuT, a threshold cut of 6 ADCs is chosen for both induction
and collection planes. This yields noise rejections of 99.95% and 99.94%, respectively, on the
induction and collection planes. To facilitate comparisons, we require the output of the 1D-CNN
ROI finder to be > 0.979 (> 0.986) for the induction (collection) plane in order to achieve the same
noise rejection as the over-threshold algorithm. Figure 8 shows the event display for the same event
shown in Figure 1 and 2 after applying the 1D-CNN ROI finder with the above cuts on network
scores.

To compare the two waveform ROI finders, we can look at the distributions of the maximum
ADC value within the ROI from the MC simulation, shown in Figure 9 for both ROI finders in the
two planes. As shown in Figure 9, when using the ADC over-threshold ROI finder, any signal below
the threshold cut is lost; while the 1D-CNN ROI finder can take advantage of other features, such
as the signal shape, to extend sensitivity to signals below this threshold. The relative contributions
from various particle types is also shown in Figure 9, where each ROI is associated with the particle
having the largest contribution to 𝑛𝑚𝑎𝑥

𝑒 . As shown in Figure 9, most low-energy signal ROIs are
from electrons originating from photon interactions (labeled as photon in Figure 9). Such photons
are mainly from inelastic neutron scattering and de-excitation of the argon nucleus [6].

4.1 Comparison of Data and Monte Carlo Simulation

To compare data and MC simulation, several analysis cuts are applied. We first require that the
reconstructed vertex of the selected neutrino events lies within the fiducial volume, defined to be
6 cm from the anode and cathode planes, 6 cm from the top and bottom TPC boundaries, 20 cm
from the upstream face of the detector, and 4 cm from the downstream face of the detector. To
reduce the impact of ambient gamma ray activity and photons produced by entering neutrons from
neutrino interactions occurring upstream of the detector, we skip the first 50 wire channels for each
plane. We also skip some noise channels as well as the corner regions which might contain released
charge from the bias voltage distribution cards and possible remaining coherent noise, as shown in
Figure 2. In addition, to suppress hits originating from above-threshold electronics noise, matching
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Figure 9. Maximum ADC distributions for the two ROI finders described in the text for both planes using
a sample of 𝜈𝜇CC 0𝜋, 0 or 1 proton events from the FLUKA MC simulation. Top and bottom rows are
for collection and induction planes, respectively. Left and right columns are for the ADC Over-threshold
and 1D-CNN ROI finders, respectively. The ADC over-threshold ROI finder will lose any signal below the
threshold cut.

in time of ROI between induction and collection planes is applied. We require the minimum tick
difference on the 𝑡max between a ROI from a given wire on one plane and a ROI from possible
crossed wires on the other plane should be less than 15 ticks. The electron lifetime corrections are
applied to both data and MC simulation and a gain correction is also applied to MC simulation
to match data. Such corrections account for the ionization electron loss caused by attachment to
impurities in the liquid argon during drift, and for the electronics gain difference between data and
simulation, as described in Ref. [21].

Figure 10 shows the comparison of the maximum ADC distributions normalized based on the
number of selected events for the ADC over-threshold ROI finder and the 1D-CNN ROI finder from
data and MC simulation. Considering the presence in the data of some posible contributions not
included in the MC simulations, there is an overall agreement between data and MC simulation.
These are background contributions from electromagnetic activity in the detector originating from
neutrino interactions outside the detector’s active volume as discussed in Ref. [22], and possible
remnants of coherent noise and tails not completely removed by the procedure described in Section
2.1. These known sources contribute to the disagreement between data and MC simulation and
have a larger effect on the ADC Over-threshold ROI finder than on the 1D-CNNROI finder at the
low-energy region as shown in Figure 10. Other than that, the 1D-CNN ROI finder is more suitable
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Figure 10. Maximum ADC distributions of different ROI finders for both planes for the selected 𝜈𝜇CC 0𝜋,
0 or 1 proton events from data and MC simulation. Top and bottom rows are for the collection and induction
planes, respectively. Left and right columns are for the ADC Over-threshold and 1D-CNN ROI finders,
respectively.

for extracting small signals from minimally processed single-channel LArTPC wire waveforms,
while the ADC over-threshold ROI finder is unable to recover any signal below the threshold cut.

4.2 Efficiency

We define the waveform ROI efficiency as follows:

ROI efficiency =
number of signals in ROI

number of signals
, (4.1)

where signal is defined in Section 3.2. A signal is considered in a ROI if its 𝑡max lies within the ROI.
If there is more than one signal in the same ROI, only the largest signal is counted. For simplicity,
we use the 𝑛max

𝑒 of the largest signal to represent the signal size of the ROI.
Figure 11 shows the ROI efficiency as a function of 𝑛max

𝑒 of both the ADC over-threshold ROI
finder and the 1D-CNN ROI finder for each of the two planes for the simulated data sample. The
cuts described in Section 4.1 are not applied for the efficiency calculations, because their purpose
is to reduce the effects of low-energy activities from upstream/outside TPC and remaining noise
features in ArgoNeuT data. We also show the average deposited energy of 0.1 MeV and 0.2 MeV
where the ionization happens in Figure 11. The ionization electrons will drift towards anode planes
and only a fraction of them can reach the readout wires and be detected due to the inefficiencies and
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Figure 11. Comparison of the ROI efficiencies as a function of 𝑛max
𝑒 of the two ROI finders described in the

text for the induction plane (right) and the collection plane (left).

physics effects such as recombination, attenuation, and diffusion [21, 23]. Overall, the 1D-CNN
ROI finder gives better results than the ADC over-threshold ROI finder on both the induction and
collection planes as shown in Figure 11. In the low energy region between ∼0.03-0.1 MeV, the
efficiency of the 1D-CNN ROI finder is about twice that of the ADC over-threshold ROI finder,
which is very promising for exploring low energy physics. Because of the difference in signal shape,
both ROI finders show better performance on the collection plane than the induction plane, as shown
in Figure 11 and Figure 12. As indicated by the dotted vertical magenta lines in the figures, signal
waveforms that deposit ≥ 0.2 MeV of energy in 𝑡max are classified as ROIs with > 95% efficiency;
while those that deposit < 0.1 MeV of energy in 𝑡max are more challenging to identify as ROIs.
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Figure 12. ROI efficiencies as a function of 𝑛max
𝑒 for the 1D-CNN ROI finder in both planes.

5 Conclusions

We have developed a unique deep learning based algorithm for recognizing and localizing signals
(ROIs) in the waveforms read out from individual channels of LArTPC detectors. In this paper, we
applied this algorithm to the task of ROI finding in minimally processed LArTPC waveforms from
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the ArgoNeuT detector with very encouraging results. We improved the noise mitigation and built
the data-driven noise model in order to explore the algorithm on data. The algorithm employs a 1D-
CNN to significantly increase the sensitivity of the ArgoNeuT detector to low energy interactions
in liquid argon. The efficiency of our 1D-CNN ROI finder is roughly twice that of a traditional
ADC over-threshold algorithm in the very low energy region (∼0.03-0.1 MeV). The ability to
recover interesting activity in this region can benefit the very low-energy neutrino physics, such as
enhancing our ability to explore solar neutrinos in the ∼1 MeV range and core-collapse supernova
neutrinos in the ∼10 MeV range, both of which are crucial to the physics goals of DUNE [3]. Such
a deep-learning based algorithm can easily be optimized and tailored to a LArTPC experiment
like DUNE. Because of its potentially higher efficiency and background rejection rate, it can be
applied in the initial stages of reconstruction to help reduce data size and speed up data processing.
For example, wire channels without ROI candidates in their full output waveforms can be zero-
suppressed, reducing the total number of channels written to disk. Further reduction is possible
by storing only the waveform sections representing the ROIs, instead of the full waveforms [24].
Because it is based on a fast and lightweight network architecture, it can even be deployed in the
upstream stages of a DAQ system as an intelligent filter that can allow the use of more sophisticated
trigger algorithms or effectively increase buffer sizes for the storage of longer histories. All these
potential applications look very promising indeed for future large-scale LArTPC experiments.
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