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In the companion paper [Phys. Rev. D 103, 104010 (2021)] we have derived the short-ranged potentials
for the Teukolsky equations for massless spins (0, 1=2, 1, 2) in general spherically symmetric and static
metrics. Here we apply these results to numerically compute the Hawking radiation spectra of such particles
emitted by black holes (BHs) in three different ansatz: charged BHs, higher-dimensional BHs, and
polymerized BHs arising from models of quantum gravity. In order to ensure the robustness of our
numerical procedure, we show that it agrees with newly derived analytic formulas for the cross sections in
the high and low energy limits. We show how the short-ranged potentials and precise Hawking radiation
rates can be used inside the code BlackHawk to predict future primordial BH evaporation signals for a very
wide class of BH solutions, including the promising regular BH solutions derived from loop quantum
gravity. In particular, we derive the first Hawking radiation constraints on polymerized BHs from AMEGO.
We prove that the mass window 1016–1018 g for all dark matter into primordial BHs can be reopened with
high values of the polymerization parameter, which encodes the typical scale and strength of quantum
gravity corrections.
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I. INTRODUCTION

The most striking feature of black holes (BHs) might be
that, in spite of their name, they (supposedly) radiate
particles and slowly evaporate, as first discovered by
Hawking [1]. Hawking radiation (HR) causes BHs to lose
mass, charge and angular momentum, up to a late evapo-
ration stage where physics is so far unsettled. This late stage
is sometimes conjectured to lead either to complete dis-
appearance or to a stable remnant, but it is clear that a
proper understanding of the final state of a black hole after
its evaporation requires an understanding of the quantum
nature of gravity.

BHs in the stellar mass range are observed e.g., at
LIGO/VIRGO via the gravitational waves they emit when
binary BHs merge [2,3], while shadows of supermassive
BHs at the center of galaxies can be probed by large array
interferometers [4]. Primordial BHs (PBHs) formed in the
early universe could be lighter that the Oppenheimer–
Volkoff limit, down to the Planck mass. As Hawking
radiation (HR) gets more energetic when the BH mass
decreases, one could hope to observe these light PBHs
thanks to the radiation they emit in every direction. For
now, there is currently no direct observational evidence of
HR, resulting in constraints on the abundance of PBHs in
the universe, as those which have not totally evaporated by
now (MBH ≳ 1014 g for a Kerr BH) account for some
fraction of the dark matter (DM). We refer the reader to [5]
for a complete review on this topic.
Interestingly, there is still an open window in the asteroid

mass range 1017 ≲MBH ≲ 1021 g for PBHs to represent all
of DM, solving this long-standing issue in cosmology [5,6],
although the lower part of this window may be closed by
future gamma ray observatories such as AMEGO [7]. This
window is precisely constrained by HR predictions.
However, since different BH solutions to the Einstein
equations provide different HR signals, it is worth having
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a new look at the constraints on the PBH abundance
from various examples of spherically symmetric static
black holes.
In a companion paper [8] we have derived the short-

ranged potentials of the Teukolsky equations for a wide
class of BH solutions, namely spherically symmetric and
static BHs, setting the mathematical background for HR
computations. In the present paper, we use these potentials
to compute the HR of benchmark BH solutions: charged
BHs, higher-dimensional BHs and polymerized BHs. An
abundant literature is dedicated to the case of charged BHs
(e.g., [9–15]) and higher-dimensional BHs (e.g., [16–19],
for a review see [20]), but much less work has focused on
polymerized BHs [21–26] (see in particular [27]). We stress
that our derivation of the potentials for HR applies in
particular to the class of regular BHs, which are BH
solutions showing no singularity at the coordinate origin.
Polymerized BHs, inspired by loop quantum gravity (LQG,
see [28] for a review), are an example of regular BHs
[29–47]. Recent work on other regular BH solutions
include e.g., [48–52], some of which also discuss HR.
In this paper, we use the short-ranged potentials derived

in the companion paper [8] to compute numerically the HR
rates for massless particles of spin 0, 1, 2 and 1=2, thereby
completing previous literature. We present in details three
examples as illustrations, namely charged BHs, higher-
dimensional BHs, and polymerized BHs. The important
point we wish to emphasize is that most of the previous
studies on HR were performed with heavy use of numerical
methods due to the lack of a general derivation of the short-
ranged potentials. Here we take advantage of the analytical
results derived in [8]. As a consistency check, we also
compare our results at low and high energy with analytical
limits, some of which are derived for the first time here.
This gives strong support for the robustness of our
numerical method based on short-ranged potentials, which
can then be used to predict HR radiation signals for other
BH metrics for which there is no analytical results yet.
During this study, we have also modified the public code
BlackHawk [53], written by a subset of the present authors,
to produce the Hawking spectra of BHs with the new
metrics. This improvement will be part of a forthcoming
update of BlackHawk. As a novel application, we use the
computed emission rates for polymerized BHs to reassess
the MeV-GeV photon constraint on PBHs from AMEGO,
and show that a sufficiently high value of the polymeri-
zation parameter ε reopens the mass window MPBH ≲
1018 g for all DM in the form of PBHs. This is the first
constraint ever set on polymerized BHs with Hawking
radiation.
The paper is organized as follows. Section II briefly

reviews the results of the companion paper and gives the
important analytical formulas necessary to the study of
Hawking radiation. In Sec. III, we introduce the BHmetrics
on which we focus, motivate their choice and physical

relevance. Section IV presents our main results, with the
Hawking radiation numerical computations and the new
constraint on polymerized primordial black holes. Finally
we conclude and give perspectives for future work.

II. GENERAL EQUATIONS

In this section we summarize the results of the
companion paper [8], which establishes the mathematical
framework necessary for the study of Hawking radiation
emitted by spherically symmetric static black holes. We
introduce the general metric ansatz and recall the main
analytical formulas: short-ranged potentials, Hawking radi-
ation cross section with low and high energy limits.

A. Short-ranged potentials

We are interested in spherically symmetric and static
metrics, which in Boyer-Lindquist coordinates take the
general form

ds2 ¼ −GðrÞdt2 þ 1

FðrÞ dr
2 þHðrÞdΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sinðθÞdφ2.1 We restrict ourselves to
black hole solutions, by which here we mean metrics that
are asymptotically flat

FðrÞ ⟶
r→þ∞

1; GðrÞ ⟶
r→þ∞

1; HðrÞ ∼
r→þ∞

r2; ð2:2Þ

and present a horizon at some radius rH which is a pole of
F. For such metrics the ADM mass of the BH is then [54]

M ¼ lim
r→þ∞

1

2

�
r
F
þH

r
− ∂rH

�
: ð2:3Þ

We have shown in the companion paper [8] that for these
metrics the equations of motion of spin 0, 1, 2 and 1=2
massless particles can be transformed into one-dimensional
Schrödinger-like wave equations

∂2�Z þ ðω2 − Vðrðr�ÞÞÞZ ¼ 0; ð2:4Þ

where the tortoise coordinate is defined as

dr�

dr
≡ 1ffiffiffiffiffiffiffi

FG
p ; ð2:5Þ

and we have introduced the notation ∂� ≡ ∂r� . These
tortoise coordinates r�ðrÞ are explicitly computed for the
BHs of interest in Appendix A. The potentials computed in
[8] reduce to

1From now on, we use natural units such that G ¼ c ¼
ℏ ¼ kB ¼ 4πε0 ¼ 1.
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V0ðr�Þ ¼ ν0
G
H

þ ∂2�
ffiffiffiffi
H

p
ffiffiffiffi
H

p ; ð2:6aÞ

V1ðr�Þ ¼ ν1
G
H
; ð2:6bÞ

V2ðr�Þ ¼ ν2
G
H

þ ð∂�HÞ2
2H2

−
∂2�

ffiffiffiffi
H

p
ffiffiffiffi
H

p ; ð2:6cÞ

V1=2ðr�Þ ¼ ν1=2
G
H

� ffiffiffiffiffiffiffiffi
ν1=2

p ∂�

� ffiffiffiffi
G
H

r �
; ð2:6dÞ

where the intermediate r dependency is not shown for
conciseness. The spin-dependent parameters νi are given
by ν0 ¼ lðlþ 1Þ ¼ ν1, ν2 ¼ lðlþ 1Þ − 2 and ν1=2 ¼ lðlþ
1Þ þ 1=4 where l ¼ s; sþ 1;… is the total angular
momentum of the wave and m ¼ −l;…;þl its projection.
The shape of the potentials and their discrepancies with the
reference Schwarzschild case as functions of the parame-
ters of the various metric models are detailed in the
companion paper [8].

B. Greybody factors, low and high energy limits

With the short-ranged potentials at our disposal, it is
numerically straightforward to compute the greybody
factors needed to estimate the Hawking radiation rate.
Hawking radiation [1] is a semiclassical phenomenon of
quasithermal emission of particles by BH horizons. The
rate of emission of one degree of freedom i per unit time t
and energy E is given by

d2Ni

dt dE
¼

X
l;m

1

2π

ΓiðE;M; xjÞ
eE=T − ð−1Þ2si ; ð2:7Þ

where si is the spin of the particle i and T is its Hawking
temperature given by

TðM; xjÞ ¼
κ

2π
; ð2:8Þ

where κ is the surface gravity of the BH. This latter is
obtained from the formula

κ2 ≡ −
1

2
∇μkν∇νkμ

����
hor

¼ 1

4

FG02

G

����
hor
; ð2:9Þ

where kμ ¼ ð1; 0; 0; 0Þ is the timelike Killing vector and
“hor” denotes the horizon r ¼ rH. The greybody factor is
the probability that a particle generated by thermal fluc-
tuations at the horizon escapes to spatial infinity. If we
consider a wave function which is purely ingoing on the
horizon, i.e., with

Zðr�Þ ∼
r�→−∞

Ain
hore

−iωr� ; ð2:10Þ

and given at infinity by

Zðr�Þ ∼
r�→þ∞

Ain
∞e−iωr

� þ Aout
∞ eþiωr� ; ð2:11Þ

then the greybody factor is obtained as

ΓiðE;M; xjÞ ¼
����A

in
hor

Ain
∞

����
2

: ð2:12Þ

In general, the greybody factor and the temperature (or the
surface gravity) depend on the BH mass M but also on the
precise shape and parameters of the metric, that is the set of
xj. As we have decomposed the wave in spin-weighted
spherical harmonics to obtain the radial potentials in [8],
the greybody factors Γi also depend on the particle i
angular momentum parameters ðl; mÞ. The spherical sym-
metry reduces the sum on m in equation (2.7) to a factor
2lþ 1. To compute these greybody factors, we have used
the same kind of Mathematica scripts that are given with
the public code BlackHawk [53]. Finally, we also define the
cross-section σi for a particle i by

σi ≡ π

E2
Γi: ð2:13Þ

We emphasize here that the new HR results obtained in this
paper will be part of a forthcoming update of BlackHawk,
where the aforementioned scripts and tabulated greybody
factors will be publicly available.

1. High energy limit

The high energy limit is usually called the “geometrical
optics” approximation, because fields of all spins experi-
ence the BH as an optical obstacle whose extension is given
by the effective area AeffðxjÞ enclosed by the last unstable
circular orbit. This area depends on the set of parameters xj
of the BHmetric. Let bc be the critical impact parameter for
which the incoming massless fields would reach an
unstable circular orbit of radius rc. For a general BH
metric of the form (2.1), this is called the “photon sphere”,
defined as the innermost unstable circular orbit for a
massless test particle in rotation around the black hole.
Photons follow null geodesics, meaning that for an affine
parameter λ we have

0 ¼ gμν
dxμ

dλ
dxν

dλ
: ð2:14Þ

Along every geodesic there are two conserved quantities,
the energy E and the angular momentum L, associated,
respectively, to the Killing vector fields ∂t and ∂φ. Using
the metric ansatz (2.1) they are given by

E≡G
dt
dλ

; L≡H
dφ
dλ

: ð2:15Þ
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Inserting these expressions into equation (2.14) and choos-
ing a planar orbit at θ ¼ π=2, we get

�
dr
dλ

�
2

¼ 1

F

�
E2

G
−
L2

H

�
≡ −Veff : ð2:16Þ

The radial acceleration is then given by d2r
dλ2 ¼ −V 0

eff. Let us
remark that we could obtain the same result by directly
calculating the radial geodesic equation. In order to have an
unstable circular orbit there must be a critical radius rc such
that V 0

effðrcÞ ¼ 0 and V 00
effðrcÞ < 0. Since on this orbit the

radial velocity must be vanishing, we can also use equa-
tion (2.16) to constrain the energy and the angular
momentum to satisfy

VeffðrcÞ ¼ 0 ⇒
L2

HðrcÞ
¼ E2

GðrcÞ
: ð2:17Þ

It is then straightforward to verify that the condition for the
unstable orbit reduces to

V 0
effðrcÞ ¼ 0 ⇒

G0ðrcÞ
H0ðrcÞ

−
GðrcÞ
HðrcÞ

¼ 0; ð2:18aÞ

V 00
effðrcÞ< 0⇒HðrcÞG00ðrcÞ−H00ðrcÞGðrcÞ< 0: ð2:18bÞ

The critical impact parameter for a massless particle is
then defined with respect to the energy and the angular
momentum as

b2c ≡ L2

E2
¼ HðrcÞ

GðrcÞ
: ð2:19Þ

Finally, the effective area (classical scattering) of the BH is
given in 4þ n dimensions as

σ∞ ¼ AeffðxjÞ ¼
πðnþ2Þ=2bnþ2

c

Γððnþ 4Þ=2Þ ; ð2:20Þ

where Γ is the Euler gamma function.
For the particular example of a so-called tr-symmetric

metric, for which we have FðrÞ ¼ GðrÞ≡ hðrÞ and
HðrÞ ¼ r2 in equation (2.1), the conditions (2.18) reduce
to [55,56]

h0ðrcÞ −
2

rc
hðrcÞ ¼ 0; h00ðrcÞ −

2

r2c
hðrcÞ < 0: ð2:21Þ

Then, the impact parameter is given by

bc ¼
rcffiffiffiffiffiffiffiffiffiffiffi
hðrcÞ

p : ð2:22Þ

In the Schwarzschild case, we obtain for all particle spins
(see e.g., [57] and references therein)

σ∞ ¼ 27πM2 ≡ σGO; ð2:23Þ

which is the usual geometric approximation cross section.

2. Low energy limit

At low energy, massless fields of each spin behave
differently. Several methods have been used to obtain the
low energy limits for the cross section. Classical scattering
arguments apply to the low energy limit of the spin 0 field,
as can be found in [21] which uses the partial wave
decomposition and the small angle approximation.
More generally, authors use a “matching” method which

consists of reducing the radial spin-dependent Teukolsky
equation (see [8]) to a simplified version in the “far field”
region (r → þ∞) and in the “horizon” region (r → rH).
Depending on the number of poles (number of horizons) of
the metric components F and G, the differential equation
obtained is some form of a Heun equation. This depend-
ency on the spin makes it difficult to provide a general
procedure to obtain the desired equation, especially in the
general case F ≠ G studied here. Then, solving in each
region independently, while applying the correct boundary
conditions, and matching the two solutions in the inter-
mediate region gives an analytical expression for the
greybody factor. Arguments that justify the matching
procedure are given e.g., in [13]. This expression can be
expanded in the limit ωrH → 0 to obtain the analytical low
energy limit for the cross section. One further simplifica-
tion is that at low energy, only the lowest momentum partial
wave l ¼ s participates significantly to the result. This is
the method used e.g., in [13,16–18,58]. In the
Schwarzschild case (denoted by a superscript S), the low
energy limits for the various spins studied here are (see e.g.,
[57] and references therein)

σS0 ¼ 4r2S; σS1 ¼
4

3
r4SE

2;

σS2 ¼ 4

45
r6SE

4; σS1=2 ¼
1

2
r2S: ð2:24Þ

III. EXAMPLES OF METRICS

To illustrate our results, we have selected three different
metrics for which wewill compute the HR : i) charged BHs,
ii) higher-dimensional BHs, iii) polymerized BHs arising
from loop quantum gravity. In this section we briefly
present the corresponding metrics and the parameters xj
which they contain.

A. Charged black holes

The no-hair theorem states that a BH (in general
relativity coupled to electromagnetism) is entirely charac-
terized by its mass M, angular momentum J and electric
charge Q. Astrophysical BHs are expected to have a
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sizeable spin due either to their formation mechanism
through the collapse of stars (for stellar BHs) or due to
long-term accretion of orbiting gas clouds (for super-
massive BHs at the center of galaxies). These are however
not expected to have a sizeable electric charge because their
environment of formation is typically electrically neutral.
However, primordial BHs can have either zero spin (if
formed during radiation domination era) or high spin (if
formed during matter domination era) [59–62]. The spin is
bounded to a≡ J=M < M to avoid the breaking of the
horizon and the appearance of a naked singularity. HR
makes this spin decrease in time because the emission of
particles with an angular momentum aligned to the BH spin
is preferred. The paradigm is exactly the same for electric
charge. The electric charge is bounded to2 Q < M and
decreases in time because emission of particles of the same
charge as the BH is preferred [9–12]. The universe is
supposed to be neutral at all times, but processes in the
early universe could produce electrically charged regions
that collapse into electrically charged PBHs (astrophysical
BHs are generally assumed to be neutral). The charge can
be maintained until the present epoch if it was initially very
close to the extremal case Q≲M, with the same kind of
evolution as described for the spin in [62]. Random
fluctuations of the charge would nevertheless remain until
decay has reached the Planck mass [12,15].
Our formalism does not allow to treat the emission of

charged particles through Hawking radiation, because in
this case the equations of motion studied in [8] should be
modified by the coupling between the particle and the BH
electric field. However, the formalism is completely
adapted to treat the emission of neutral particles (such as
neutrinos, photons,…) by a charged BH. With our notation
for the general family (2.1), the metric of a Reissner–
Nordström BH is [8]

FðrÞ ¼ GðrÞ ¼ 1 −
rS
r
þ r2Q

r2
¼ ðr − rþÞðr − r−Þ

r2
;

HðrÞ ¼ r2; ð3:1Þ
where rS ≡ 2M is the Schwarzschild radius and r2Q ¼ Q2 in
our system of units. The temperature is given by

TQðM;QÞ ¼ κQ
2π

¼ rþ − r−
4πr2þ

; ð3:2Þ

where the horizon radii are

r�ðM;QÞ≡M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Q2

M2

r �
: ð3:3Þ

In the limit Q → 0 we recover the Schwarzschild case with
rþ ¼ rS and r− ¼ 0. In the opposite limit Q → M we

obtain rþ ¼ r− and TQ ¼ 0, which means that there is no
Hawking emission; the so-called extremal BH is eternal.
Overall, the temperature—and thus the emission power—
decreases as Q increases, because r− → rþ. The result of
integration of equation (2.5) for a charged BH is given in
Appendix A.

B. Higher-dimensional black holes

Although general relativity is typically studied in four
spacetime dimensions, which coincides fairly well with
astronomical observations, small extra spatial dimensions
are not ruled out by particle physics experiments, nor by the
propagation of gravitational waves (see [19] and references
therein). As in [19], we will consider here large extra
dimensions, that is to say dimensions with typical size
larger than the Planck size R ≫ lP, and small BHs, that is
to say BHs with horizon radius rH ≪ R. Hawking radiation
on the bulk and in the brane of such BHs was previously
studied in e.g., [18]. On the 4-dimensional brane, the
metric is

FðrÞ¼GðrÞ¼ hðrÞ≡1−
�
rH
r

�
nþ1

; HðrÞ¼ r2; ð3:4Þ

where n > 0 is the number of extra dimensions and the
horizon radius is given by

rH¼ 1ffiffiffi
π

p
M�

�
M
M�

�
1=ðnþ1Þ�8Γððnþ3Þ=2Þ

nþ2

�
1=ðnþ1Þ

; ð3:5Þ

where Γ is the Euler gamma function and the rescaled
Planck mass is M2

Pl ¼ Mnþ2� Rn. The temperature is

Tn ¼
κn
2π

¼ nþ 1

4πrH
: ð3:6Þ

We recover the Schwarzschild results for n ¼ 0. The result
of integration of equation (2.5) for a higher-dimensional
BH is given in Appendix A.

C. Polymerized black holes

Polymerized BHs have emerged as an effective template
for black holes in loop quantum gravity.3 They are studied
by applying the techniques of loop quantum gravity and
loop quantum cosmology [63] to mini-super-space black
hole spacetimes. Although many models have been pro-
posed in the literature (see e.g., the nonexhaustive list
[29–46]), depending on the details of the regularization of
the Hamiltonian, here we focus for definiteness on the
particular class of effective metrics derived in [64,65].
These metrics are regular, i.e., do not admit a singularity at

2The general relation for a Kerr–Newman (charged and
rotating BH) is a2 þQ2 < M2.

3The term “polymerized” refers to the polymerlike quantiza-
tion scheme inherited from loop quantum gravity [28].
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r ¼ 0, and remain asymptotically flat. The resolution of the
singularity arises from effects of quantum geometry which
become relevant at the Planck scale. Here we treat these
metrics as phenomenological ansatz for BHs taking into
account loop quantum gravity corrections at the semi-
classical level.
Identifying possible signatures of quantum gravity has

recently regained interest due to the increasing precision in
the detection of gravitational waves. Indeed, the last phase
of BH merging, known as the ringdown phase, is extremely
sensitive to the details of the metric structure of BHs. The
deformed BH resulting from the coalescence of two BHs
settles down to a stable (axially) symmetric shape by
emitting gravitational waves of defined frequencies known
as quasinormal modes. The determination of these modes
for a given metric and the comparison with the ringdown
signal could discriminate between different models of
BHs [66,67].
The stability of polymerized BHs, the equations gov-

erning their geometry, and their Hawking radiation were
studied e.g., in [21–27] for scalar waves and gravitational
waves. The results for spin 1 are new to this paper. In
reference [27] one can find some results for the massless
field of spin 1=2. Our results for this case however differ
quantitatively from [27], as we will see below. It is also
noteworthy that no constraint has yet been derived for these
polymerized BHs using Hawking radiation. For the first
time, we give such a constraint on the primordial black
holes abundance as a dark matter component in Sec. IV D.
We now turn to the precise description of the model. The

polymerized BH metric studied in [64,65] has defining
functions given by

G ¼ ðr − rþÞðr − r−Þðrþ ffiffiffiffiffiffiffiffiffiffi
rþr−

p Þ2
r4 þ a20

; ð3:7aÞ

F ¼ ðr − rþÞðr − r−Þr4
ðrþ ffiffiffiffiffiffiffiffiffiffi

rþr−
p Þ2ðr4 þ a20Þ

; ð3:7bÞ

H ¼ r2 þ a20
r2

: ð3:7cÞ

Here a0 and ε are the two parameters encoding the quantum
gravity deformation from the Schwarzschild metric. The
parameter a0 is the minimal area in loop quantum gravity,
also referred to as the area gap. It is typically of the Planck
scale. The deformation parameter ε ≥ 0 is an a priori
independent parameter indicating the typical scale of the
geometry fluctuations in the Hamiltonian constraints of the
theory as they get renormalized from the Planck scale to
astrophysical scales. Although one can be tempted to keep
it very small ε ≪ 1, nothing a priori forbids it from
growing large and it can be interesting to consider possible
high values of this deformation parameter in order to
understand the effects of loop quantum gravity corrections.

The two roots of the metric components are rþ ¼ 2m
and r− ¼ 2mPðεÞ2. This identifies the first important effect
of the polymerization: the black hole, even without electric
charge, acquires a Cauchy horizon at r ¼ r− on top of the
event horizon at r ¼ rþ. If the deformation parameter ε is
sent to 0, the radius r− is also sent to 0 (even if the area gap
remains nonvanishing) and we recover a Schwarzschild-
like metric. On the other hand, as ε grows large, r− grows to
rþ (although always remaining smaller) and the polymer-
ized BH geometrically behaves as if it carried a non-
vanishing charged energy-momentum tensor although it of
course does not create an electromagnetic field. Finally, the
mass parameter4 m is related to the ADM mass M by M ¼
mð1þ PÞ2 where the polymerisation factor is

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε2
p

þ 1
: ð3:8Þ

The temperature is

TLQG ¼ κLQG
2π

¼ 4m3ð1 − P2Þ
32πm4 þ 2πa20

¼ r2þðrþ − r−Þ
4πðr4þ þ a20Þ

: ð3:9Þ

We can see that when ε ≪ 1, the change in the temperature
is quite negligible compared to the Schwarzschild case. We
thus expect rates of emission for polymerized BHs close to
the classical case. However, we see that in the limit
ε → þ∞, the radii collapse r− → rþ and the temperature
goes to TLQG → 0, canceling Hawking radiation, similarly
to the charged BH with Q → M. We thus expect a close
behavior of the emission rates: overall, the temperature—
and thus the emission power—would decrease when ε
increases. What we also remark is that unless the BH has a
horizon radius r2þ ≳ a0, the value of a0 would have a
marginal effect on the temperature (and emission rates).
The result of integration of equation (2.5) for a polymerized
BH is given in Appendix A.
To conclude this section, let us stress the fact that here we

have studied a polymerized BH model based on the metric
(3.7), which was obtained in [64,65] using the so-called μ0
regularization scheme. There exist however many alter-
native regularization schemes (depending e.g., on the
choice of phase space variables to polymerize), see e.g.,
[46], and the effective BH metric reconstructed in each of
these schemes are (in principle) different. For example, the
effective metric reconstructed with the so-called improved
μ0 scheme of [33,34] is not asymptotically flat, which
prevents it from being used in the present setup because if is
not of the form (2.1) with (2.2). However, any other metric
falling within the class (2.1) and (2.2) can in principle be

4We stress that the effective mass quantity m defined here has
nothing to do with the angular momentum projection m used
earlier; as we study spherically symmetric BHs, the angular
momentum projection plays no particular role.
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studied with the method presented here and in the
companion paper [8]. Here we meant to apply the formal-
ism to (3.7) in order to provide a proof of principle that
Hawking radiation spectra can be used to investigate
various models of BHs. Future work will be devoted to
the more detailed study of regular polymerized BH models
obtained from models of quantum gravity, and to the study
of how different polymerization schemes affect the short-
ranged potentials and the Hawking radiation spectra.

IV. RESULTS AND DISCUSSION

In this section, we show the Hawking radiation of BHs
with the different metrics of Sec. III. This is the first time
Hawking radiation signals from these metrics are compared,
in particular in the spin 1 massless (photon) and spin 1=2
massless (Weyl neutrino) case of polymerizedBHs emission.
As literature already exists for the case of charged Reissner–
NordströmBHs [12] and higher-dimensional Schwarzschild
BHs [16–19],weput the full spectra ofHawking radiation for
those in Appendix B (see Figs. 5 and 6).
We confront our results to existing literature on analyti-

cal cross sections when available to conclude on the
validity of our potentials and the precision of the numerical
computation. To compare our results to the limit at high
energies, we define the quantity

β∞ ≡ σ∞
σGO

¼ AeffðxjÞ
ð27=4Þπr2S

; ð4:1Þ

where σGO is given in Eq. (2.23). In the low energy limit,
the asymptotic expression for the cross section depends on
the spin s of the radiated field. We thus define the quantities

βs ≡ σs;low
σs;S

; ð4:2Þ

where the low energy limits in the Schwarzschild case are
given in Eqs. (2.24). We fit our numerical data at low and
high energies to obtain the coefficients β∞ and βs. We also
check that the exponent of the energy dependency corre-
sponds to the expected one up to 0.01% precision (0 for
spins 0 and 1=2, 2 for spin 1 and 4 for spin 2). The fitting of
the high energy constant limit is complicated by the
oscillatory behavior of the cross section at high energies
(see full spectra in Appendix B). As we reach the
asymptotic value from below for spin 2, the fitting
procedure always slightly underestimates the value of
β∞, but the coherence with other spins results is clear.
In all 3 examples presented here, we verify that when the
extra-Schwarzschild parameters go to 0 (charge, number of
extra dimensions, polymerization parameter) we recover
the Schwarzschild results, that is β∞ ¼ 1 and βs ¼ 1.

A. Charged black holes

The full Hawking radiation spectra of charged BHs
described by the metric (3.1) for massless fields with spins
0, 1, 2 and 1=2 is shown in Fig. 5 of Appendix B. We
checked that our results are consistent with existing
literature [12]. As expected, an increase in the charge Q
leads to a decrease in the temperature and thus in the
emitted power: the higher the BH charge, the smaller the
HR rate; with the emission peaking at a smaller energy.
At high energy and for a Reissner–Nordström BH with

charge Q, it was shown in e.g., [14] that the asymptotic
limit for the cross section for all spins is

FIG. 1. Left: Comparison between the high energy asymptotic cross section of Eq. (4.3) for charged BHs (red solid line) and our
computed results for all spins (black markers). Right: Comparison between the low energy asymptotic cross section of Eqs. (4.4) (solid
lines) and our computed results (markers) for all spins. Be careful of the inverted log-scale x-axis.
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βQ∞ ¼ ð3M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ4

54r2Sð3M2 − 2Q2 þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ
; ð4:3Þ

which can also be obtained from Eq. (2.20). This quantity,
compared to our results, is shown in Fig. 1 (left panel). At
low energies, the general study of [13] applies and we can
predict that the low frequency limits are for all spins

βQ0 ¼ r2þ=r2S; ð4:4aÞ

βQ1 ¼ r2þðrþ − r−Þ2=r4S; ð4:4bÞ

βQ2 ¼ r3þðrþ − r−Þ3=r6S; ð4:4cÞ

βQ1=2 ¼ ðrþ − r−Þ2=r2S: ð4:4dÞ

The comparison to our results is shown in Fig. 1 (right
panel). From these comparisons with theoretical limits at
high and low energy, we can conclude that our numerical
computation of the HR from charged BHs is very
satisfying.

B. Higher-dimensional black holes

The full HR spectra for massless fields of spins 0, 1, 2
and 1=2 in the case of higher-dimensional Schwarzschild
BHs described by the metric (3.4) are given in Appendix B
(see Fig. 6). The general trend is an increase in the horizon
temperature with an increasing number of large extra
dimensions n [see Eq. (3.6)], resulting in more energetic
HR. One unusual feature is that the oscillatory behavior of
the cross section at high energies is damped. We have
checked for consistency with the spectra of [18,19].

In [18] (and references therein) it is shown that for every
dimension n, the limiting value of the effective area of the
horizon is AeffðnÞ ¼ 4πr2c where

rc ≡
�
nþ 3

2

�
1=ðnþ1Þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 3

nþ 1

r
rH; ð4:5Þ

which implies that the high energy cross section satisfies

βn∞ ¼
�
rH
rS

�
2
�
nþ 3

2

�
2=ðnþ1Þ�nþ 3

nþ 1

�
; ð4:6Þ

which could also have been obtained thanks to Eq. (2.20).
The agreement between the theory and our results is shown
in Fig. 2 (left panel). On the other hand, at low energy we
obtain cross sections compatible with [16–18]

βn0 ¼ r2H=r
2
S; ð4:7aÞ

βn1 ¼
4r4H
r4S

�
Γð1=ðnþ 1ÞÞΓð2=ðnþ 1ÞÞ

ðnþ 1ÞΓð3=ðnþ 1ÞÞ
�
2

; ð4:7bÞ

βn2 ¼
16r6H
r6S

�
Γð1=ðnþ 1ÞÞΓð4=ðnþ 1ÞÞ

ðnþ 1ÞΓð5=ðnþ 1ÞÞ
�
2

; ð4:7cÞ

βn1=2 ¼ 24−4=ðnþ1Þr2H=r
2
S: ð4:7dÞ

We note that the low energy asymptotic limit for spin 2 is
not given explicitly in [17]. However, their equations (37)
and (38) are valid for spin 2, as shows a careful follow-up of
all the steps from the Teukolsky master equation. We also
point out that in [68] only the analytical results for spin 2

FIG. 2. Left: Comparison between the high energy asymptotic cross section of Eq. (4.6) for higher-dimensional BHs (red solid line)
and our computed results for all spins (black markers). Right: Comparison between the low energy asymptotic cross section of Eqs. (4.7)
for higher-dimensional BHs (solid lines) and our computed results for all spins (markers).
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emission in the bulk are given, while we focus here on
brane emission of massless gravitons. The results are
shown in Fig. 2 (right panel). The comparison of the
theoretical asymptotic limits and our numerically computed
spectra once again shows very good agreement.

C. Polymerized black holes

The full HR spectra for massless fields of spins 0, 1, 2
and 1=2 in the case of a polymerized BH described by the
metric (3.7) are given in Appendix B (see Figs. 7 and 8 for
low and high values of ε, respectively). Most of these
results are new, as we now explain.
In the literature, the spin 0 case has historically been

treated first, theoretically in [23–25] and numerically in
[21]. The potentials for spin 0 and 1 were used in [67] to
determine the BH shadow and the quasinormal modes.
Then, spins 0 and 1=2 have been studied in [27], where
in the spin 1=2 case the Teukolsky equation is solved
numerically without the intermediate step of deriving the
short-ranged potential. Concerning the massless spin 2
perturbations (and other spins as well), they were only
studied in the case of quasinormal modes (QNMs)
[66,67,69]. These studies invoke the same kind of poten-
tials as in equations (2.6), but solve the Schrödinger-like
wave equation with different boundary conditions to find
the quasinormal frequencies. It was not possible to compare
our full spectra for low values of ε for spins 0 and 1=2 to
those of [27] due to unspecified normalization factors in
their Figs. 2, 3 and 4. Moreover, it seems that we find
results differing from theirs for massless fields of spin 1=2:
they predict a distortion of the spectra at high energies that
we do not observe in the right panel of Fig. 7 corresponding

to the fermionic field. The height of the first peak in the
spin 1=2 cross section seems to follow a different tendency
in our results compared to theirs when ε increases. However
we find, as they do, that increasing the parameter ε leads to
a decreasing HR rate. A linear scale has been used in the
left panels of Fig. 7 to make this statement more obvious,

FIG. 3. Left: Comparison between our high energy asymptotic limits for the cross section of high energy fields with polymerized BHs
(black markers), in the case a0 ¼ 0. The approximate formula (4.10) is shown as a red solid line. Right: Comparison between the low
energy asymptotic cross section of Eqs. (4.11) for polymerized BHs (blue line) and our computed results for spin 0 (blue crosses), as
well as the computed low energy cross sections for the other spins (green, red and purple markers) for which literature is not available.

FIG. 4. Constraints on the PBH fraction in DM from the
measurement of MeV–GeV photons in the galactic center by
AMEGO. We show the constraints derived for a classical BH in
this work (solid black), to be compared to the same limit from
Coogan et al. (2021) [7] (solid gray). Then we show the
constraints computed for increasing values of ε ¼ f1; 5; 10g
(dashed blue, dot dashed green and dotted red, from right to left).
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while a logarithmic scale was used for high values of ε in
Fig. 8 as the HR is much more decreased. We also find that
the parameter a0 plays no particular role in the rates of
emission, at least when varying between 0 and the often-
used value a0 ¼

ffiffiffi
3

p
γ=2 ≃ 0.11 where γ ≡ lnð2Þ= ffiffiffi

3
p

π is
the Barbero–Immirzi parameter, causing only a very slight
decrease in the high energy tail due to the different
temperatures. The differences are at the percentage level
and not shown here. The effect of small values of ε on the
Hawking radiation rates is small altogether.
The results are much more intriguing for high values of

ε, and are reported on Fig. 8. With values of ε ¼ f1; 4; 10g
we obtain a reduction in the temperature of a factor
∼f1; 1.6; 3.2g (respectively). The associated decrease in
the emission rate is strongly spin-dependent, a feature that
could be explained with an analysis of the precise depend-
ency of the potentials in ε: the emission is more and more
damped for high values of ε as the particle spin increases.

This is a major result which has important consequences on
the Hawking radiation constraints discussed in the next
section. A fundamental difference between Reissner–
Nordström (Kerr) and polymerized BHs is that the charge
(angular momentum) is radiated away during the BH
evaporation. Thus, the behavior of the BH is expected to
follow a Schwarzschild trajectory once these parameters are
back to small values. The polymerization factor, on the
other hand, is a constant inherited from the quantum nature
of gravity. Thus, the specific behavior associated with a
high value of ε (namely a decrease of the BH temperature
compared to the Schwarzschild case, and smaller emission
rates) should last during the whole lifetime of the BH.
These aspects are discussed further in the next section.
The high energy limit of the cross section for polym-

erized BHs has not appeared in the literature. Using
conditions (2.18), we obtain the value for the radius of
the photon sphere in the limit a0 → 0. This is

rLQGc ¼ rþ
6

�
3P2 − 4Pþ 3þ 9þ Pð6þ Pð10þ 6Pþ 9P2ÞÞ

z
þ z

�
; ð4:8Þ

where z is

z≡
h
27þ 27P − 63P2 − 190P3 − 63P4 þ 27P5 þ 27P6

þ 3Pð1þ PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−675þ 3Pð−238þ Pð49þ Pð636þ Pð49 − Pð238þ 225PÞÞÞÞÞ

p i
1=3

: ð4:9Þ

We therefore find that the high energy limit of the cross
section is given by

βLQG∞ ¼
�
rLQGc

rS

�2 1

GðrLQGc Þ : ð4:10Þ

The comparison of this formula with our numerical results
is shown in Fig. 3 (left panel), with excellent agreement
even for high values of ε. In the case where a0 ≠ 0, and in
particular when taking the fiducial value a0 ¼

ffiffiffi
3

p
γ=2 ≃

0.11 where γ ≡ lnð2Þ= ffiffiffi
3

p
π is the Barbero–Immirzi param-

eter [27], we cannot use the approximate formula (4.10).
However, we have performed a numerical estimation of the
photon sphere radius rc and compared the resulting high
energy cross section to our computed results, showing great
agreement. The effect of taking a0 ≠ 0 is small anyways. It
was proven by [21] that at low energy the scalar wave has a
cross section

βLQG0 ¼ 4m2ð1þ P2Þ
r2S

�
1þ a20

16m4

�

¼ rþðrþ þ r−Þ
r2S

�
1þ a20

r4þ

�
: ð4:11Þ

The agreement of this analytical result with our computed
results is shown in Fig. 3 (right panel). For the spin 0 field,
the low ε regime is correctly reproduced, but a discrepancy
between the analytical limit and the numerical calculation
is found at high values of ε. This difference is of order
unity, and concerns only the very low energy asymptotic
behavior. It is not clear whether the derivation of the
formula (4.11) is valid at high values of ε. There is, to our
knowledge, no literature giving the asymptotic limits at low
energy for the other spins. The very good agreement
between these theoretical limits and our numerically
computed results are convincing us that our potentials
for this non-tr-symmetric example are efficient. We have
checked that the limit ε, a0 → 0 gives the Schwarzschild
result for all spins. We point out that the high-ε damping of
the HR rate is very clear for spins s > 0, while the spin 0
emission rate is reduced by much.

D. Constraints from polymerized black holes

In this section, we obtain for the first time Hawking
radiation constraints on polymerized primordial black holes
using the results previously derived in this paper. There are
two parameters at stake, a0 and ε. First, a0 is expected to be
negligible for BHs with a radius r2þ ≫ a0, and to play a role
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only at the end of the BH evaporation, when its radius
reaches values close to the Planck length, out of the
Hawking radiation constraint range. The parameter ε, on
the other hand, has an effect which is proportional to its
value, with small values of ε leading to very little changes
in the Hawking radiation emission, while larger values may
have a dramatic impact (see previous section). There are
two major outcomes expected when considering the evapo-
ration constraints on polymerized PBHs:

(i) a decrease of the Hawking temperature and emission
rates at high ε, which results in a longer lifetime,
shifting the (time-dependent) constraints towards
smaller PBH masses;

(ii) this decrease will also lead to weaker (instantaneous)
constraints.

Thus, the most striking result from this section is that we
expect the window for light PBHs to represent all DM to be
reopened in the case of high values of ε, down to smaller
PBH masses than in the Schwarzschild case.
In order to illustrate this proposal, we have chosen to

compute the prospective evaporation constraints from MeV
to GeV photons as will be measured by AMEGO, whose
expected sensitivity can be found in [70]. There are two
reasons for this choice: i) this limit lies among the most
stringent ones in the disputed mass range where PBHs may
represent all DM (see [7]), ii) some of the authors of this
paper are also authors of the public code BlackHawk, which
has been updated to compute precisely the secondary low
energy photon spectra and obtain robust constraints in the
consideredmass range [7], as well as to compute the primary
emission rates for photons in the polymerized metric. We
compute only the constraint from the AMEGO instrument
for PBHs evaporating in the galactic center, as it is the most
stringent one. The effects which we will describe below can
also be applied to all the other evaporation constraints. We
follow exactly the setup chosen by [7]: a Navarro–Frenk–
White distribution of DM in theMilkyWay, and observation
in some small window of angular width 5°, which gives
ΔΩ ¼ 2.39 × 10−2 sr. The expected emission is thus

dΦ
dE

¼ 1

4π

fPBH
MPBH

d2N
dEdt

Z
LOS

ρDMdl; ð4:12Þ

where the integral over the line of sight can be written as

J ≡ 1

ΔΩ

Z
ΔΩ

dΩ
Z
LOS

ρDMdl

¼ 1.597 × 1026 MeV · cm−2 · sr−1: ð4:13Þ

The numerical value comes from Refs. [7,71]. The results
are shown in Fig. 4 where we plot the constraints for ε ¼
f1; 5; 10g as well as the fiducial constraint for the classical
case and the constraint from [7] for comparison. A more
refined setup for theAMEGOconstraints was used in [72] to
derive constraints on primordial Kerr BHs.

We observe that the constraints we derive for the
classical Schwarzschild case have differences with the
results of [7]. We were not able to explain their origin,
since we have carefully reproduced their low energy photon
spectra and use the same source for the AMEGO sensi-
tivity. As expected, the constraints for the classical
Schwarzschild BH and the polymerized BH with ε ¼ 1
(small polymerization factor) are similar, as their Hawking
radiation rates are very close (see Fig. 7). Then, as we
increase ε to 5 and then 10, we observe that the constraints
get weaker in the high mass rangeMPBH ≳ 1015 g, allowing
the DM fraction fPBH of PBHs to be 1 for MPBH ≳ 1017 g
(or 1016 g for ε ¼ 10). This is due to the fact that the main
contribution to the photon spectra for these PBHs comes
from the directly emitted primary photons, whose emission
rate is strongly suppressed when ε increases (see Fig. 8).
However, in the lower mass range MPBH ≲ 1015 g, the
constraints remain of the same order of magnitude. In this
energy range, the constraints come from the secondary
photons generated by neutral pion decay. As pions are
spin 0 particles, their emission rate decreases slowly as ε
increases (see Fig. 8); the effect of the polymerization
factor becomes sizeable only for extreme values. In this
constraint plot, we have extended the mass range to masses
MPBH ¼ 1013 g, which is 2 orders of magnitude below the
usual evaporation limit MPBH ≲ 1015 g set by the lifetime
of the PBHs, because we expect that the decreased emission
rates will result in an increased PBH lifetime, thus allowing
smaller PBHs to contribute to DM today. This effect will be
quantitatively studied in future work, as well as the
modifications of the other set of constraints (e.g., electrons
[73,74] and time-stacked extragalactic background [75]).
One last aspect, which we have not quantitatively

explored, is the rate of final bursts of PBHs and their
observation by gamma ray instruments (see the recent
paper [76]). Since in the high ε limit PBHs evaporating
today would have a lower initial mass than in the
Schwarzschild case, their number abundance should be
larger if they represent some fixed fraction of DM. Thus,
the rate of nearby final bursts would be higher, leading to
more stringent constraints. However, the nontrivial modi-
fication of the final light curves (energies, duration) makes
it difficult to predict the sensitivity of the gamma ray
instruments to these polymerized PBHs burst.

V. CONCLUSION

In this paper we have used the short-ranged potentials
derived in the companion paper [8] to compute numerically
the Hawking radiation signals from 3 spherically symmet-
ric and static BH solutions: charged BHs, higher-
dimensional BHs and polymerized BHs. We have checked
the robustness of our results by comparing the HR at low
and high energy with analytical formulas, some of which
have been derived here for the first time. Focusing on the
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case of polymerized BHs, which peculiar metric form is the
heart of our analytical study, we conclude that the HR
signals are not much different from the Schwarzschild case
in the low polymerization parameter limit ε ≪ 1. We have
shown however that if the polymerization parameter takes
high values ε≳ 1, then all the evaporation constraints would
need to be reevaluated with twomajor effects: shifting of the
constraints toward smaller PBH masses and overall weaker
constraints on the fraction of DM light PBHs can represent.
The main consequence is that the mass range usually
excluded by (future) evaporation limits 1016 g < M <
1018 g for all DM in the form of PBHs is open again, which
is a striking result in PBHDM studies. As a final remark, we
have opened a new window on the study of HR from other
regular BH metrics, which is an exciting prospect.

APPENDIX A: TORTOISE COORDINATES

In order to solve the Schrödinger wave equation (2.4)
with the potentials (2.6), we need to translate from the
radial coordinate to the tortoise coordinate. Here we give
the results of the analytical integration of Eq. (2.5) for the
three metrics considered in Sec. III.

1. Charged black holes

For the metric (3.1), integration of Eq. (2.5) gives

r�ðrÞ ¼ rþ r2þ
rþ − r−

ln

�
r
rþ

− 1

�
−

r2−
rþ − r−

ln

�
r
r−

− 1

�
;

ðA1Þ

with r� as in equation (3.3).

2. Higher-dimensional black holes

For the metric (3.4), integration of Eq. (2.5) gives for
n ¼ 1

x�1ðxÞ ¼ xþ 1

2
ln

�
x − 1

xþ 1

�
; ðA2Þ

for n ¼ 2

x�2ðxÞ ¼ xþ 1

3
lnðx − 1Þ þ 1ffiffiffi

3
p arctan

� ffiffiffi
3

p

1þ 2x

�

−
1

6
lnðx2 þ xþ 1Þ; ðA3Þ

for n ¼ 3

x�3ðxÞ ¼ xþ 1

4
ln
�
x − 1

xþ 1

�
þ 1

2
arctan

1

x
; ðA4Þ

for n ¼ 4

x�4ðxÞ¼ xþ1

5
lnðx−1Þþ

ffiffiffiffiffiffiffiffiffiffi
5

pp
5

� ffiffiffiffiffiffi
φþ

p
arctan

� ffiffiffiffiffiffiffiffiffiffi
5

pp ffiffiffiffiffiffi
φþ

p
2xþφ−

�

þ ffiffiffiffiffiffi
φ−

p
arctan

� ffiffiffiffiffiffiffiffiffiffi
5

pp ffiffiffiffiffiffiffiffiffi−φ−
p

2xþφþ

��

−
1

10
½φ− lnðx2þφ−xþ1Þþφþ lnðx2þφþxþ1Þ�;

ðA5Þ
where φ� ≡ ð1� ffiffiffi

5
p Þ=2, for n ¼ 5

x�5ðxÞ ¼ xþ 1

6
ln

�
x − 1

xþ 1

�

þ 1

2
ffiffiffi
3

p
�
arctan

� ffiffiffi
3

p

2xþ 1

�
þ arctan

� ffiffiffi
3

p

2x − 1

��

þ 1

12
ln

�
x2 − xþ 1

x2 þ xþ 1

�
; ðA6Þ

and for n ¼ 6

x�6ðxÞ¼ xþ1

7
lnðx−1Þ

þ2

7

�
cosðπ=14Þarctan

�
cosðπ=14Þ

xþ sinðπ=14Þ
�
þ cosð3π=14Þarctan

�
cosð3π=14Þ

x− sinð3π=14Þ
�
þ sinðπ=7Þarctan

�
sinðπ=7Þ

xþ cosðπ=7Þ
��

þ1

7
½sinð3π=14Þ lnðx2−2sinð3π=14Þxþ1Þ− sinðπ=14Þ lnðx2þ2sinðπ=14Þxþ1Þ

− cosðπ=7Þ lnðx2þ2cosðπ=7Þxþ1Þ�: ðA7Þ
In these relations, we have defined x� ≡ r�=rH and x≡ r=rH.

3. Polymerized black holes

For the metric (3.7), integration of Eq. (2.5) gives

r�ðrÞ ¼ r −
a20

rþr−r
þ a20ðrþ þ r−Þ

r2þr2−
ln

�
r

rþ þ r−

�
þ a20 þ r4þ
r2þðrþ − r−Þ

ln

�
r
rþ

− 1

�
þ a20 þ r4−
r2−ðr− − rþÞ

ln

�
r
r−

− 1

�
: ðA8Þ

ALEXANDRE ARBEY et al. PHYS. REV. D 104, 084016 (2021)

084016-12



FIG. 5. Hawking radiation of massless particles of spin (0, 1, 2, 1=2) (top to bottom) from charged BHs with Q ¼
f0.010; 0.758; 0.999gM (solid blue, dashed green and dot-dashed red, respectively). The Schwarzschild BH with Q ¼ 0 is in dotted
black. The Q ¼ 0.010 curves are indistinguishable from the Schwarzschild ones. The vertical lines on the left panels represent the
temperature of the BH. Be careful of the different x and y axes values.
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FIG. 6. Hawking radiation of massless particles of spin (0, 1, 2, 1=2) (top to bottom) from higher-dimensional BHs with n ¼ f2; 4; 6g
(solid blue, dashed green and dot-dashed red, respectively) and M� ¼ 1. The Schwarzschild BH with n ¼ 0 is in dotted black. The
vertical lines on the left panels represent the temperature of the BH. Be careful of the different x and y axes values.
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FIG. 7. Hawking radiation of massless particles of spin (0, 1, 2, 1=2) (top to bottom) from polymerized BHs with ε ¼
f10−1; 10−0.6; 10−0.1g (solid blue, dashed green and dot-dashed red, respectively) and a0 ¼

ffiffiffi
3

p
γ=2 where γ ≡ lnð2Þ= ffiffiffi

3
p

π is the
Barbero–Immirzi parameter [27]. The Schwarzschild BH is in dotted black. The vertical lines on the left panels represent the temperature
of the BH, which are indistinguishable within our choice of parameters. Be careful of the different x and y axes values and scales.
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FIG. 8. Hawking radiation of massless particles of spin (0, 1, 2, 1=2) (top to bottom) from polymerized BHs with ε ¼ f1; 4; 10g (solid
blue, dashed green and dot-dashed red, respectively) and a0 ¼ 0. The Schwarzschild BH is in dotted black. The vertical lines on the left
panels represent the temperature of the BH. Be careful of the different x and y axes scales.
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APPENDIX B: DETAILED RESULTS FOR HAWKING RADIATION

The various plots mentioned in the core of the article are gathered below. They feature the different spins (0, 1, 2, 1=2)
from top to bottom.
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