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Abstract

A metastable cosmic-string network is a generic consequence of many grand unified theories

(GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically

stable, but decay on cosmic time scales due to pair production of GUT monopoles. This leads

to a network consisting of metastable long strings on superhorizon scales as well as of string

loops and segments on subhorizon scales. We compute for the first time the complete stochastic

gravitational-wave background (SGWB) arising from all these network constituents, including

several technical improvements to both the derivation of the loop and segment contributions.

We find that the gravitational waves emitted by string loops provide the main contribution

to the gravitational-wave spectrum in the relevant parameter space. The resulting spectrum

is consistent with the tentative signal observed by the NANOGrav and Parkes pulsar timing

collaborations for a string tension of Gµ ∼ 10−11...−7 and has ample discovery space for ground-

and space-based detectors. For GUT-scale string tensions, Gµ ∼ 10−8...−7, metastable strings

predict a SGWB in the LIGO–Virgo–KAGRA band that could be discovered in the near future.
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1 Introduction

The formation of cosmic defects is a generic feature of cosmological phase transitions [1]. De-

fects such as monopoles and domain walls can easily overclose the universe and must therefore

be avoided. Cosmic strings, on the other hand, evolve towards a scaling regime in which their

relative contribution to the total energy density of the Universe remains constant. Cosmic strings

have characteristic signatures in gravitational lensing, the cosmic microwave background (CMB),

and the stochastic gravitational-wave background (SGWB) and are therefore a potentially very

interesting messenger from the early universe (for reviews and references, see, e.g., Refs. [2, 3]).

During the past two decades, much progress has been made to describe the time evolution of a

cosmic-string network (for a recent review and references, see [4]). Since after an initial transient

period, the characteristic width of cosmic strings is much smaller than the horizon, cosmic strings

are often described by the Nambu–Goto (NG) action. The cosmic-string network consists of

“long” superhorizon strings and “short” subhorizon loops, which are formed in intercommutation

events of long strings and which decay slowly by emitting gravitational radiation. The approach

to the scaling regime can be understood analytically in the velocity-dependent one-scale (VOS)

model [5, 6], and it has also been established by large simulations of NG string networks [7, 8].

Despite two decades of research, predictions of the SGWB signal from cosmic strings still have

large uncertainties. In a cosmic-string network, gravitational waves (GWs) are primarily emitted

by oscillating string loops as well as in the form of GW bursts emitted by sharp features propagating

on string loops, so-called cusps and kinks [9, 10]. To compute the SGWB signal, one has to know

the number density of non-self-interacting loops per unit string length, which can be determined
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by NG string simulations [7, 8], as well as the average power radiated off in GWs by each loop.

Following essentially the same strategy, different groups have nevertheless obtained significantly

different results [4,11–13]. The main differences concern the number density of small loops and the

treatment of gravitational backreaction, which can smooth out string singularities. Moreover, the

entire picture of NG string loops decaying by gravitational radiation has been challenged by field-

theoretic simulations suggesting a much faster decay of the network whose origin, however, remains

mysterious [4, 14]. In this paper, we follow the approach in Ref. [13], relying on the evidence for

long-string dominance in recent large simulations [12] and assuming suppression of GW radiation

from kinks after gravitational backreaction.

We consider cosmic strings associated with the spontaneous breaking of a local U(1) symmetry

embedded in a grand unified theory (GUT) [2,15,16], a prominent example being the breaking of

B−L, the difference of baryon and lepton number [17]. GUT-scale strings have a string tension

in the range Gµ ' 10−8 . . . 10−6, which seems excluded by the SGWB bound set by pulsar timing

array (PTA) experiments [18–20], which constrain topologically stable cosmic strings to Gµ < 1.5×
10−11 [21] for a standard loop size parameter α ∼ 0.1 (see below). However, it was recently pointed

out that this bound can be avoided for metastable cosmic strings, which opens a new window for a

SGWB signal close to the current upper limit in the LIGO–Virgo–KAGRA (LVK) frequency band

that is consistent with the PTA bounds [22]. Metastable cosmic strings decay by quantum tunneling

into string segments connecting monopole–antimonopole pairs. In the semiclassical approximation,

the decay rate per string unit length is given by [23–26]

Γd =
µ

2π
exp (−πκ) , κ =

m2

µ
, (1)

where m is the monopole mass and µ is the string tension. This suppresses the GW spectrum at

low frequencies, rendering large string tensions compatible with PTA bounds.

This opens up a new window to explore GUT-scale physics with gravitational waves [22,27–32],

which has received considerable attention since the recent report by the NANOGrav collaboration

of evidence for a stochastic common-spectrum process at nanohertz frequencies [33], which has been

interpreted as a SGWB in a large number of recent papers. Beyond the astrophysical interpretation

in terms of supermassive black-hole binaries [34], possible cosmological interpretations include

stable [31, 35, 36] as well as metastable strings [28]. In a first calculation, string tensions in the

range 10−10 . Gµ . 10−6 were shown to be consistent with the NANOGrav data, with a monopole

mass to string tension ratio of around
√
κ ' 8 [28]. Such values can indeed be obtained in typical

GUT models [37]. Alternatively, quasi-stable strings with
√
κ � 1 associated with intermediate

scales, which occur in symmetry breaking chains of GUT models [38], may provide a fit to the

NANOGrav data while predicting a suppressed SGWB contribution at LIGO scales. Note that,

also independent of grand unification, a SGWB signal from a cosmic-string network is a well-

motivated signature for physics beyond the Standard Model (SM) [39–41].

In this paper, we will analyze the GW spectrum produced by a metastable string network in

detail. For metastable strings, both long superhorizon strings and short subhorizon loops decay

into string segments. There are then two qualitatively different possibilities. In the first case, all
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the monopole magnetic flux is confined to the string, whereas in the second case, only some of

the flux is confined, while the remaining flux is unconfined (for a review and references, see, for

example, [42]). The pattern of GW radiation is very different in the two cases. In the first one,

both loops and segments radiate GWs, with loops typically yielding the dominant contribution.

In the second one, only loops radiate GWs, whereas segments loose energy much more rapidly by

radiating gauge quanta corresponding to the unconfined flux [43,44]. Symmetry breaking in GUTs

generically leads to monopoles with partially unconfined flux (for recent examples, see [27,37,45]).

The GW spectrum of oscillating string segments connecting a monopole–antimonopole pair

was first calculated by Martin and Vilenkin in a straight-string approximation [46]. Subse-

quently, Leblond, Shlaer, and Siemens computed the GW spectrum from bursts and the SGWB of

metastable strings based on string segments [25]. A crucial point in this analysis is the matching

of an early scaling regime, where metastable strings behave like stable strings, to a decay regime,

where new loops are no longer produced, at a time ts = 1/Γ
1/2
d , where the scaling regime ends.

In our work, we follow this approach, including also segments from decaying loops in the analysis.

Our analysis of the GW contribution emitted by loops largely follows the analysis in Ref. [22],

adding a refined treatment of the time scale of the loop decay.

The paper is organized as follows. In Sec. 2, we outline the derivation of the GW spectrum

emitted by cosmic-string loops and segments, providing simple analytical expressions for all relevant

quantities for GW emission in the radiation era. The more technical components of this analysis

are deferred to the appendix. In Sec. 3, we perform a numerical evaluation of the GW spectrum,

demonstrating the detection prospects for PTAs and ground-based GW detectors. Sec. 4 contains

our conclusions.

2 Gravitational waves from string loops and segments

The time evolution of a network of stable cosmic strings emitting GWs has been extensively

studied. After an initial transient period, the network reaches a “scaling regime”, where the number

densities of long superhorizon strings and subhorizon loops per Hubble volume are preserved. The

long strings loose their energy mostly by loop formation, whereas the oscillating loops loose their

energy by gravitational radiation. This picture is strongly supported by analytical models as well

as large numerical simulations.

Much less is known for metastable cosmic-string networks characterized by a decay time ts =

1/Γ
1/2
d . It is expected that they behave similarly to stable networks at early times t < ts. However,

they start decaying immediately after the phase transition in the course of which they are initially

formed; and at ts, typical string segments enter the horizon. These segments then start oscillating

under their own tension, radiating off GWs, and loop production stops. At present, numerical

simulations for metastable string networks do not exist. We therefore follow the approach of

Leblond, Shlaer, and Siemens [25] and match at the time ts, which marks the end of the scaling

regime, two different periods to each other:
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Period Network constituents GWs from

t < ts Loops, long superhorizon strings Loops

t > ts Loops, short subhorizon segments from long strings and loops Loops and segments

The second period ends at a time te, which marks the end of GW emission, that is, the time

when segments and loops have emitted all their energy in GWs and the string network disappears.

In the following, we shall briefly recall the main ingredients in the computation of the GW signal

from loops and segments. We shall also give explicit formulas for all relevant quantities in the

radiation era, which is where most of the GW emission occurs for a large part of the parameter

space. For a detailed discussion of the matter era, we refer the reader to the appendix.

Let us first consider stable cosmic strings, where the approach to scaling can be understood

analytically in the velocity-dependent one-scale (VOS) model [5, 6]. The name of the VOS model

derives from the fact that it assumes several length scales in the network to coincide up to constant

factors: the inter-string separation L = (µ/ρ∞)1/2, the string correlation length, and the string

curvature radius. Here, µ is the energy density per unit of string length and ρ∞ is the energy

density of the long strings. In addition, the VOS model assumes the initial loop size at the time

of formation to be controlled by the universal scale L ∝ H−1 ∝ t times a constant factor.

The energy density of long strings, ρ∞, is diluted in consequence of the Hubble expansion and

depleted by loop production [2],

dρ∞
dt

= −2H
(
1 + v̄2

)
ρ∞ − µ

∫ ∞
0

d` ` f (`, t) , (2)

where H = ȧ/a is the Hubble rate and v̄ = 〈v2
∞〉1/2 denotes the root-mean-square velocity of

long strings, which tends to a constant value in the scaling regime and which affects the redshift

behavior of the network. f (`, t) is the loop production function, which gives the number density

of non-self-interacting loops produced per unit time and unit string length. The model accounts

for scaling as a fixed point of differential equations for L (t) and v̄ (t); and in the radiation era, one

finds L (t) → ξt, ξ = 0.271 and v̄ (t) → 0.662. Using Eq. (2), the loop production function then

takes the form [6],

f (`, t) =
A

αt4
δ (`− αt) , A ∝ c̃v̄

ξ3
, (3)

where the constant c̃ parametrizes the efficiency of loop-chopping. As discussed in the appendix,

this loop production function yields the loop number density

◦
n (`, t) =

A

α

(α+ ΓGµ)3/2

t3/2 (`+ ΓGµt)5/2
Θ (αt− `) (4)

during radiation domination. Here, ΓGµ2 is the total power radiated by a loop, G is Newton’s

constant, and A = 0.54 is obtained from a fit to numerical simulations.

An important quantity is the ratio of the energy densities in loops and long strings. Using

ρ∞ = µ/L2 → µ/ (tξ)2, Eq. (4) yields for α� ΓGµ,

µ

ρ∞

∫ ∞
0

d` `
◦
n (`, t) =

4
√
αAξ2

3 (ΓGµ)1/2
∼ 10

(
50

Γ

)1/2(10−7

Gµ

)1/2

, (5)
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which increases with decreasing radiated power Γ as well as with decreasing string tension µ.

Large numerical simulations of cosmic-string networks have led to the number density of the

Blanco-Pillado–Olum–Shlaer (BOS) model [12], which is similar to Eq. (4). Compared to the VOS

model, also the parameter α is determined as α ' 0.1. The BOS number density describing the

loop population in the radiation era is given by [4]

◦
n (`, t) =

B

t3/2 (`+ ΓGµt)5/2
Θ (αt− `) Θ (teq − t) (6)

with B ' 0.18 and teq denoting the time of matter–radiation equality. A more general discussion

of loop number densities, accounting also for the loop population after matter–radiation equality,

as well as corresponding references can be found in Ref. [4].

Number densities for stable as well as decaying loops and string segments satisfy kinetic equa-

tions. Their general form and solutions are described in the appendix. The number densities for

decaying loops and segments can be obtained by matching the early scaling regime to a decay

regime at ts = 1/Γ
1/2
d . This procedure leads to the result for decaying loops in Eq. (A.13),

◦
n> (`, t) =

B

t3/2 (`+ ΓGµt)5/2
e−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ

(
αts − ¯̀(ts)

)
Θ (teq − t) , (7)

where
¯̀(ts) = `+ ΓGµ (t− ts) ' `+ ΓGµ t (8)

denotes the length of a loop at time ts that evolves to the length ` at time t due to the emission

of GWs. The number density differs from the one for stable loops by two damping terms, which

become effective for `t > 1/Γd and t >
√

2 (ΓGµ)−1/2 ts ≡ te, respectively. The first Heaviside

theta function reflects the fact that only loops produced before ts contribute to the number density;

the second theta function indicates that this expression is only valid during the radiation era.

The number density of segments, ñ, can be obtained in a similar way. It receives contributions

from long strings decaying into segments as well as from loops decaying into segments, leading to

the kinetic equation given in Eq. (A.29). The former has the analytic solution [25],

ñ
(s)
> (`, t) = C

Γ2
d

4

(t+ ts)
2

√
t3ts

e−Γd[`(t+ts)+1/2 Γ̃Gµ(t−ts)(t+3ts)] Θ (teq − t) , (9)

where Γ̃ parametrizes the GW emission of the segments and correspondingly t̃e =
√

2
(
Γ̃Gµ

)−1/2
ts

is the time after which segments have disappeared. Since in the scaling regime, t < ts, superhorizon

segments behave like stable long strings, the normalization factor C can be determined by matching

the energy density of segments to the energy density ρ∞ at time t = ts,

ρ∞ (ts) =
µ

t2sξ
2

= µ

∫ ∞
0

d` ` ñ(s) (`, ts) = µ
C

4t2s
, (10)

which yields C = 4/ξ2. For the contribution to segments from decaying loops, ñ(l), the kinetic

equation obtains the form of a partial integro-differential equation. We provide an exact analytical

solution to this equation in terms of an infinite series in the appendix. We, moreover, find that
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this exact result can be reproduced to good approximation, as far as the consequences for the

GW spectrum are concerned, by multiplying the first term in the series by an overall numerical

(“fudge”) factor σ,

ñ
(l)
> (`, t)→ σ

t2s

[
` (t− ts) +

1

2
ΓGµ (t− ts)2

]
◦
n> (`, t) = −σ Γd

d

dΓd

◦
n> (`, t) , (11)

where σ ' 5. The total segment number density in the radiation era for t > ts thus reads

ñ> (`, t) = ñ
(s)
> (`, t) + ñ

(l)
> (`, t) . (12)

Here and below, we follow Ref. [25] and set Γ̃ ' Γ ' 50, for simplicity. The corresponding number

densities in the matter era, which enter our numerical results in Sec. 3, are derived in the appendix.

In view of their contributions to GWs, it is interesting to compare the energy densities at te.

From Eqs. (7) and (12), one obtains

◦
ρ> (te) ∼

µ

t2e

B

(ΓGµ)1/2
, ρ̃

(s)
> (te) ∼

µ

t2e

1/ξ2

(ΓGµ)1/4
, ρ̃

(l)
> (te) ∼

µ

t2e

α1/2Bσ

(ΓGµ)3/4
. (13)

For typical numbers, B = 0.18, σ = 5, ξ = 0.271, Γ = 50, α = 0.1, and large tensions, Gµ ∼ 10−7,

all contributions are roughly of similar size. For smaller string tensions, the energy density stored

in segments sourced by cosmic-string loops dominates over the other two contributions at te.

2.1 Stable loops

We first consider stable loops and the corresponding GW spectrum from a network in the scaling

regime following the discussion in Ref. [13]. The GW energy density relative to the critical density

per logarithmic frequency unit at cosmic time t is given by

Ωgw (t, f) =
8πG

3H2 (t)
fρgw (t, f) . (14)

Here, H(t) is the Hubble rate and ρgw (t, f) is the energy density in GWs per frequency unit,

ρgw (t, f) =

∫ t

ti

dt′

(1 + z (t′))4 Pgw

(
t′, f ′

) ∂f ′
∂f

, (15)

which is obtained from the redshifted power density in GWs integrated from some initial time ti to

the time of observation t, with f ′ = (1 + z (t′)) f ≡ (1 + z′) f . Loops of length ` oscillating in their

kth harmonic emit GWs with frequency f ′ = 2k/`. Hence, the power density per unit frequency

is related to a loop number density
◦
n (`, t′) and the power Gµ2Pk per unit length as4

Pgw

(
t′, f ′

)
= Gµ2

kmax∑
k=1

`

f ′
◦
n
(
`, t′
)
Pk . (16)

4The sum has to terminate at some finite kmax in order to avoid unphysical infinite energies related to the longest

loops ever produced and also related to the finite width of a physical string.
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In the following, we focus on the contribution from cusps, which corresponds to

Pk =
P1

k4/3
, P1 =

Γ

ζ (4/3)
, Γ ' 50 . (17)

Integrating from ti to t and changing variables, dt′ = −dz′/ (H (z′) (1 + z′)), Eq. (15) yields

ρgw (t, f) = Gµ2
kmax∑
k=1

Ck (t, f)Pk , (18)

with

Ck (t, f) =
2k

f2

∫ t

ti

dt′

(1 + z′)5

◦
n

(
2k

f ′
, t′
)

=
2k

f2

∫ zi

z(t)

dz′

H (z′) (1 + z′)6

◦
n

(
2k

f ′
, t
(
z′
))

. (19)

Note that the z′ integral depends only very weakly on the upper limit zi.

The loop density is diluted by the expansion of the universe and sourced by the interactions of

long strings, which is encoded in the loop production function f (`, t),

◦
n (`, t) =

∫ t

ti

dt′
(
a (t′)

a (t)

)3

f
(
¯̀
(
t′
)
, t′
)
, (20)

where a (t) is the scale factor and where the function ¯̀ has been introduced in Eq. (8), ¯̀(t′) =

`+ ΓGµ (t− t′). In the VOS model, and approximately also in the BOS model, strings are formed

with a fixed fraction α of the horizon, ¯̀(t′) ≈ αt′. For a particular choice of ` and t, the formation

time t′ is fixed by Eq. (8), which then determines the loop number density (20) via the value of

the scale factor at the formation time, yielding Eqs. (4) and (6), respectively.

In the following, we discuss the resulting GW spectrum observed today, at t = t0, resulting

from loops emitting GWs during the radiation era. The computation of the GW contribution

emitted during the matter era is fully analogous and can be performed numerically by inserting

the corresponding loop and segment number densities derived in the appendix into Eq. (19). For

pedagogical reasons, we focus on the radiation epoch in this section; however, the numerical results

shown in Sec. 3 will contain also the contributions from the matter era.

During radiation domination, the Hubble rate and cosmic time are given by

H (z) = (1 + z)2Hr , t (z) =
1

2 (1 + z)2Hr

, Hr = H0

√
Ωr , (21)

with h2Ωr = 4.15 × 10−5, h = 0.68 [47], where the increase of the effective number of degrees of

freedom with z has been neglected. Using the BOS loop number density in Eq. (6), this yields for

the coefficient functions defined in Eq. (19),

Ck (t0, f) =
16BH2

r

3f

[(
4kHr

f
(1 + zeq) + ΓGµ

)−3/2

−
(

4kHr

f
(1 + zi) + ΓGµ

)−3/2
]
, (22)

where zeq occurs as lower integration limit in Eq. (19) for GWs produced in the radiation era.

From this expression, one reads off the main qualitative features of the GW spectrum today. For5

f < fhigh ≡ fp (zi) , fp (z) ≡ 4Hr

ΓGµ
(1 + z) , (23)

5In the following, fp (zcut) will always denote the frequency that corresponds to a lower or upper cutoff zcut in

the z′ integral and that provides an approximate lower or upper boundary of the frequency plateau, respectively.

8



only the first of the two terms in the square bracket contributes, and the behavior of this term as

a function of frequency depends on whether f is larger or smaller than feq ≡ fp (zeq). For small

frequencies, i.e., f < feq, the GW spectrum increases as Ωgw ∝ f3/2, as one reads off from Eqs. (14)

and (22). Starting at around feq, the GW spectrum then begins to approach a flat plateau, with

the turnover frequency feq being inversely proportional to Gµ.6 In between feq and kmax feq, the

behavior of the spectrum is controlled by the sum over the harmonic oscillation modes,

keq∑
k=1

1

k4/3
= H

(4/3)
keq

= ζ (4/3)− 3

k
1/3
eq

[
1 +O

(
1

keq

)]
, (24)

where keq is the largest integer that is smaller than f/feq and H
(4/3)
k is the kth harmonic number

of order 4/3. For feq < f < kmax feq, the deviation of the spectrum from a flat plateau therefore

decays like f−1/3. Once the top of the plateau is reached around f ' kmax feq, we have

kmax∑
k=1

Pk =
H

(4/3)
kmax

ζ (4/3)
Γ ' Γ , (25)

which, together with Eqs. (14), (18), and (22), yields the familiar result [4],

Ωplateau
gw ' 128π

9
B Ωr

(
Gµ

Γ

)1/2

. (26)

The summation over all modes also plays an important role at high frequencies. For fhigh < f <

kmax fhigh, all modes between khigh and kmax contribute with a flat plateau to the GW spectrum,

where khigh is the smallest integer that is larger than f/fhigh, while all modes n < f/fhigh decay like

f−1 (see below). The sum over k can then be expressed in terms of the Hurwitz zeta function [48],

kmax∑
k=khigh

1

k4/3
= −ζ (4/3, kmax + 1) + ζ (4/3, khigh) (27)

= −ζ (4/3, kmax + 1) +
3

k
1/3
high

[
1 +O

(
1

khigh

)]
, (28)

indicating that the spectrum decreases like f−1/3 in the interval fhigh < f < kmax fhigh. At even

higher frequencies, the two terms in the square bracket of Eq. (22) are always of similar size, for

all values of k. Expanding Ck at large f then shows that the spectrum only receives contributions

falling off like f−1, resulting in a total spectrum summed over all modes also falling off like f−1.

2.2 Decaying loops

Loops are produced in the early scaling regime, t < ts. At later times, the produced loops shrink

by emitting GWs. Their number density
◦
n> satisfies a kinetic equation discussed in the appendix.

Matching
◦
n> at t = ts to

◦
n< in the scaling regime by requiring

◦
n>
(
¯̀(ts) , ts

)
=
◦
n<
(
¯̀(ts) , ts

)
, one

obtains the number density in Eq. (A.13), which corresponds to the number density in Eq. (7).

6The existence of a plateau is an inherent feature of the radiation era. A hypothetical observer within the radiation

era would drop the second theta function in Eq. (6) and hence replace feq by 4Hr/ (ΓGµ), with Hr = (ρr/3)1/2 /MPl.
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Knowing the loop number densities, we can evaluate the coefficient functions Ck (t, f), see

Eq. (19), which determine the GW spectrum. For GWs generated in the radiation era, one obtains

Ck (t0, f) =
2k

f2

[∫ zs

0

dz′

H (z′) (1 + z′)6

◦
n>

(
2k

f ′
, t
(
z′
))

+

∫ zi

zs

dz′

H (z′) (1 + z′)6

◦
n<

(
2k

f ′
, t
(
z′
))]

=
32BH3

r k

f2

∫ zs

zeq

dz′
e
−Γd

[
k

fHr
(1+z′)−3+ ΓGµ

8H2
r

(1+z′)−4

]
[

4kHr
f (1 + z′) + ΓGµ

]5/2
+

∫ zi

zs

dz′
1[

4kHr
f (1 + z′) + ΓGµ

]5/2

 . (29)

The exponential factor yields frequency-independent and frequency-dependent cutoffs ze and zf ,

1 + ze =

(
1√
8Hr

)1/2

(Γd ΓGµ)1/4 ≡ (2Hrte)
−1/2 , 1 + zf =

(
Γd
fHr

)1/3

, (30)

so that the range z′ < zm = max {ze, zf} does not contribute7 to the integral for Ck (t0, f). In this

section, we will for simplicity focus on the regime ze > zeq, ensuring that the GW production is

limited to the radiation-dominated regime. This is the case for [see Eq. (1)],

κ . 81 + 0.32 ln (Gµ) . (31)

Cutting off the first integral in Eq. (29) at zm, the coefficients Ck are approximately given by

Ck (t0, f) =
32BH3

r k

f2

∫ zi

zm

dz′
1[

4kHr
f (1 + z′) + ΓGµ

]5/2

=
16BH2

r

3f

[(
4kHr

f
(1 + zm) + ΓGµ

)−3/2

−
(

4kHr

f
(1 + zi) + ΓGµ

)−3/2
]
. (32)

Compared to Eq. (22) for stable loops, the redshift zeq has been replaced by the cutoff zm.

Above the frequency 2 flow, with

flow ≡ fp (ze) ∼ 10−8 Hz

(
50

Γ

)3/4(10−7

Gµ

)1/2

exp
(
−π
(κ

4
− 16

))
, (33)

one has zm = ze, and for f > flow, the first term in the square brackets in Eq. (32) approaches a

constant. Hence, the GW spectrum today approximately features a plateau for flow < f < fhigh.

On the other hand, at smaller frequencies, one has zm = zf > ze, and consequently the GW

spectrum falls off as f2 for f < flow. For frequencies above kmax fhigh, the GW spectrum falls off

again like 1/f , where for reference Eq. (23) can be expressed as

fhigh ∼ 1015 Hz

(
50

Γ

)(
10−7

Gµ

)(
zi

1023

)
exp

(
−π
(κ

4
− 16

))
, (34)

with a redshift zi ∼ 1023 corresponding to a reheating temperature of Trh ∼ 1010 GeV.

7With Hr ' 10−2H0, one has ze ' (60/H0)1/2 (Γd ΓGµ)1/4, which numerically coincides with the cutoffs z∗∗ and

zmin that were defined and employed in Ref. [25] and Ref. [22], respectively.
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Figure 1: GW spectrum from metastable cosmic-string loops (left) and segments (right) for different values of Gµ

and κ. The dark gray-shaded regions indicate existing bounds from pulsar timing arrays [20] and the LIGO/VIRGO

collaboration [49], the lighter shaded regions show the prospective reach of SKA [50], LISA [51], LIGO and the

Einstein Telescope (ET) [52]. The orange shaded region indicates the region preferred by the NANOGrav hint [33].

For simplicity, we fix the number of SM degrees of freedom to its high-temperature value in this figure, g∗ = 106.75.

Note that the decaying loops have to be created before ts, i.e., the argument of the first theta

function in the number density in Eq. (7) has to be positive. This implies

k < kΘ (f) ≡ f

4Hr

[
2αHr

Γ
1/2
d

(1 + zm)− ΓGµ

1 + zm

]
. (35)

For the parameters given in Eq. (33), one finds kΘ (f) ∼ 100 f/flow. To obtain the GW spectrum,

one has to sum over all modes. We focus on the contribution from cusps given in Eq. (17). From

Eqs. (14), (18), (32), and (35), one then obtains

Ωgw (f) ' 128π

9
B Ωr (Gµ)2 Γ

ζ(4/3)

kΘ(f)∑
k=1

1

k4/3
[

4kHr
f (1 + zm) + ΓGµ

]3/2
. (36)

For large enough frequencies, i.e., kΘ (f) � 1, and f > flow, the GW spectrum reaches a plateau

as for stable loops,

Ωplateau
gw (f) ' 128π

9
B Ωr

(
Gµ

Γ

)1/2

, (37)

where now kΘ (f) states contribute to the total power Γ.

The final GW spectrum sourced by loops decaying during radiation domination is shown in

the left panel of Fig. 1 for Gµ = 10−11 . . . 10−7 with
√
κ = 8 (solid) and

√
κ = 7 (dashed). These

results are obtained by inserting the loop number density in Eq. (7) into Eq. (19), leading to the

GW energy density in Eq. (18). It suffices to take into account the loop number density at t > ts,

since the GW spectrum is sourced largely at t ∼ te � ts. For easier comparison with the analytical

results, we have fixed the number of SM degrees of freedom to its high-temperature value in this

figure, g∗ = 106.75. The resulting agreement with the analytical expressions is very good.
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2.3 Decaying segments

At early times, t < ts, the superhorizon strings decay and loose energy by chopping off loops. As

discussed in the appendix, the segment density ñ
(s)
< sourced by long strings satisfies the kinetic

equation [25]

∂t ñ
(s)
< (`, t) = −∂`

[
u (`, t) ñ

(s)
< (`, t)

]
− [3H (t) + Γd `] ñ

(s)
< (`, t) + 2 Γd

∫
`
d`′ ñ

(s)
<

(
`′, t
)
, (38)

where u (`, t) = 3H (t) `− 2`/t, and where the decay of segments acts as a source term for smaller

segments. The rate for producing a segment with length between ` and ` + d`′ in the decay of a

segment of length `′ is Γd d`
′. The segment with length ` can be chopped off at either side, hence

the factor of 2. In the case `′ = 2`, one breaking produces two segments of length `. The solution

ñ
(s)
< (`, t) = C Γ2

d e
−2 Γd ` t (39)

exhibits the expected scaling behaviour ρcs (t) ∼ µ
∫
d` ` ñ

(s)
< (`, t) ∼ µ/t2. The normalization

constant C = 4/ξ2 is determined by the scaling solution.

At t = ts, typical segments enter the horizon, loop production terminates and GW radiation

begins. Now the relevant kinetic equation reads

∂t ñ
(s)
> (`, t) = Γ̃Gµ∂` ñ

(s)
> (`, t)− [3H (t) + Γd `] ñ

(s)
> (`, t) + 2 Γd

∫
`
d`′ ñ

(s)
>

(
`′, t
)
, (40)

and the solution of this integro-differential equation satisfying the initial condition ñ
(s)
>

(
¯̀(ts) , ts

)
=

ñ
(s)
<

(
¯̀(ts) , ts

)
is given by Eq. (9). In addition, the segment number density obtains a second

contribution, ñ(l), from loop decays. The exact solution of the full kinetic equation (A.29) is given

in the appendix. To good approximation their contribution is described by Eq. (11), so that the

full segment number density is then given by the sum of both contributions, see Eq. (12).

Given the number density of decaying segments, we can evaluate the GW spectrum as in the

previous section. Using Eq. (19) but replacing the loop number density with the segment number

densities given in Eqs. (9) and (11), one obtains for the coefficient functions

C̃k (t0, f) ' 2k

f2

∫ zs

0

dz′

H (z′) (1 + z′)6 ñ>

(
2k

f ′
, t
(
z′
))

(41)

' 2k

f2

∫ zs

0

dz′

H (z′) (1 + z′)6

[
−σ Γd

∂

∂Γd

◦
n>

(
2k

f ′
, t
(
z′
))

+ ñ
(s)
>

(
2k

f ′
, t
(
z′
))]

' −σ Γd
∂

∂Γd
Ck (t0, f) +

2k Γ2
d

f2Hrξ2

∫ zs

zeq

dz′ (1 + zs)

(1 + z′)9 e
−Γd

[
k

fHr
(1+z′)−3+ Γ̃Gµ

8H2
r

(1+z′)−4

]

Now the exponential yields the frequency-independent cutoff z̃e,

1 + z̃e =

(
1√
8Hr

)1/2 (
Γd Γ̃Gµ

)1/4
≡
(
2Hr t̃e

)−1/2
=

(
1

2
Γ̃Gµ

)1/4

(1 + zs) , (42)

and the range z′ < z̃e does not contribute to the integral for C̃k(t, f).
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The power in mode k of the oscillating segment is quasi-constant [46],

k Pk ' 4 , (43)

up to a very large maximum value determined by the Lorentz factor of the oscillating monopole,

kmax ∼ γ2
0 , beyond which Pk decreases like 1/k2. The total power is given by

Γ̃ =

kmax∑
k=1

Pk ∼ 4 ln γ2
0 , (44)

and Γ̃ ∼ 50 would imply kmax ∼ 105. To obtain the GW spectrum, one has to sum over all

modes and integrate over z′. For ñ
(s)
> , this sum extends to kmax, whereas for ñ

(l)
> introduced above,

it extends to kΘ (f) given in Eq. (35). Because of the quasi-constant behaviour of k Pk, it is

convenient to perform the summation over k first, approximated as an integral. From Eqs. (14)

and (18) one finds for the GW spectrum,

Ωgw (f) ' 32π (Gµ)2

3H2
0f

{
kΘ(f)∑
k=1

8BσH3
r ζmzm[

4kHr
f (1 + zm) + ΓGµ

]5/2
(45)

+

kmax∑
k=1

kPk
Γ2
d

Hrξ2

∫ zs

z̃e

dz′ (1 + zs)

(1 + z′)9 e
− kΓd
fHr

(1+z′)−3

}

' 128π (Gµ)2

9

{
Bσζm[

4Hr
f (1 + zm) + ΓGµ

]3/2
− Bσζm[

4kΘ(f)Hr
f (1 + zm) + ΓGµ

]3/2

+
3Γd

4ξ2H2
r

∫ zs

z̃m

dz′ (1 + zs)

(1 + z′)6

[
e
− Γd
fHr

(1+z′)−3

− e−
Γdkmax
fHr

(1+z′)−3
]}

,

where ζm = 1 for zm = ze and ζm = 4/3 for zm = zf , and z̃m = max (z̃e, zf ).

From Eq. (45), the qualitative features of the GW spectrum from segments are easily un-

derstood. For small frequencies, f < flow, the first term in the bracket behaves exactly as the

contribution from decaying loops in Eq. (36), i.e., the spectrum increases as Ωgw ∝ f2, and above

flow it approaches a plateau. However, contrary to decaying loops, the spectrum from loop seg-

ments is cut off as kΘ (f) approaches kmax around f̃high = kmax flow. Above f̃high, the constant

parts of the first and second terms cancel, and the spectrum falls off as Ωgw ∝ 1/f . A similar

cancellation takes place around f̃high between the third and fourth terms arising from long-string

segments, where we have again assumed Γ̃ = Γ, i.e. z̃e = ze. For f < flow, one has zm = zf . The

z′ integral in Eq. (45) yields a factor (1 + zs) / (1 + zf )5, which implies Ωgw ∝ f5/3. Finally, one

finds for the height of the plateau,

Ωgw (f) ' 128π

9

Ωr (Gµ)1/2

Γ3/2

[
Bσ +

21/4 12

5 ξ2
(ΓGµ)1/4

]
. (46)

Comparing the result with Eq. (37), one observes that, for Γ ' 50 and σ ' 5, the GW spectrum

from loop segments is suppressed by about one order of magnitude compared to the GW spectrum
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from decaying loops. The contributions from loop segments and long-string segments are about

equal at Gµ = 10−8. Hence, the total contribution from segments to the GW spectrum is always

subdominant with respect to the one from decaying loops. A detailed comparison of the GW

spectrum from decaying loops, segments from loop decays, and segments from long-string segments

is given in Fig. 5 in the appendix. The final GW spectrum sourced by segments decaying during

radiation domination is shown in the right panel of Fig. 1 for Gµ = 10−11 . . . 10−7 with
√
κ = 8

(solid) and
√
κ = 7 (dashed). Again we find very good agreement with our analytical expression

for the GW spectrum.

The extension of the plateau from the segment contribution depends on the number of con-

tributing modes kmax, which is determined by the Lorentz factor γ2
0 ∼ µ2`2/m2 = M2

PlGµ/κ.

The calculation in Ref. [46] obtained γ2
0 ∼ 300, corresponding to Γ̃ ∼ 25. In Ref. [25], Γ̃ ∼ 50

has been used, corresponding to kmax ∼ γ2
0 ∼ 105. For the parameters given above, extending

the plateau up to the LVK band around 100 Hz would require kmax ∼ 1010 with Γ̃ ∼ 100. The

calculation of the radiated power has thus far been restricted to a straight string. The extension

to realistic configurations, where the two monopoles can pass each other without forming a black

hole, remains a problem for future research.8 It is expected that, above some critical mode number

kc, the radiated power Pk falls off exponentially [46] .

3 Detection prospects

Our final results for the GW spectrum produced by metastable cosmic strings are shown in Figs. 2

to 4. Starting from the analytical expressions for the loop number density in Eqs. (7) and (A.16)

as well as (for Fig. 4) the segment number density in Eqs. (12), (A.28), (A.39), and (A.40), we

numerically compute the coefficient functions Ck (see Eq. (19)) and the resulting GW spectrum

(see Eqs. (14) and (18)). Here, we include the changes in the number of degrees of freedom in

the SM thermal plasma, leading to deviations from the analytical prediction of a perfectly flat

spectrum, particularly visible in the left panel of Fig. 2. The summation over higher harmonics k

is performed up to the maximum relevant mode, as discussed in the previous section. We vary the

string tension from Gµ = 10−11 to 10−7, covering the entire range of interest for the existing pulsar

timing and ground-based interferometer experiments. We consider values of
√
κ all the way from

quasi-stable cosmic strings, which have a life time comparable to the age of the Universe,
√
κ ' 9,

to metastable cosmic strings with a strongly suppressed spectrum in the pulsar timing array band,
√
κ ' 7.5. For this entire range of κ, the cosmic strings are stable enough to give a large signal

in the LVK band. We contrast these predictions with existing bounds, the expected sensitivity

8The GW spectrum in Eq. (45) can be expressed as an integral over the redshift z′ and the segment length `

instead of the mode number k [25]. The integral over ` has the lower bound `min ∼ 1/((1 + z′)f) and the upper

bound `max ∼ ts, i.e., the horizon at the beginning of the “short-string period”. Moreover, the frequency satisfies the

upper bound (1 + z′)f` < kmax ∼ γ2
0 ∼ µ2`2/m2 = M2

Pl Gµ/κ. The integral over z′ is dominated by the contribution

close to the lower limit z′ ∼ z̃e. From these inequalities, one obtains lower and upper bounds on f , which for large κ

read: log10(flow) ∼ βκ, β = − log10(e)π/4 ' −0.34 and log10(fhigh) ∼ γκ, γ = 3 log10(e)π/4 ' 1.02. These straight

lines represent the boundaries of the plateau in figure 7 of Ref. [25]. At κ ∼ 60, the trans-Planckian upper bound is

fhigh ∼ 1070 Hz, corresponding to kmax ∼ 1078 and Γ̃ ∼ 800.
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Figure 2: GW spectrum from metastable cosmic strings for monopoles with unconfined fluxes. The experimental

constraints depicted in the left panel are as in Fig. 1. The black dotted curves indicated the spectra obtained for

topologically stable cosmic strings for the corresponding value of Gµ. In the right panel, we show predictions for the

frequency range of pulsar timing arrays, together with the bound from the Parkes Pulsar Timing Array (PPTA) [20]

published in 2015 (gray) and the more recently reported preferred regions of NANOGrav [33] (orange) and PPTA [53]

(black). These include contributions from the loops decaying during the matter era.

of upcoming experiments, as well as with the tentative GW signal reported by the NANOGrav

collaboration [33].

3.1 Monopoles with unconfined fluxes

If the monopoles feature unconfined fluxes, any cosmic string segments formed from long strings

or loops will rapidly decay radiating massless gauge bosons as the monopoles and antimonopoles

oscillate and finally annihilate. In this case, the resulting GW spectrum is dominated by the GW

emission from cosmic string loops. The left panel of Fig. 2 shows the resulting GW spectrum

for different values of the model parameters Gµ and κ. This extends the result shown in the left

panel of Fig. 1 by including the change of degrees of freedom in the SM thermal bath as well as

the GW emission during the matter domination era. 9 The latter is relevant only for te > teq

and leads to an enhancement at low frequencies for quasi-stable strings (indicated by the dotted

black curves). We recall that the origin of this enhancement can be traced back to the scaling

behaviour. During radiation domination, the loop production and subsequent GW emission have

to be efficient enough to compensate the T 4 decrease of the energy in the SM thermal bath. During

matter domination, scaling dictates a reduced GW emission. In this sense, loops generated during

the radiation era but surviving until the matter era radiate a disproportionate amount of energy,

leading to an enhancement of the GW spectrum.

In the right panel of Fig. 2, we perform a more detailed comparison with the existing pulsar

timing results for the case of monopoles with unconfined fluxes. Parameterizing the GW power

spectrum as Ωgw = Ωgw(fPTA)·(f/fPTA)nt , we determine the amplitude and tilt of this power law in

9Both of these affect the cosmological expansion history, which is encoded in the Hubble parameter H(z) =

H0(ΩΛ + Ωm(1 + z)3 + ΩradG(z)(1 + z)4)1/2 with G(z) = g∗(z)g
4/3
s (0)/(g∗(0)g

4/3
s (z)), Ωm = 0.308, ΩΛ = 0.702, and

g∗(z) (gs(z)) denoting the effective number of degrees of freedom relevant for the energy (entropy) density of the

SM thermal bath.
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the range of [2 . . . 4] nHz around the peak sensitivity (10 yr)−1 ' 3 nHz of current PTA experiments.

Note that, once depicted at this frequency instead of the more conventional reference frequency

of 32 nHz = 1/year, it becomes more transparent that the NANOGrav measurement is essentially

a measurement of the amplitude with the tilt still subject to a large uncertainty and largely

uncorrelated with the amplitude. We show the predictions for metastable cosmic strings for the

entire range of model parameters considered, with the solid lines denoting contours of constant Gµ

and the dotted lines indicating contours of constant κ (with the maximal value,
√
κ = 9.2, indicated

by a white dot). The orange region indicates the region suggested by interpreting the recent

NANOGrav result as a GW signal [33], with the solid (dashed) contours showing the 68 % and

95 % regions reported by NANOGrav when performing a fit to the first five frequency bins (when

performing a fit with a broken power law). The black solid lines show the preferred region reported

by PPTA when performing a similar analysis based on the first five frequency bins [53]. This region

is in tension with previous results from the PPTA [20] and NANOGrav [18] collaborations, see

Refs. [33, 53,54] for a discussion.

The analysis presented here updates and largely justifies the simpler analyses performed in

Refs. [22, 28]. The main difference is the inclusion of the decay of the cosmic string network, now

encoded in the exponential function in Eq. (7). Contrary to the previous analysis, this allows for

loops of different length to decay at different times, as expected from the different probability of

forming a monopole pair along the loop. The main consequence of this is that the fall-off of the

GW spectrum at small frequencies is described by an f2 power law instead of f3/2 as found in

Ref. [22]. The resulting overall shift to larger values of nt for small κ mildly reduces the overlap

with the preferred NANOGrav region, implying in particular that there is now barely any overlap

with the 1σ NANOGrav region, while within 2σ there is good agreement. We note, however, that

the very recent results reported by the PPTA collaboration prefer a larger spectral tilt, yielding

significantly better agreement with our predictions. In Ref. [28], the range of string tensions

Gµ = 10−10 . . . 10−6 was considered. Given our calculation of the GW spectrum, the LIGO O3

upper bound on Ωgw [49] restricts Gµ to values below 2 × 10−7 (see left panel of Fig. 3). In this

paper, we therefore focus on the range of string tensions Gµ = 10−11 . . . 10−7.

We stress that the current significant uncertainties both in the interpretation of the PTA data

as a GW signal and in the modelling of the cosmic-string network force us to take any model-to-

data comparison with some grain of salt. It is nevertheless instructive to contrast the tentative

NANOGrav signal with other existing and upcoming GW observations, in particular by LIGO,

see Fig. 3. The left panel shows the NANOGrav signal (95 % C. L. region of the broken power

law fit) in the model parameter plane, together with the PPTA exclusion limit [20], the LIGO O3

bound on stochastic backgrounds [49],10 and the design sensitivities of LISA and LIGO. Note that

10In Ref. [55], upper bounds on the string tension were derived for different NG models. In a model (A) for the

loop number density [12], the obtained GW spectrum essentially shows a plateau between the nHz and the LVK

band, similar to Ref. [13]. This is not the case for the loop number density of model (B) [7], which leads to a GW

spectrum [11] that differs from model (A) by up to four orders of magnitude. Correspondingly, the derived bounds

on the string tension are very different. For model (A), the upper bound varies in the range Gµ . 10−8 . . . 10−6,

whereas for model (B), the upper bound is Gµ . (4.0 . . . 6.3) × 10−15 [55]. A range of two orders of magnitude

for model (A) appears reasonable in view of current theoretical uncertainties. The difference by seven orders of
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Figure 3: Parameter space and GW detection prospects for monopoles with unconfined fluxes. The orange region

and the contour lines in dark gray show the tentative signal reported by NANOGrav [33] and PPTA [53], which lies

within the exclusion region of the previous PTA bounds (grey region in left panel). The blue shaded regions indicate

bounds and prospects reported by the LIGO/VIRGO collaboration [49]. The entire parameter space shown in the

left panel can be probed by LISA. The right panel focuses on two likely future GW observables: the tilt nt of the

SGWB at PTA frequencies and the amplitude at LIGO frequencies. Metastable cosmic strings can explain a signal

anywhere in this plain outside the grey shaded region.

Ref. [49] quotes both a more conservative bound, ΩGW < 1.7 × 10−8 at 95 % C. L. (labeled “O3”

in Fig. 3), and a more aggressive bound, ΩGW < 5.8 × 10−9 (labeled “O3 log prior”), depending

on the choice of priors. We conclude that, within the framework of metastable cosmic strings

decaying through the production of monopoles with unconfined fluxes, the current NANOGrav

data are compatible with 2×10−11 . Gµ . 2×10−7, with current (and possibly upcoming) LIGO

data pushing this to lower values, towards the regime of quasi-stable cosmic strings. We note,

however, that large values of Gµ are more sensitive to the formation time of the cosmic-string

network and / or the reheating temperature of the Universe, which in our analysis we have taken

to be at very high redshift. Lowering this can suppress the GW spectrum at LIGO scales while

leaving the predictions in the pulsar timing array band untouched. The entire parameter space

compatible with the NANOGrav signal will be finally probed by LISA.

In the right panel of Fig. 3, we focus on the most likely observables of the near future: the

tilt measured in pulsar timing arrays (horizontal axis) and the amplitude measured in ground-

based interferometers (vertical axis). The entire white region can be reached by varying the model

parameters Gµ and κ, with the orange region indicating the preferred NANOGrav region. On the

contrary, a GW signal in the gray region could not be explained within this setup.

3.2 Monopoles with no unconfined fluxes

If on the contrary the monopoles do not feature any unconfined fluxes, the channel of energy loss

for the cosmic-string segments is gravitational radiation. In this case, the total GW spectrum

receives an additional contribution from decaying segments, which can originate both from long

strings or from loops. The corresponding number densities are derived in the appendix and given

magnitude between models (A) and (B) is largely due to the fact that the evidence for large-loop dominance from

large numerical simulations [8] is not taken into account in model (B).
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Figure 4: GW spectrum from metastable cosmic strings for monopoles with no unconfined fluxes, i.e., including the

additional contribution from cosmic-string segments. Color coding as in Fig. 2.

by Eqs. (12), (A.28), (A.39), and (A.40).

Fig. 4 shows the resulting GW spectrum as well as the predictions for pulsar timing arrays.

Comparing with Fig. 2, we note that the GW contribution from cosmic-string segments gives at

most a minor correction to the GW contribution from cosmic-string loops only. The two contri-

butions become comparable only for large values of Gµ and f < flow. This in particular entails a

flatter slope at frequencies below the onset of the plateau in radiation domination, noticeable in

the right panel of Fig. 4 by the marginally more limited range of the tilt nt in the pulsar timing

regime. Once κ becomes sufficiently large for the string network to survive into the matter era, the

additional boost in the number density of the cosmic-string loops makes them completely dominate

over the segment contribution. For a more detailed comparison of the different contributions, see

Fig. 5 in the appendix. In summary, we conclude that the inclusion of the GW emission from

cosmic-string segments is at most a minor correction, in particular given the overall uncertainties

in modelling GW emission by a cosmic-string network. We note, however, that this conclusion is

based on some model assumptions, in particular on the GW emission rate of loops and segments

(Γ̃ ' Γ = 50) and on the loop size (α = 0.1), which may need to be revisited as our understanding

of the dynamics of cosmic-string networks improves.

3.3 Other observables

The GW spectrum has to satisfy constraints imposed by big-bang nucleosynthesis (BBN) and

the cosmic microwave background. During BBN, the expansion rate of the universe is tightly

constrained, which limits the contribution of GWs to the energy density to the contribution

of about one relativistic neutrino [56, 57]. With TBBN ∼ 0.05 MeV, one has zBBN ∼ 5 × 108

and H(zBBN) ∼ 10−3 Hz. The contribution of one relativistic neutrino to Ω today is ∆Ω1ν '
7/43 Ωr/(1 + zeq) ' 5 × 10−5. The GW spectrum produced until tBBN has to be integrated over

all subhorizon GWs present at the time of BBN. From Eq. (23), one obtains for the frequency

fBBN = fp(zBBN) ' 20 Hz (10−7/(Gµ)) � H(zBBN). Hence, all frequencies of GWs produced

before tBBN fit into the BBN Hubble horizon. This conclusion also immediately follows from the

fact that string loops and segments represent causal GW sources on subhorizon scales in a decel-
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erating expansion background. If the network decays after BBN, i.e. te > tBBN, one obtains the

contribution of GWs to Ω during BBN by integrating the plateau in Eq. (26) from fBBN to fhigh.

If the network decays before tBBN, this integral yields an upper bound on the contribution of GWs.

In this way, one obtains

∆ΩBBN
gw .

∫ fhigh

fBBN

df

f
Ωplateau

gw ∼ 10−8

(
Gµ

10−7

)1/2

ln

(
fhigh

fBBN

)
(47)

∼ 10−8

(
Gµ

10−7

)1/2 [
32 + ln

(
Trh

1010GeV

)]
.

For the considered parameter values, ∆ΩBBN
gw is smaller than ∆Ω1ν by at least three orders of

magnitude.

Precision measurements of the CMB constrain cosmic-string networks in several ways. Tem-

perature anisotropies yield an upper bound on the tension of quasi-stable strings, Gµ < 10−7 [58],

which is the largest string tension that we consider. Other interesting observables are spectral

distortions. Current bounds are not yet very stringent, but future experiments may indeed be able

to probe metastable strings [59]. In principle, also monopole annihilation from string segments

could lead to interesting signatures [60,61], which requires further investigations.

4 Conclusions

The formation of cosmic strings that are not topologically stable is a rather common feature in

GUT models [23, 27, 42]. If the symmetry breaking step responsible for monopole production

is separated from the symmetry breaking step generating cosmic strings by a phase of cosmic

inflation, we generically obtain a network of metastable cosmic strings. Their decay is triggered by

pair production of monopoles along the cores of the cosmic strings. This process is exponentially

suppressed by the ratio of the monopole mass to the cosmic string tension, κ = m2/µ, leading

to a cosmological life time. For mass ratios in the range of
√
κ ∼ 7 . . . 8, this leads to a strong

suppression of the GW at low frequencies compared to the signal expected from topologically

stable cosmic strings, while allowing for a large signal in the Hz regime. Consequently, a large

scale-invariant SGWB at LIGO frequencies would be perfectly compatible with a null detection at

pulsar timing arrays. This in particular demonstrates the significant discovery space for GWs from

cosmic strings that ground-based interferometers are currently probing and which will be further

significantly enlarged by the space-based interferometer LISA. For GUT-scale string tensions,

Gµ ∼ 10−8 . . . 10−7, metastable strings predict a SGWB in the LVK band that could be discovered

in the very near future.

A significant theoretical distinction in the computation of the GW spectrum is the existence

of unconfined fluxes in pair-produced GUT monopoles. Monopoles featuring unconfined fluxes are

produced as monopole–antimonopole pairs, and the resulting cosmic-string segments decay rapidly

under the emission of massless gauge bosons. On the other hand, if the monopoles do not feature

any unconfined fluxes, the cosmic-string segments decay only due to GW emission, leading to an

additional contribution to the GW spectrum. In the present paper, we computed for the first
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time all contributions in a systematic way, allowing us to compare the different contributions in

both scenarios. In conclusion, we find that the GW contribution from cosmic-string loops is the

dominant contribution in essentially the entire parameter space of interest, though if present, the

contribution from cosmic-string segments has the potential to mildly influence the slope of the

spectrum at PTA frequencies.

At the technical level, we improve the estimation of the GW spectrum from metastable cosmic-

string loops first given in Ref. [22] to allow for cosmic-string loops of different size decaying at

different times, which changes the estimate of the low-frequency slope from 3/2 to 2. For the

contribution from metastable cosmic-string segments, our main finding with respect to Ref. [25]

is that the frequency range of the plateau in the GW signal is limited in the ultraviolet by the

number of modes contributing. We, moreover, provide analytical formulas for the loop and segment

number densities in all relevant epochs of cosmic history that take into account recent progress in

the modelling topologically stable cosmic-string networks [12].

Metastable cosmic strings provide a possible explanation for the tentative SGWB signal re-

ported by the NANOGrav [33] and PPTA [53] collaborations. For 2 × 10−11 < Gµ < 2 × 10−7

and
√
κ > 8, the metastable cosmic-string signal is compatible with the NANOGrav 2σ region and

the PPTA 1σ region, respectively. Upcoming, more precise determinations of the spectral tilt of

this signal will be decisive in distinguishing between this explanation and other astrophysical or

cosmological sources. This, moreover, demonstrates the great potential of future multi-band GW

observations involving PTAs, space-based, and ground-based interferometers.

Note added

Shortly after submitting this work to the arXiv, the PPTA collaboration [53] presented an analysis

of their latest data set [19], reporting results in agreement with NANOGrav [33] when performing

a similar analysis. For further tests and a discussion of possible interpretations of these results,

see Ref. [53]. We included these new results in Figs. 2 to 4 in the current version, demonstrating

that they fit our predictions very well.
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A Kinetic equations for number densities

The number densities of string loops and segments satisfy kinetic equations, which take various

effects into account that influence the time evolution of the decaying cosmic string network. They

have the general form

∂t n (`, t) = S (`, t)− ∂` [u (`, t) n (`, t)]− [3H (t) + Γd `]n (`, t) , (A.1)
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where S is a source term, u describes the change of the string length due to Hubble stretching and

energy loss of the network, H is the Hubble parameter and Γd is the decay rate. Eq. (A.1) can be

derived by considering the changes in n (`, t) ∆`, i.e., the number density of loops whose lengths

lie in the interval [`, `+ ∆`], after some infinitesimally small time step from t to t+ ∆t,

n (`+ u∆t, t+ ∆t) ∆`′ = S (`, t) ∆t∆`+

(
a (t)

a (t+ ∆t)

)3

n (`, t) ∆`− Γd ` n (`, t) ∆t∆` , (A.2)

where ∆`′ = ∆`+∂`u∆t∆` accounts for the change in the interval length ∆` during ∆t. Expanding

all terms in Eq. (A.2) up to first order in ∆t and collecting all terms of order ∆t∆` on both sides

reproduces Eq. (A.1). In standard form, the partial differential equation (A.1) reads

[u (`, t) ∂` + w (`, t) ∂t]n (`, t) = F (`, t, n (`, t)) , w = 1 , F = S − (3H + Γd `+ ∂`u)n , (A.3)

which can be solved by integrating the ordinary differential equations for the three characteristic

curves l̄(t′), t̄(t′) and n̄(t′) as functions of an auxiliary parameter t′ ∈ [ti, t],

d¯̀

dt′
= u

(
¯̀, t̄
)
,

dt̄

dt′
= 1 ,

dn̄

dt′
= F

(
¯̀, t̄, n̄

(
¯̀, t̄
))
. (A.4)

Imposing the boundary conditions ¯̀(t) = `, t̄ (t) = t, and n̄
(
¯̀(ti) , ti

)
= ni

(
¯̀(ti)

)
, one obtains

n (`, t) = n̄
(
¯̀(t) , t̄ (t)

)
= exp

[
−
∫ t

ti

dt′
(
3H (t̄) + Γd ¯̀+ ∂¯̀u

(
¯̀, t̄
))]
×

{
ni
(
¯̀(ti)

)
+

∫ t

ti

dt′S
(
¯̀, t̄
)

exp

[∫ t′

ti

dt′′
(
3H (t̄) + Γd ¯̀+ ∂¯̀u

(
¯̀, t̄
))]}

= exp

[
−
∫ t

ti

dt′
(
Γd ¯̀

(
t′
)

+ ∂¯̀u
(
¯̀
(
t′
)
, t̄
(
t′
)))]

×

{(
a (ti)

a (t)

)3

ni
(
¯̀(ti)

)
+

∫ t

ti

dt′
(
a (t′)

a (t)

)3

S
(
¯̀
(
t′
)
, t′
)

exp

[∫ t′

ti

dt′′
(
Γd ¯̀

(
t′′
)

+ ∂¯̀u
(
¯̀
(
t′′
)
, t̄
(
t′′
)))]}

. (A.5)

A.1 Loops

This subsection is dedicated to the derivation of the loop number density of metastable cosmic

strings throughout different cosmological epochs. We begin with a detailed derivation of the loop

number density during radiation domination, which underlies the analytical estimates presented

in the main body of the text. We then proceed to include the matter era, which we include in our

numerical computations of the GW spectra. We follow a similar procedure for the segment number

density in Secs. A.2 and A.3. For a comparison of the various contributions both in radiation and

matter domination, see Figs. 5 and 6. The left panel of Fig. 6, moreover, illustrates the relevant

time scales.
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Radiation era

The source term for loops is provided by the loop production function f (`, t), and the time deriva-

tive of the loop length is controlled by the energy loss due to GW emission,

u (`, t) = −ΓGµ , (A.6)

which yields the time-dependent length

¯̀
(
t′
)

= `+ ΓGµ
(
t− t′

)
. (A.7)

For vanishing initial loop density
◦
ni, one obtains in the scaling regime, t < ts,

◦
n< (`, t) =

∫ t

ti

dt′
(
a (t′)

a (t)

)3

f
(
¯̀, t′
)
e−Γd[`(t−t′)+1/2 ΓGµ(t−t′)2] . (A.8)

For the BOS model, the loop production function is approximately given by

f (`, t) =
B

α3/2 t4
δ(`− αt) , (A.9)

with ΓGµ � α = 0.1. Hence, the density
◦
n< (`, t) of loops with length ` at time t is determined

by the number of loops that are produced at time t′ = (`+ ΓGµ t) /α with size α t′ = ` + ΓGµ t.

Inserting Eqs. (A.9) and (A.7) into Eq. (A.5) and setting ti = 0, one obtains the loop number

density in the radiation era,

◦
n< (`, t) =

B

t3/2 (`+ ΓGµt)5/2
e−Γd[`(t−`/α)+1/2 ΓGµ(t−`/α)2] Θ(αt− l) . (A.10)

Since t < ts = 1/Γ
1/2
d and ` ≤ α t, the two exponential damping terms are not effective. The case

of stable loops is obtained for Γd → 0, i.e., ts → ∞. In this limit, one obtains the loop number

density (6) of the BOS model,

◦
n< (`, t) −→

ts→∞
◦
n (`, t) =

B

t3/2 (`+ ΓGµt)5/2
Θ (αt− `) . (A.11)

After the initial scaling regime, for t > ts = 1/Γ
1/2
d , one has to use Eq. (A.5) with vanishing

loop production function and an initial number density determined by the matching condition

◦
n>
(
¯̀(ts) , ts

)
=
◦
n<
(
¯̀(ts) , ts

)
' B

t
3/2
s

(
¯̀(ts) + ΓGµts

)5/2 Θ
(
αts − ¯̀(ts)

)
. (A.12)

Using ¯̀(ts) + ΓGµ ts = `+ ΓGµ t and Eqs. (A.5) and (A.12), one obtains

◦
n> (`, t) =

B

t3/2 (`+ ΓGµt)5/2
e−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ

(
αts − ¯̀(ts)

)
Θ (teq − t) , (A.13)

The result differs from the number density of stable loops in Eq. (6) by two damping terms, which

become relevant for `t & 1/Γd and t2 & 2/ (ΓdΓGµ) = t2e, respectively. A further important differ-

ence is the argument of the Heaviside theta functions. Since ts < t and ¯̀(ts) = `+ΓGµ (t− ts) > `,

the constraint for
◦
n> is more stringent, which reflects the fact that only loops produced before ts

contribute to the number density.
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Figure 5: Contributions to the GW spectrum in radiation domination for GWs sourced during the radiation era

(left) and including contributions from the matter era (right). In the right panel the GW contribution from segments

originating from long strings lies below the depicted plot range.

Matter era

After matter–radiation equality, t > teq, we distinguish between loops produced in the radiation

era (but surviving until the matter era) and loops formed in the matter era. For t < ts, the loop

number densities are given by the corresponding expressions found for topologically stable cosmic

strings in the BOS model [12],

◦
n

rm

< (`, t) =
B

(`+ ΓGµt)5/2

t
1/2
eq

t2
Θ (αt− `) , (A.14)

◦
n

m

< (`, t) =
A1 −A2 (`/t)β

t2 (`+ ΓGµt)2 Θ (γt− `) Θ (ts − teq) , (A.15)

with A1 = 0.27, A2 = 0.45, β = 0.31, and γ = 0.18. Here, the second theta function in the

expression for
◦
n

m

< reflects the fact that loop production only occurs at t < ts. To obtain the

number density at t > ts, we use Eq. (A.5) with a vanishing loop production function and initial

conditions determined by the matching condition at t = ts. Analogously to Eq. (A.13), this yields

for the loop number densities at t > ts, teq,

◦
n

rm

> (`, t) =
B

(`+ ΓGµt)5/2

t
1/2
eq

t2
e−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ

(
αts − ¯̀(ts)

)
,

◦
n

m

> (`, t) =
A1 −A2 (`/t)β

t2 (`+ ΓGµt)2 e
−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ (ts − teq) Θ

(
γts − ¯̀(ts)

)
, (A.16)

where ts can be either before or after teq. Eqs. (A.14) to (A.16), together with Eqs. (6) and (A.13),

describe the loop number density of metastable cosmic strings throughout cosmic history.

A.2 Segments sourced by long strings

For string segments from long strings, whose number density we denote by ñ(s) (`, t), the source

term is the splitting of one segment (or long string) into two segments [25],

S (`, t) = 2 Γd

∫ ∞
`

d`′ ñ(s)
(
`′, t
)
. (A.17)
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Long superhorizon string segments gain length by Hubble stretching and shrink due to energy loss

by loop production. To compute this effect directly is difficult, but since u (`, t) ∝ `, this function

can be determined by demanding that at early times, t < ts, the long segments exhibit scaling,

i.e., µ
∫
` d` ` ñ (`, t) ∼ µ/t2. One then finds [25],

u (`, t) = 3H (t) `− 2`

t
⇒ ¯̀

(
t′
)

=

(
a (t′)

a (t)

)3( t
t′

)2

` . (A.18)

Radiation era

Using (A.17) and (A.18), Eq. (A.1) in the radiation era has a simple solution (t < ts),

ñ
(s)
< (`, t) = C Γ2

d e
−2 Γd ` t , (A.19)

Since the kinetic equation for ñ
(s)
< is homogeneous, the normalization is not fixed and C is a free

parameter that can be determined using the matching condition (10), yielding C = 4/ξ2.

After the initial scaling regime time, for t > ts, typical segments enter the horizon. They split

into smaller segments and shrink due to gravitational radiation, i.e.,

S (`, t) = 2 Γd

∫ ∞
`

d`′ ñ(s)
(
`′, t
)
, u (`, t) = −Γ̃Gµ . (A.20)

The solution of the corresponding kinetic equation (A.1), which matches with ñ
(s)
< (`, t) at ts,

ñ
(s)
>

(
¯̀(ts) , ts

)
= ñ

(s)
<

(
¯̀(ts) , ts

)
, (A.21)

is known analytically [25] and given by Eq. (9),

ñ
(s)
> (`, t) = C

Γ2
d

4

(t+ ts)
2

√
t3ts

e−Γd[`(t+ts)+ 1
2

Γ̃Gµ(t−ts)(t+3ts)] Θ (teq − t) . (A.22)

The two damping terms are essentially the same as in Eq. (7), but there is no restriction on the

segment lengths. The segments have decayed after t̃e =
(
Γ̃Gµ

)−1/2
ts. This can be immediately

generalized to include later times t > teq, as long as the matching time remains in radiation

domination, ts < teq. In this case, we obtain

ñ
rm (s)
> (`, t) = C

Γ2
d

4

(
teq

t

)2 (t+ ts)
2√

t3eqts
e−Γd[`(t+ts)+1/2 Γ̃Gµ(t−ts)(t+3ts)] Θ (t− teq) . (A.23)

Matter era

We proceed to consider the remaining case of ts > teq. For teq < t < ts, solving the kinetic equation

with (A.17) and (A.18) (where for matter domination u (`, t) = 0) yields

ñ
m (s)
< (`, t) =

Γ2
d

ξ2
m

e−Γd ` t , (A.24)

where the prefactor has been determined by matching at t = ts to the scaling regime of topologically

stable cosmic strings in matter domination, ρ∞ (t) = µ2/
(
t2ξ2

m

)
with ξm = 0.625 [4].
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Figure 6: GW spectrum from segments for long-lived strings. Left panel: Contributions from radiation and matter

era in different parts of the model parameter space. Right panel: For large value of κ, the GW emission is restricted

to the matter era and the amplitude of the spectrum is suppressed.

For t > ts > teq, inserting the ansatz

ñ
m (s)
> (`, t) = Cs (t) e−Γd ` t (A.25)

into the kinetic equation (A.1) yields

Ċs (t) = −Γd Γ̃Gµ tCs (t) , Cs (ts) =
Γ2
d

ξ2
m

, (A.26)

which is solved (for Γ̃ = Γ) by

Cs (t) =
1

t4s ξ
2
m

e−
1/2 Γd ΓGµ(t2−t2s) , (A.27)

yielding for the number density

ñ
m (s)
> (`, t) =

1

t4s ξ
2
m

e−Γd[` t+1/2 ΓGµ(t2−t2s)] . (A.28)

A.3 Segments sourced by loops

In addition to decaying long strings, decaying loops also yield string segments, whose number

density we will denote by ñ(l) (`, t). In the absence of simulations and analytical calculations, we

treat them in the same way as segments from long strings. The kinetic equation for ñ(l) (`, t) at

t > ts then becomes a linear partial integro-differential equation,

∂t ñ
(l)
> (`, t) = −

[
3H (t) + Γd `− Γ̃Gµ∂`

]
ñ

(l)
> (`, t)+2 Γd

∫ ∞
`

d`′ ñ
(l)
>

(
`′, t
)
+Γd `

◦
n> (`, t) , (A.29)

where loop decays now act as an additional source term. For Γ̃ = Γ, this equation can be formally

solved by an infinite series. To see this, we can first write the solution of Eq. (A.29) in exactly the

same way as the general solution in Eq. (A.5), with the source term inside the t′ integral given by

S
(
¯̀
(
t′
)
, t′
)

= 2 Γd

∫ ∞
¯̀(t′)

d`′ ñ
(l)
>

(
`′, t′

)
+ Γd ¯̀

(
t′
) ◦
n>
(
¯̀
(
t′
)
, t′
)
. (A.30)
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The expression for ñ
(l)
> (`, t) thus obtained refers to itself, via the ñ

(l)
> (`′, t′) term inside the `′

integral. This dependence can be removed by an iterative procedure. In the next step, we take the

full expression for ñ
(l)
> (`, t) that we just derived and insert it back into itself, more precisely, into

the `′ integral in the source term. Repeating this step over and over again then results in an infinite

series for ñ
(l)
> (`, t), which no longer refers back to itself and which can hence be systematically

evaluated order by order without any prior knowledge of the final solution,

ñ
(l)
> (`, t) =

∞∑
i=1

ñ
(l,i)
> (`, t) , ñ

(l,i+1)
> (`, t) = 2 Γd

∫ t

ti

dt′
∫ ∞

¯̀(t′)
d`′A

(
`, t, t′

)
ñ

(l,i)
>

(
`′, t′

)
. (A.31)

Here, the function A accounts for the cosmological redshift, decay into smaller segments, and GW

emission of string segments with length ` at time t in the time interval from t′ to t,

A
(
`, t, t′

)
=

(
a (t′)

a (t)

)3

e−Γd[`(t−t′)+1/2 Γ̃Gµ(t−t′)2] . (A.32)

The interpretation of the infinite series in Eq. (A.31) is straightforward. The first term in the

series, ñ
(l,1)
> (`, t), describes the first generation of segments from loops, i.e., segments that form in

consequence of monopole pair creation events on string loops; the second term, ñ
(l,2)
> (`, t), describes

the second generation of segments from loops, i.e., segments that form in consequence of monopole

pair creation events on first-generation segments; and so on and so forth.

In order to evaluate the infinite series term by term, following the iterative procedure described

in Eq. (A.31), one needs to know the first term ñ
(l,1)
> (`, t). This term simply follows the general

solution in Eq. (A.5) and the source term in Eq. (A.30) after dropping the `′ integral contribution

in Eq. (A.30). In other words, it follows from the kinetic equation in Eq. (A.29) after omitting the

source term that describes the decay of string segments into smaller segments,

∂t ñ
(l,1)
> (`, t) = −

[
3H (t) + Γd `− Γ̃Gµ∂`

]
ñ

(l,1)
> (`, t) + Γd `

◦
n> (`, t) . (A.33)

In contrast to Eq. (A.29), this is again a partial differential equation (i.e., no longer a partial

integro-differential equation), which can be solved using the standard methods outlined at the

beginning of this section. During the radiation era and making use of Eq. (A.5), we thus obtain

ñ
(l,1)
> (`, t) = Γd

[
` (t− ts) +

1

2
ΓGµ (t− ts)2

]
◦
n> (`, t) , (A.34)

where we have used that ñ
(l,1)
> (`, t) = 0 at t = ts. Similarly, we obtain during the matter era

ñ
m (l,1)
> (`, t) = ñ

rm (l,1)
> (`, t) + ñ

mm (l,1)
> (`, t) (A.35)

where the segment densities ñ
rm (l,1)
> and ñ

mm (l,1)
> are induced by loops that are produced during

radiation and matter domination, respectively, and all of which decay during matter domination.

The first term, ñ
rm (l,1)
> , corresponds to the straightforward continuation of ñ

(l,1)
> in Eq. (A.35),

ñ
rm (l,1)
> (`, t) = Γd

[
` (t− ts) +

1

2
ΓGµ (t− ts)2

]
◦
n

rm

> (`, t) (A.36)
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while the second term, ñ
mm (l,1)
> , turns out to be less compact because of the slightly more compli-

cated form of the loop number density during matter domination,
◦
n

m

> , in Eq. (A.16),

ñ
mm (l,1)
> (`, t) =

Γd

t2 (`+ ΓGµ t)2 e
−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2]

{
A1

[
` (t− ts) +

1

2
ΓGµ (t− ts)2

]
+A2 (`+ ΓGµ t)1+β [F2 (t)− F1 (t)− F2 (ts) + F1 (ts)]

}
Θ
(
γ ts − ¯̀(ts)

)
Θ (ts − teq) , (A.37)

where the auxiliary functions F1 and F2 are given in terms of the hypergeometric function 2F1,

Fn (x) = 2F1

(
n− β,−β;n+ 1− β;

ΓGµ

`+ ΓGµ t
x

)(
ΓGµ

`+ ΓGµ t

)n−1 xn−β

n− β
. (A.38)

The above expressions for the first term in the infinite series are the starting point for nu-

merically evaluating the higher terms in the series. We perform such a numerical analysis, which

reveals that the series rapidly converges after the first few terms. Moreover, we find that the GW

spectrum computed based on the full result for ñ(l) is well approximated by the GW spectrum

computed based on the first term, ñ(l,1), times a numerical fudge factor σ. For all practical pur-

poses in this paper, this observation allows us to replace to the full result for ñ(l) by ñ(l,1) times the

fudge factor σ, even though the functional dependence of ñ(l) and ñ(l,1) on ` and t is not identical,

ñ(l) (`, t)→ σ ñ(l,1) (`, t) , σ ' 5 , (A.39)

and

ñ
m (l)
> (`, t)→ σm

[
ñ

rm (l,1)
> (`, t) + ñ

mm (l,1)
> (`, t)

]
(A.40)

with σm ' σ ' 5 for ts < teq and

σm '


1 for Gµ < 10−9.5

5 for Gµ > 10−9.5 and loops formed in RD

15 for Gµ > 10−9.5 and loops formed in MD

(A.41)

for ts > teq.
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