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Abstract

The electromagnetic coupling axion-photon in a microwave cavity is revis-
ited with the Boundary Integral - Resonant Mode Expansion (BI-RME) 3D
technique. Such full-wave modal technique has been applied for the rigorous
analysis of the excitation of a microwave cavity with an axion field. In this
scenario, the electromagnetic field generated by the axion-photon coupling
can be assumed to be driven by equivalent electrical charge and current
densities. These densities have been inserted in the general BI-RME 3D
equations, which express the RF electromagnetic field existing within a cav-
ity as an integral involving the Dyadic Green´s functions of the cavity (under
Coulomb gauge) as well as such densities. This method is able to take into
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account any arbitrary spatial and temporal variation of both magnitude and
phase of the axion field. Next, we have obtained a simple network driven by
the axion current source, which represents the coupling between the axion
field and the resonant modes of the cavity. With this approach, it is possible
to calculate the extracted and dissipated RF power as a function of frequency
along a broad band and without Cauchy-Lorentz approximations, obtaining
the spectrum of the electromagnetic field generated in the cavity, and dealing
with modes relatively close to the axion resonant mode. Moreover, with this
technique we have a complete knowledge of the signal extracted from the
cavity, not only in magnitude but also in phase. This can be an interesting
issue for future analysis where the axion phase is an important parameter.

Keywords: axion detection, axion field, axion-photon interaction, BI-RME
3D, broad-band analysis, dark matter, full wave analysis, haloscope,
microwave resonator, modal technique

1. Introduction

The search of dark matter axions in the galactic halo has undergone
an increasing activity in the last twenty years, following the experimental
concept of a resonant haloscope from Sikivie [1], [2] with the initial [3] (and
still ongoing [4]) work of ADMX, and continuing with other collaborations
such as KLASH [5] at lower masses or HAYSTACK [6], ORGAN [7], QUAX
[8], CAPP [9], or RADES [10] at higher ones. A non-resonant dielectric
haloscope (MADMAX) [11] has been proposed for even higher frequencies.
All these experiments set the haloscopes realm currently in the 1 - 100 µeV
axion mass range (240 MHz - 24 GHz in terms of frequency). A general
review of these experiments and proper references can be found in [12].

Although the Lorentzian shape as an approximation of the resonant curve
[13] is well-known in any mode supported by RF cavities, the expression of
the peak value of the detected power [14] is normally used for assessing the
axion sensitivity of the proposed (or developed) experiment. In this pa-
per we develop a complete semi-analytical solution for obtaining, through
the BI-RME 3D method, the complex (magnitude and phase) current ex-
tracted from a low-loss cavity, where the axion-photon coupling due to the
Primakoff effect takes place and, from it, the extracted RF power for a
wide spectrum. This broadband rigorous result is specially interesting when
neighboring modes are close to the axion one and can interfere with it. This
situation can occur in large cavities with a high number of resonant modes
or in multi-cavity haloscopes [15], where different configurations of the main
mode can resonate at close proximity with the desired axion resonance.

The paper is organized as follows. Section 2 provides a general view
and detailed formulation of the BI-RME 3D method in resonant cavities. In
section 3, the electromagnetic analysis of the axion-photon coupling under
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a static magnetic field is introduced, and this allows to apply the BI-RME
3D method to cavity haloscopes in section 4, specifically to two types of
haloscopes: the cylindrical cavity decribed in [16] and the rectangular multi-
cavity reported in [10]. Finally, section 5 summarizes the main conclusions
of this work.

2. The BI-RME 3D method

The Boundary Integral Resonant Mode Expansion (BI-RME) method
was developed during the eighties and nineties at the Università degli Studio
di Pavia (Italy). It represents an advanced full-wave modal technique for
the accurate and efficient electromagnetic analysis of microwave arbitrarily-
shaped waveguides and cavities [17], [18] including metallic [19], [20] and
dielectric obstacles [21], [22], [23] of arbitrary geometry. The complete for-
mulation and the different implementations are very extensive and can be
found in the technical literature [24].

2.1. Lossless cavity

Our starting point is to suppose that we have a microwave cavity res-
onator with arbitrary shape [25]. We will suppose that the volume of the
cavity V is simply connected. Inside the cavity we will assume that there is
vacuum characterized by the electric permitivity ε0 and the magnetic per-
meability µ0 of free space; dielectric and magnetic media can be accounted
in the BI-RME theory, but they will not be considered in this work.

Let us consider a microwave resonant cavity with an arbitrary number
of access waveguide ports P , as represented in Figure 1. We will suppose
that the conducting walls of the structure are lossless. The time-harmonic
(phasors) electric and magnetic fields in such cavity originated by inner volu-
metric electric sources ~J and magnetic current sheets ~M can be expressed in
terms of the electric and magnetic scalar and dyadic potentials (considering
the Coulomb’s gauge) as the following hybrid representation,

~E(~r) =
η

jk
∇
∫
V
ge(~r, ~r ′)∇′ · ~J(~r ′) dV ′ − jkη

∫
V

~GA(~r, ~r ′) · ~J(~r ′) dV ′ −

−
∫
S
∇× ~GF(~r, ~r ′) · ~M(~r ′) dS′ +

1

2
~n× ~M

~H(~r) =
1

jkη
∇s
∫
S
gm(~r, ~r ′)∇′ · ~M(~r ′) dS′ − jk

η

∫
S

~GF(~r, ~r ′) · ~M(~r ′) dS′ +

+

∫
V
∇× ~GA(~r, ~r ′) · ~J(~r ′) dV ′ (1)
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where η =
√
µ0/ε0 ≈ 377 Ω is the vacuum impedance; k = ω/c is the

free space wavenumber, ω being the angular frequency (ω = 2πf) and
c = 1/

√
µ0 ε0 is the speed of light in vacuum; j =

√
−1 is the imaginary unit;

~n is the inward unitary normal vector to the cavity surface; ∇s is the surface
divergence operator [26]; ge(~r, ~r ′) and gm(~r, ~r ′) are the electric and mag-
netic static scalar potentials Green’s functions of the cavity under Coulomb
gauge, respectively; and ~GA(~r, ~r ′) and ~GF(~r, ~r ′) are the electric and mag-
netic dyadic potentials Green’s functions of the cavity under Coulomb gauge,
respectively. In the Appendix we have summarized the most relevant prop-
erties of these Green’s functions.

Figure 1: Arbitrarily-shaped microwave resonant cavity connected to different access
waveguide ports (rectangular, coaxial and circular).

Next we insert the modal expansions of both electric and magnetic dyadic
potential Green´s functions described in the Appendix in (1), obtaining

~E(~r) =
−jη
k
∇
∫
V
ge(~r, ~r ′)∇′ · ~J(~r ′) dV ′ − jkη

∫
V

~GA
0 (~r, ~r ′) · ~J(~r ′) dV ′ −

−
∫
S
∇× ~GF

0 (~r, ~r ′) · ~M(~r ′) dS′ +
1

2
~n× ~M +

+ (−j)k3η
+∞∑
m=1

~Em(~r)

k2m(k2m − k2)

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ +

+ (−k2)
+∞∑
m=1

~Em(~r)

km(k2m − k2)

∫
S

~Hm(~r ′) · ~M(~r ′) dS′

~H(~r) =
−j
kη
∇s
∫
S
gm(~r, ~r ′)∇′ · ~M(~r ′) dS′ − jk

η

∫
S

~GF
0 (~r, ~r ′) · ~M(~r ′) dS′ +
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+

∫
V
∇× ~GA

0 (~r, ~r ′) · ~J(~r ′) dV ′ − jk3

η

+∞∑
m=1

~Hm(~r)

k2m(k2m − k2)

∫
S

~Hm(~r ′) · ~M(~r ′) dS′ +

+ k2
+∞∑
m=1

~Hm(~r)

km(k2m − k2)

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ (2)

Next, we need to model the excitation of the cavity using equivalent
surface magnetic currents defined on the access ports shown in Fig.1. For
this purpose, we first describe the modes of the access waveguide ports.
We will suppose that we have P ports; in principle they might be different
(rectangular, circular, coaxial, etc). The waveguide port (ν) is characterized
by the electric and magnetic vector mode functions ~e(ν)n and ~h(ν)n [27] which
satisfy the following relationships:∫

CS
~e(µ)m · ~e(ν)n dS =

∫
CS

~h(µ)m · ~h(ν)n dS = δm,n δµ,ν

~n× ~e(ν)n = ~h(ν)n ; µ, ν = 1...P

This set of modes allows to express the transverse electromagnetic field in
each waveguide port as a superposition of the vector mode functions:

~E
(ν)
transverse =

+∞∑
n=1

V (ν)
n ~e(ν)n ; ~H

(ν)
transverse =

+∞∑
n=1

I(ν)n
~h(ν)n

where V (ν)
n and I(ν)n are the voltage and current modal amplitudes of the n

mode at the port (ν), which are related by the modal impedance (admit-
tance), Z(ν)

n (Y (ν)
n ), as follows:

Z(ν)
n =

1

Y
(ν)
n

=
V

(ν)
n

I
(ν)
n

Thus the magnetic current sheets defined on the waveguide ports can be
expressed in the form [18]:

~M = −
P∑
ν=1

~n×
+∞∑
n=1

V (ν)
n ~e(ν)n = −

P∑
ν=1

+∞∑
n=1

V (ν)
n

~h(ν)n (3)

Next step in the BI-RME 3D formulation is to define the modal ampli-
tudes am as

am ≡
1

k2m(k2m − k2)

(
jkη

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ − km

P∑
ν=1

Nν∑
n=1

V (ν)
n

∫
S(ν)

~Hm(~r ′) · ~h(ν)n (~r ′) dS′

)
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which are derived from (2) along with (3). After some algebraic manipula-
tions, we find

~E(~r) =
1

2

P∑
ν=1

+∞∑
n=1

V (ν)
n ~en +

−jη
k
∇
∫
V
ge(~r, ~r ′)∇′ · ~J(~r ′) dV ′ +

+ (−jkη)

∫
V

~GA
0 (~r, ~r ′) · ~J(~r ′) dV ′ − k2

+∞∑
m=1

am ~Em(~r) +

+
P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)
∇× ~GF

0 (~r, ~r ′) · ~h(ν)n (~r ′) dS′

~H(~r) =
j

kη

P∑
ν=1

+∞∑
n=1

V (ν)
n ∇s

∫
S(ν)

gm(~r, ~r ′)∇′s · ~h(ν)n (~r ′) dS′ +

+
jk

η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)

~GF
0 (~r, ~r ′) · ~h(ν)n (~r ′) dS′ +

∫
V
∇× ~GA

0 (~r, ~r ′) · ~J(~r ′) dV ′ +

+
−jk
η

+∞∑
m=1

am km ~Hm(~r) +
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

~Hm(~r)

k2m

∫
S(ν)

~Hm(~r ′) · ~h(ν)n (~r ′) dS′

Now we apply the boundary conditions: the tangential magnetic field on
each waveguide port has to be a continuous function, because there are not
any surface electric current defined at the port interface. As a consequence,

~H(~r)|tangential onS(ν) =
P∑
ν=1

+∞∑
n=1

I(ν)n
~h(ν)n (~r)

Projecting both sides by the magnetic vector modal functions of the ports,
and applying the orthonormalization condition among them, we find∫
S(ν)

~H(~r)|tang onS(ν) · ~h
(µ)
l (~r) dS =

∫
S(ν)

P∑
ν=1

+∞∑
n=1

I(ν)n
~h(ν)n (~r) · ~h(µ)l (~r) dS = I

(µ)
l

so the modal current amplitudes are expressed as

I
(µ)
l =

∫
S(µ)

(
j

kη

P∑
ν=1

+∞∑
n=1

V (ν)
n ∇s

∫
S(ν)

gm(~r, ~r ′)∇′s · ~h(ν)n (~r ′) dS′

)
· ~h(µ)l (~r) dS +

+

∫
S(µ)

(
jk

η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)

~GF
0 (~r, ~r ′) · ~h(ν)n (~r ′) dS′

)
· ~h(µ)l (~r) dS +

+

∫
S(µ)

(∫
V
∇× ~GA

0 (~r, ~r ′) · ~J(~r ′) dV ′
)
· ~h(µ)l (~r) dS +
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+

∫
S(µ)

(
−jk
η

+∞∑
m=1

am km ~Hm(~r)

)
· ~h(µ)l (~r) dS +

∫
S(µ)

(
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

~Hm(~r)

k2m

∫
S(ν)

~Hm(~r ′) · ~h(ν)n (~r ′) dS′

)
· ~h(µ)l (~r) dS

The surface divergence theorem (similar to the divergence theorem or Gauss
theorem) [26], [28] has to be applied to the first integral, and after some
algebraic manipulations we get

I
(µ)
l =

−j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(µ)

dS

∫
S(ν)

dS′
(
∇s · ~h(µ)l (~r)

)
gm(~r, ~r ′)

(
∇′s · ~h(ν)n (~r ′)

)
+

+
jk

η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(µ)

dS

∫
S(ν)

dS′~h
(µ)
l (~r) · ~GF

0 (~r, ~r ′) · ~h(ν)n (~r ′) +

+

∫
S(µ)

dS~h
(µ)
l (~r) ·

(∫
V
∇× ~GA

0 (~r, ~r ′) · ~J(~r ′) dV ′
)

+

+
−jk
η

+∞∑
m=1

am km

∫
S(µ)

dS~h
(µ)
l (~r) · ~Hm(~r) +

+
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

1

k2m

∫
S(µ)

dS~h
(µ)
l (~r) · ~Hm(~r)

∫
S(ν)

dS′~h(ν)n (~r ′) · ~Hm(~r ′)

In order to simplify this expression we define several matrices:

F (ν)
mn ≡

∫
S(ν)

~Hm(~r) · ~h(ν)n (~r) dS

G
(µ,ν)
ln ≡

∫
S(µ)

dS

∫
S(ν)

dS′
(
∇s · ~h(µ)l (~r)

)
gm(~r, ~r ′)

(
∇′s · ~h(ν)n (~r ′)

)
T
(µ,ν)
ln ≡

∫
S(µ)

dS

∫
S(ν)

dS′~h
(µ)
l (~r) · ~GF

0 (~r, ~r ′) · ~h(ν)n (~r ′)

just obtaining

I
(µ)
l =

−j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n G

(µ,ν)
ln +

jk

η

P∑
ν=1

+∞∑
n=1

V (ν)
n T

(µ,ν)
ln +

+

∫
S(µ)

dS~h
(µ)
l (~r) ·

(∫
V
∇× ~GA

0 (~r, ~r ′) · ~J(~r ′) dV ′
)

+

+
−jk
η

+∞∑
m=1

am km F
(µ)
ml +

−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

1

k2m
F

(µ)
ml F

(ν)
mn

The integral containing the curl operator has to be properly treated using
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the properties of the dyadic Green functions; after inserting the modal coef-
ficients am, we obtain

I
(µ)
l =

P∑
ν=1

+∞∑
n=1

V (ν)
n

(
−j
kη

G
(µ,ν)
ln +

jk

η
T
(µ,ν)
ln +

jk3

η

+∞∑
m=1

F
(µ)
ml F

(ν)
mn

k2m(k2m − k2)

)
+

+
+∞∑
m=1

F
(µ)
ml

km

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ + k2
+∞∑
m=1

F
(µ)
ml

km(k2m − k2)

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ .

The first term is the BI-RME 3D expression of the generalized admittance
matrix [18], which is defined as

Y
(µ,ν)
ln ≡ −j

kη
G

(µ,ν)
ln +

jk

η
T
(µ,ν)
ln +

jk3

η

+∞∑
m=1

F
(µ)
ml F

(ν)
mn

k2m(k2m − k2)

which completely characterizes the microwave device, and can be viewed as
an alternative representation to the generalized scattering matrix used by
other authors [29], [30]. Thus the previous equation can be expressed in
terms of the generalized admittance matrix as follows:

I
(µ)
l =

P∑
ν=1

+∞∑
n=1

Y
(µ,ν)
ln V (ν)

n +
+∞∑
m=1

F
(µ)
ml

km
k2m − k2

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ . (4)

This expression has been derived from the frequency domain Maxwell equa-
tions and it is exact. However, in a practical implementation of the algorithm
both infinite series have to be truncated. The first infinite series related with
the number of modes in each access port will be truncated to Nν waveguide
modes: typically we will have to include all the propagative modes of the
waveguide and the first evanescent modes. For the second series, related to
the cavity modes, we will have to include the firstM resonant modes existing
in the analyzed frequency band. Thus, we will rewrite (4) as

I
(µ)
l =

P∑
ν=1

Nν∑
n=1

Y
(µ,ν)
ln V (ν)

n +

M∑
m=1

F
(µ)
ml

km
k2m − k2

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ . (5)

Finally we define the following modal current sources:

Ĩ
(µ)
l ≡ −

M∑
m=1

F
(µ)
ml

km
k2m − k2

∫
V

~Em(~r ′) · ~J(~r ′) dV ′ (6)

and

I
(µ) ′
l ≡

P∑
ν=1

Nν∑
n=1

Y
(µ,ν)
ln V (ν)

n

8



which allow to rewrite (5) in this form:

I
(µ)
l = I

(µ) ′
l − Ĩ

(µ)
l (7)

A possible interpretation of this equation is shown in Figure 2, and it can be
easily understood in the context of classical Network Theory as reported in
[31]: the set of current sources Ĩ(µ)l drives the cavity resonator characterized
by its generalized admittance matrix Y (µ,ν)

ln . It is worth to note that with
the present formalism we have been able to describe the excitation of a
cavity with a volumetric charge and current distribution, existing within the
resonator due to the axion-photon coupling. Moreover, commercial software
codes are not able to simulate the axion-photon excitation of a microwave
passive component. For a better comprehension, we will apply the present
formulation to two examples in section 4.

Figure 2: Multimode equivalent network of a cavity resonator excited by an axion field.
We have represented the port (µ).

2.2. Cavity with lossy walls

Considering a cavity with finite electrical conductivity σ, the effect of
the Ohmic losses has to be accounted in the BI-RME 3D technique [25]. For
such purpose we will use the perturbation method proposed in several books
[32], [29], [33], [30], [34]. Thus, the lossless eigenvalues of the resonator km
have to be replaced by the perturbed eigenvalues of the lossy cavity κm:

km → κm ≈ km (1− 1

2Qm
) + j

km
2Qm

9



where Qm is the unloaded quality factor of the m resonant mode defined as
Qm = ωm Um/Pcm , ωm = km c being the angular frequency of the m mode,
Um is the total time-average energy (electric and magnetic) stored in the
cavity by the m mode, and Pcm is the power loss of the m mode, which is
expressed as

Pcm =
Rs
2

∫
SV

|| ~Hm||2 dS

where Rs = 1/(σδ) is the surface resistance of the conducting walls, and δ is
the skin depth given by δ =

√
2/(ω µσ) at room temperature, µ being the

magnetic permeability of the conducting walls.

3. Electromagnetic analysis of the interaction axion - photon

Time-domain Maxwell’s equations in SI units with the axion-photon in-
teraction in the vacuum are given by

∇ · (~E − c gaγγ a ~B) =
%e
ε0

∇ · ~B = 0

∇× ~E = −∂
~B

∂ t

∇× (c ~B + gaγγ a ~E) =
1

c

∂

∂ t
(~E − c gaγγ a ~B) + c µ0 ~Je

where gaγγ is the two-photon coupling to an axion field constant. By assum-
ing that the axion-photon interaction slightly modify the electromagnetic
field, these equations can be decoupled into two parts [16]: one part for the
external electromagnetic field ~Ee, ~Be generated by the classical charge %e and
current ~Je densities, given by

∇ · ~Ee =
%e
ε0

∇ · ~Be = 0

∇× ~Ee = −∂
~Be
∂ t

∇× ~Be =
1

c2
∂ ~Ee
∂ t

+ µ0 ~Je (8)

and another set of Maxwell’s equations for the reacted fields ~Ea, ~Ba:

∇ · ( ~Ea − c gaγγ a ~Be) = 0

∇ · ~Ba = 0

∇× ~Ea = −∂
~Ba
∂ t

∇× ( ~Ba +
1

c
gaγγ a ~Ee) =

1

c2
∂

∂ t
( ~Ea − c gaγγ a ~Be) (9)
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The definition of the equivalent axion charge %a and current ~Ja densities as

%a ≡ gaγγ

√
ε0
µ0
∇ · (a ~Be)

~Ja ≡ −gaγγ
√
ε0
µ0

(
∂ (a ~Be)
∂ t

+∇× (a ~Ee)

)
(10)

allows to rewrite the axion Maxwell’s equations (9) in the conventional form,

∇ · ~Ea =
%a
ε0

∇ · ~Ba = 0

∇× ~Ea = −∂
~Ba
∂ t

∇× ~Ba =
1

c2
∂ ~Ea
∂ t

+ µ0 ~Ja . (11)

Note that both set of charge and current densities satisfy the time-domain
continuity equations:

∇ · ~Je +
∂ %e
∂ t

= 0 ; ∇ · ~Ja +
∂ %a
∂ t

= 0 . (12)

Axion haloscopes are searching electromagnetic energy generated by the
axion field within a microwave resonator in the presence of an external elec-
tric ~Ee and/or magnetic ~Be fields. In typical applications, only a very intense
static magnetic field is applied, and the external electric field is zero ~Ee = ~0.
Thus, the field ~Be satisfies the classical Magnetostatic Maxwell’s equations
(8),

∇ · ~Be = 0

∇× ~Be = µ0 ~Je

where ~Je is the static external current density that creates the magnetostatic
field ~Be. As a consequence, the axion current density defined in (10) becomes

~Ja ≡ −gaγγ
√
ε0
µ0

∂ (a ~Be)
∂ t

= −gaγγ
√
ε0
µ0

~Be
∂ a

∂ t
(13)

On the other hand, we will assume that the axion field is described by the
axion electrodynamics equation (22) of the reference ([2]) which is expressed
in natural units as

∂2a

∂t2
− ∇2a + m2

a a = −gaγγ ~E · ~B. (14)

where ma is the axion mass. By inserting the first-order expansion proposed
in the subsection 2.2 of ([16]) for the electric ~E ≈ ~Ee + gaγγ ~E1 and the

11



magnetic ~B ≈ ~Be + gaγγ ~B1 fields in (14) and neglecting the terms (gaγγ)2

and higher-order terms, it is very easy to demonstrate the following result

∂2a

∂t2
− ∇2a + m2

a a = −gaγγ (gaγγ ~E1) · ( ~Be + ~Ba) = −(gaγγ)2 ~E1 · ( ~Be + ~Ba) ≈ 0

which can be expressed in Fourier domain resulting as

(∇2 + ω2 −m2
a) a = 0.

The dispersion relationship used by Sikivie ([2]) is ω2 = m2
a + k2 where k is

the magnitude of the axion wavenumber vector ~k. Finally we obtain:

(∇2 + k2) a = 0.

The complex phasor solution of this scalar Helmholtz wave equation can be
expressed in terms of a plane wave,

a(~r) = a0 e
−j(~k·~r−ϕ) (15)

where a0 is the amplitude of the axion field and ϕ is the initial phase. Thus,
the real axion field can be easily calculated as follows,

a(~r, t) = Re(a ejωt) = Re(a0 e
j(ωt−~k·~r+ϕ)) = a0 cos(ωt− ~k · ~r + ϕ)

At this point, the BI-RME 3D formalism can be used for the study of
dark matter axions search haloscopes based on the concept of a microwave
cavity with access waveguide ports. We will assume that the axion charge
and current densities (10) are present in a lossy cavity. Then, equation (1)
holds for such axion charge and current densities, so the BI-RME 3D can
directly be applied. Following section 2, the source currents defined in (6)
become as

Ĩ
(µ)
l ≡ −

M∑
m=1

F
(µ)
ml

km
k2m − k2

∫
V

~Em(~r ′) · ~Ja(~r ′) dV ′ (16)

where ~Ja is the Fourier transform of the time-domain axion current density
~Ja. Next, we are going to apply the presented theory to the analysis of
realistic haloscopes based on microwave resonators.

4. Applications of the BI-RME 3D formalism to microwave halo-
scopes

In this section the BI-RME 3D formalism is applied to resonant mi-
crowave haloscopes, and two practical examples are analyzed.

12



4.1. BI-RME 3D formalism for resonant microwave haloscopes

Next, we have to express the axion current density given in (13) in
frequency-domain, obtaining

~Ja(~r) = −gaγγ
√
ε0
µ0

~Be(~r) j ω a(~r) = −gaγγ
√
ε0
µ0

~Be(~r) j ω a0 ej(−
~k·~r+ϕ) (17)

In order to simplify the implementation of the method, let us consider
that we only have one port P = 1 with one excited waveguide mode N1 = 1.
Thus, equation (7) becomes

I
(1)
1 = Y

(1,1)
11 V (1)

n − Ĩ
(1)
1 . (18)

Now we will alleviate the notation by defining the following terms: the
current extracted from the cavity Iw ≡ I

(1)
1 , the cavity input admittance

Yc ≡ Y
(1,1)
11 , the voltage in the cavity Vc ≡ V

(1)
1 , the current flowing on

the cavity Ic ≡ Yc Vc, and the current source generated by the axion-photon
coupling Ia ≡ Ĩ

(1)
1 . This last current (Ia) is the unique generator in the

network, so we can rewrite (18) as

Iw = Yc Vc − Ia = Ic − Ia (19)

where we want to remark the definition of the axion current Ia using equation
(16) and we have included the effect of the Ohmic losses:

Ia ≡ Ĩ
(1)
1 ≡ −

M∑
m=1

F
(1)
m1

κm
κ2m − k2

∫
V

~Em(~r ′) · ~Ja(~r ′) dV ′ =

=

M∑
m=1

κm
k2 − κ2m

(∫
S(1)

~Hm(~r) · ~h(1)1 (~r) dS

)
︸ ︷︷ ︸
COUPLING:CAV−PORT

(∫
V

~Em(~r ′) · ~Ja(~r ′) dV ′
)

︸ ︷︷ ︸
COUPLING:AXION−CAV

(20)

This axion current is very important, since it represents the excitation of
the cavity by the axion, and it relates both the axion-cavity coupling and
the cavity-external port coupling. In Figure 3 the single-mode equivalent
network of the BI-RME 3D model based on (19) is presented: the axion
current Ia generated by the axion field (which acts as the current source)
is divided into two branches, the current Ic flowing along the cavity input
admittance Yc, and the current −Iw, flowing towards the external waveguide
port, which is characterized by the modal impedance of the fundamental
mode Zw. Thus, we have demonstrated with a full-wave modal technique
that the energy created by the axion within the cavity is split in two parts:
the energy consumed by the cavity (Ohmic losses), and the energy extracted

13



Cavity excited by the axion field

+

-

Vc

Zw Ia

Ic

Yc

Iw

Figure 3: Single mode equivalent network of a cavity resonator excited by an axion field
with one port.

from the resonator towards the access waveguide port, which is the RF signal
that we will be able to detect in an experimental test-bed.

In this scenario we provide the expression of the cavity input admittance
as a function of the reflection scattering parameter S11 of the lossy cavity as
[30]

Yc = Yw

(
1 − S11
1 + S11

)
= Gc + j Xc (21)

where Yw = 1/Zw is the modal admittance of the fundamental waveguide
mode of the port, and Gc and Xc are the real part and the imaginary part
of Yc, respectively.

Next, by applying the classical Network Theory we are able to calculate
three time-average power terms: the power generated by the axion Pa, the
power dissipated by the cavity Pc, and the power delivered to the the external
access waveguide port Pw as

Vc =
Ia

Yw + Yc
=
Ic
Yc

=
−Iw
Yw

⇒

{
Pc = 1

2Re(Vc I
∗
c ) = |Ia|2

2|Yw +Yc|2 Re(Y
∗
c )

Pw = 1
2 Re(Vc (−Iw)∗) = |Ia|2

2|Yw +Yc|2 Re(Y
∗
w)

where the symbol ∗ denotes conjugate complex.

14



Obviously, the Principle of Energy Conservation is satisfied: Pa = Pc+Pw
with Pa = (1/2)Re(Vc I

∗
a) = (1/2)|Ia|2Re(1/(Yc + Yw)). At this point we

want to emphasize that the cavity voltage Vc is able to provide information
of the measured RF signal phase, which is an important contribution of the
BI-RME 3D formulation in comparison with other theories which are able
to simulate only the detected power. It is very important to remark that in
the present formulation we do not need to use any theoretical assumptions
or approximations for the frequency spectrum dependency of the extracted
power Pw, as the Cauchy-Lorentz [16] or Cauchy [35] distributions, used
in previous contributions. What is more, the result is accurate even at
frequencies far from the resonance peak.

It is worth noting that the presented theory can be applied to the calcula-
tion of the loaded quality factor of them resonant modeQLm = ωmUm/(Pwm +
Pcm), where Pwm is the extracted power from the cavity to the access waveg-
uide ports. Thus, the external quality factor of the m resonant mode is
defined as Qem = ωm Um/Pwm . Therefore, the relationship among the three
quality factors is Q−1Lm = Q−1em +Q−1m .

Now we define the cavity-waveguide coupling factor of the m resonant
mode βm as the ratio between the unloaded and external quality factors,
resulting

βm ≡
Qm
Qem

=
Pwm
Pcm

=

1
2

|Ia|2
|Yw +Yc|2 Re(Y

∗
w)

1
2

|Ia|2
|Yw +Yc|2 Re(Y

∗
c )

=
Re(Y ∗w)

Re(Y ∗c )
=

Yw
Gc

where we have assumed that the modal admittance Yw is real (the funda-
mental mode is propagative and Ohmic losses are neglected in the waveguide
ports).

Microwave haloscopes typically operate under the critical coupling regime
βm = 1, which means that the power dissipated in the cavity (Ohmic losses)
is equal to the power delivered to the waveguide ports, so Pcm = Pwm or
Yw = Gc. By inserting this result in (21) it is very easy to demonstrate that
the reflection coefficient of the cavity has to be zero (S11 = 0) under critical
coupling regime, as it is well known. Furthermore, the overcoupled regime
occurs when βm > 1 which implies that Yw > Gc, and in the undercoupled
regime βm < 1 so Yw < Gc.

4.2. Applications to microwave haloscopes with one coaxial waveguide port

Now we are going to apply the present theory to cavities which have one
coaxial access port. Such coaxial transmission line is characterized by the
inner b and the outer a radii as well as the relative electrical permittivity of
the dielectric medium between conductors εr. The normalized electric and
magnetic vector mode functions of the fundamental TEM mode are given in
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cylindrical coordinates by [27]

~eTEM =
1√

2π ln(a/b)

1

r
r̂ ; ~hTEM =

1√
2π ln(a/b)

1

r
ϕ̂

where the orthonormalization relationship used is∫
S
~eTEM · (~hTEM × ẑ) dS = 1 .

The modal impedance of the TEM coaxial mode is Zw = 1/Yw =
√
µ0/(ε0εr),

which should not be confused with the characteristic coaxial impedance
Z0 = Zw ln(a/b)/(2π).

In the analyzed cases, we will suppose that the Compton wavelength
of the axions is high in comparison with the haloscope size, so the spatial
dependence of the axion field can be neglected. As a consequence, equation
(15) becomes a = a0 e

j ϕ and (17) results in

~Ja(~r) = −gaγγ
√
ε0
µ0

~Be(~r) j ω a0 ejϕ .

Finally, this result must be inserted in (20) to obtain the axion current used
in the simulations:

Ia =
1

µ0
gaγγ a0 e

jϕ j k

M∑
m=1

κm
κ2m − k2

(∫
S(1)

~Hm(~r) · ~hTEM (~r) dS

) (∫
V

~Em(~r) · ~Be(~r) dV
)
(22)

with ~Be ≡ ~Be and ~hTEM ≡ ~h(1)1 . It is worth to note that the second integral
is directly related with the geometric form factor Cm [16], which is defined
in this scenario as

Cm ≡

∣∣∣∫V ~Em(~r) · ~Be(~r) dV
∣∣∣2∫

V || ~Be(~r)||2 dV
(23)

where simple bars | · | indicate the magnitude of the complex number, and
double bars ||·|| are the vector norm defined on the 3D complex vector space.

From an experimental point of view it is important to comment that the
voltage measured in the coaxial waveguide port can be easily calculated as
a function of the cavity voltage Vc by integrating the electric field along the
path from the inner to the outer radii,

Vmeasa − Vmeasb = −
∫ a

b
Vc ~eTEM · d~r ⇒ Vmeas ≡ Vmeasb = Vc

√
ln(a/b)

2π

16



where we have assumed that the external conductor is the reference potential
(Vmeasa = 0 V). Thus, Vmeas is the phasor (amplitude and phase) of the
time-harmonic RF signal detected in the coaxial port.

Numerical simulations of this section have been computed with the com-
mercial software CST STUDIO SUITE [36] and the postprocessing part has
been developed with the commercial software MATLAB [37].

4.2.1. Study of a cylindrical resonator cavity for benchmarking
In order to compare this theory with the technical literature, we have

benchmarked our algorithm with the example showed in Figure 4 of [16]. A
cylindrical cavity with a diameter d = 90 mm and a length l = 1 m has been
used, as displayed in Figure 4. The electrical conductivity of the metallic
walls is σ = 6 · 107 S/m. A coaxial cable with characteristic impedance of
Z0 = 50 Ω (b = 0.635 mm, a = 2.11 mm, εr = 2.08) has been inserted
in the center of the top cap. The coaxial probe has been designed under
critical coupling operation regime for the TM010 mode (f1 ≈ 2.55 GHz).
The axion field and the axion-photon interaction model is described by the
parameters gaγγ a0 = −8.51 · 10−22 [16]. We have assumed an external
homogeneous magnetostatic field oriented along the cylinder axis: ~Be = Be ẑ
with Be = 8 T. The phase of the axion field used in the simulations is zero:
ϕ = 0 rad. With these conditions, the axion current given in (22) becomes

Ia =
1

µ0
gaγγ a0Be j k

M∑
m=1

κm
κ2m − k2

(∫
S(1)

~Hm(~r) · ~hTEM (~r) dS

) (∫
V

~Em(~r) · ẑ dV
)
(24)

Figure 4: Scheme of the cylindrical cavity.

In Figure 5 both magnitude and phase of the reflection scattering coef-
ficient S11 of the cylindrical cavity obtained with CST Studio are plotted.
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Table I: Parameters of the cylindrical cavity.

m Mode fm (GHz) Qm Cm
1 TM010 2.55920 33069.1 0.68505

2 TM011 2.56334 33260.6 0.00523

3 TM012 2.57646 33119.7 0.00027

4 TM013 2.59817 33292.4 5.305 · 10−5

5 TM014 2.62827 33493.8 1.710 · 10−5

6 TM015 2.66646 33781.9 7.247 · 10−6

We can observe the resonances of the modes excited by the coaxial probe.
In Table I the most relevant parameters of the structure for these set of
modes are shown: resonant frequencies fm, unlodaded quality factors Qm
and geometric form factors Cm as defined in (23). We can see that the geo-
metric form factor of the first mode is significantly higher than the others;
in particular, the factor of the last three modes is negligible.

Next, the input admittance of the cavity Yc computed with equation (21)
is presented in Figure 6. Both the real Gc and the imaginary Xc parts are
plotted as a function of frequency. We want to point out that the real part
is always positive because it represents a passive resistive behaviour, and
the imaginary part is zero at the resonant frequencies, according with the
classical Network Theory. Moreover, the positive sign of the imaginary part
denotes a capacitive behaviour, whereas if the sign is negative it represents
an inductive one.

In order to compare our technique with [16], we have computed the axion
current with equation (24) including only the first resonant mode (M =
1). In Figure 7 we plot Ia in both magnitude and phase as a function
of frequency, showing the peak of the resonant mode TM010 according to
Table I. In Figure 8 the delivered power to the coaxial port (Pw) computed
with both methods is compared, demonstrating a good agreement not only
in the resonant frequency but also in a wide frequency range, which allows
to validate the presented procedure.

Next, we have computed the electrical response including the full set of
modes coupled with the coaxial monopole (M = 6) in the analyzed frequency
range, as reported in Table I. In Figure 9 the axion current (24) is depicted,
observing the contribution of each resonant mode to the equivalent axion
current source. It is evident that the greater the modal geometric form
factor (23), the higher the axion current is. Both, the power delivered to the
coaxial port Pw as well as the power dissipated in the cavity Pc are showed
in Figure 10. In this plot we have also included the simulations presented
in [16]. In order to provide an accurate result, it is remarkable that we have
to consider the complete set of excited modes in the analyzed frequency
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Figure 5: Reflection scattering parameter S11 as a function of the frequency for the
cylindrical resonator. Magnitude (top) and phase (bottom) have been plotted.

range, which precisely represents the global modal spectrum of the cavity.
In this sense, our simulation is more precise than the method presented in [16]
because it is able to account for the contribution of all the resonant modes
excited within the resonator. Therefore, we can state that the BI-RME 3D
is a wide-band numerical technique, since it allows to obtain the frequency
response of the system in the explored frequency range. Finally, we observe
the frequency response of the dissipated power in the cavity, demonstrating
that at the resonant peak of the fundamental mode TM010 the power lost
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Figure 6: Input admittance of the cavity Yc as a function of the frequency for the
cylindrical resonator. Real part (top) and imaginary part (bottom) are shown.

in the cavity is equal to the extracted power, as predicted in the critical
coupling regime.

4.2.2. Study of the first RADES all-inductive coupled cavities structure
Finally, we have applied the present formulation to analyze the first

all-inductive coupled five cavities haloscope designed by the RADES col-
laboration [10], which was successfully measured at the CERN Axion So-
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Figure 7: Axion current Ia of the cylindrical cavity as a function of the frequency con-
sidering only the first mode (M = 1). Magnitude (top) and phase (bottom) are plotted.

lar Telescope (CAST) facility [38] (see Figure 11). The operation mode
of each cavity is the fundamental TE101 rectangular mode. The geometri-
cal parameters of the filter can be found in [10]. We have performed the
simulations at cryogenic temperature (2 K) using this estimation for the
electrical conductivity: σ = 2 · 109 S/m. The resonant frequency used for
axion detection is f1 ≈ 8.4 GHz. Again, a coaxial cable with characteristic
impedance of Z0 = 50 Ω (b = 0.635 mm, a = 2.11 mm, εr = 2.08) has been
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Figure 8: Extracted power Pw from the cylindrical cavity (continuous line) as a function
of the frequency considering only the first mode (M = 1) in comparison with [16] (dashed
line) (top). We also show a zoom in the bottom figure for a closer comparison.

inserted in the first cavity operating in critical coupling regime. The axion
field and the axion-photon interaction model is described by the parame-
ters gaγγ a0 = −8.51 · 10−22 [16]. The phase of the axion field used in the
simulations is zero: ϕ = 0 rad. The external homogeneous static magnetic
field used in the CAST experiment is oriented along the vertical direction:
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Figure 9: Axion current Ia of the cylindrical cavity as a function of the frequency,
considering the total set of modes coupled with the coaxial probe (M = 6). Magnitude
(top) and phase (bottom) are displayed.

~Be = Be ŷ with Be = 8.8 T. Thus, the axion current given in (22) becomes

Ia =
1

µ0
gaγγ a0Be j k

M∑
m=1

κm
κ2m − k2

(∫
S(1)

~Hm(~r) · ~hTEM (~r) dS

) (∫
V

~Em(~r) · ŷ dV
)
(25)
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Figure 10: Extracted Pw and dissipated Pc powers of the cylindrical cavity as a function
of the frequency, considering the full set of modes coupled with the coaxial probe (M = 6)
in comparison with [32] (top). In the bottom figure, we present a zoom of the plot in
order to check the coupling regime achieved in the design of the coaxial probe, observing
a very accurate critical coupling condition.

In Table II we have summarized the most relevant parameters of the
haloscope, including the electric field pattern presented in Figure 2 of [10]. In
Figure 12 we first plot the electrical response of the structure, observing the
peaks of the five resonances. Second, we show in Figure 13 the magnitude
and phase of the axion current (25), including the first M = 5 resonant
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Figure 11: Scheme of the five cavities coupled all-inductive RADES haloscope. The
coaxial cable has been inserted in the first cavity.

Table II: Parameters of the RADES haloscope.

m Eletric field pattern fm (GHz) Qm Cm
1 + + + + + 8.428 40386 0.65

2 + + 0 − − 8.454 42033 3.2 · 10−7

3 − + + + − 8.528 43654 8.1 · 10−5

4 − + 0 − + 8.625 45882 1.6 · 10−12

5 − + − + − 8.710 48048 6.4 · 10−6

modes, which is maximum for the first resonance. The amplitude of the
axion current is extremely low in the fourth resonance because the geometric
form factor is negligible. Finally, in Figure 14 we have displayed both the
extracted (Pw) and dissipated (Pc) powers, demonstrating that the critical
coupling regime is not only satisfied at the first resonant peak (as designed)
but also around the other resonances (see details for the first resonance in
the zoom of Figure 14).

5. Conclusions

In this paper, the well-known BI-RME 3D full-wave technique has been
successfully adapted to the study of microwave haloscopes based on resonant
cavities. The formulation has been derived from time-domain Maxwell’s
equations to account for the axion-photon interaction, and it considers the
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Figure 12: Reflection scattering parameter S11 as a function of the frequency for the
RADES haloscope. Magnitude (top) and phase (bottom) are shown.

cavity wall losses of the resonating structure by means of the standard per-
turbation method. Then, classical Network Theory has been used to obtain
the expressions for the current and voltage induced by the axion.

Following this technique, an exact frequency-domain expression for the
current produced by the axion-photon coupling mechanism has been accu-
rately obtained in complex form (magnitude and phase) for the first time,
avoiding Cauchy-Lorentz approximations. The conditions for the electro-
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Figure 13: Axion current Ia as a function of the frequency for the RADES haloscope, as
obtained with the method presented in this paper. Magnitude (top) and phase (bottom)
have been plotted.

magnetic analysis include microwave haloscopes based on resonant cavities
of arbitrary geometries and number of access waveguide ports. A multi-
modal response for each port is obtained, i.e., if higher order modes are
excited at the waveguide ports its response can be obtained for each higher
order mode. In the present formulation the axion field is distributed within
the whole cavity and the interaction is produced throughout all the volume.
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Figure 14: Extracted Pw and dissipated Pc powers as a function of the frequency for the
RADES haloscope (top). In the bottom figure we present a zoom of the plot in order
to check the coupling regime achieved in the design of the coaxial probe at the main
resonance, observing a very accurate critical coupling condition.

Since this method is able to calculate the coupling of the axion with each
resonant mode, it allows to calculate the electromagnetic field pattern gener-
ated by the axion inside the cavity as a superposition of the different excited
modes.

The derived general expression for the equivalent axion current takes into
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account the axion source interaction with both cavity and extracting probes.
It shows how the electromagnetic energy generated by the axion-photon cou-
pling is split into two terms: the extracted power (delivered to the ports) and
the dissipated power (Ohmic losses). To the authors knowledge, available
commercial full-wave electromagnetic simulators cannot deal nowadays with
this axion-photon interaction problem.

In order to verify the proposed technique an accurate comparison with
previous bibliography data has been carried out showing a good agreement
nearby the main resonance peak. Additionally, precise results in a wide-
band region around the working frequency have also been provided. This
has allowed highlight the importance of higher order modes, showing that
care must be taken since the whole experiment reliability can be affected
by neighboring resonant modes. Depending on the nearness to the axion
resonance and the form factor, the axion can be coupled to more than one
mode. A well-designed experiment will try to separate enough the main
mode from neighbouring modes in order to consider the modal overlapping
negligible.

Future research lines may include the consideration of dielectric and/or
magnetic materials in the analysis. Also, multi-port configurations may be
interesting when coherently combining the received signal in different cou-
pled cavities for post-processing purposes, since the phase response of the
photon-axion conversion is obtained. This last is a key feature of this tech-
nique: a complete information of the extracted signal (magnitude and phase)
in a broad range of frequencies is obtained. This allows not only to calculate
the extracted RF power, but also to study the phase of the axion field. One
particularly promising possibility that can be explored consists in the ana-
lytical study of setups consisting on several cavities, placed at a distance for
which the spatial gradient of the axion field might be non-negligible; open-
ing a new door to directional sensitive experiments like the ones proposed
in [39] . In summary, it must be pointed out that the developed method
can be accurately used for broad-band design purposes, when working with
haloscopes based on resonant microwave cavities.
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6. Appendix

In this Appendix the most important properties of the Green’s functions
used in this work are summarized.
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6.1. Expansion of the electromagnetic field in a microwave cavity

The electromagnetic energy stored in the volume V of a cavity is finite, so
the electric and magnetic fields of the cavity belong to the complex Hilbert
space of square integrable functions L2(V ). Following the Helmholtz’s theo-
rem [33], the electromagnetic field existing within a cavity can be expanded
at an infinite number of both solenoidal and irrotational modes [29], [33],
[34], [25], [40]. For a closed cavity we only need the solenoidal ones, but a
cavity is usually coupled to the outside sources by means of a small aperture
(access waveguide port) or a probe or loop connected to a coaxial transmision
line, which also requires the inclusion of the irrotational modes.

6.1.1. Expansion of the electric field
Taken this starting point, the expansion of the electric field eigenvectors

is expressed in terms of solenoidal and irrotational modes:
(a) Solenoidal modes: These modes satisfy the following differential equa-
tions:

∇2 ~Ei + k2i
~Ei = ~0 in V

∇ · ~Ei = 0 ; ∇× ~Ei 6= ~0 in V
~n× ~Ei = ~0 on SV

where SV is the surface of the cavity, and k2i and ~Ei are the solenoidal electric
eigenvalues and eigenvectors, respectively. These set of modes correspond to
the physical resonances.
(b) Irrotational modes: These modes satisfy the following differential equa-
tions:

∇2 ~fi + µ2i
~fi = ~0 in V (26)

∇× ~fi = ~0 ; ∇ · ~fi 6= 0 in V (27)
~n× ~fi = ~0 on SV
µi ~fi = ∇vi (28)

∇2vi + µ2i vi = 0 in V (29)
vi = 0 on SV (Dirichlet boundary condition) (30)

where µ2i and ~fi are the irrotational electric eigenvalues and eigenvectors, re-
spectively. The scalar eigenfunctions vi are used to obtain the corresponding
eigenvectors.

6.1.2. Expansion of the magnetic field
The expansion of the magnetic field eigenvectors is also expressed in

terms of solenoidal and irrotational modes:
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(a) Solenoidal modes: These modes satisfy the following differential equa-
tions:

∇2 ~Hi + k2i ~Hi = ~0 in V
∇ · ~Hi = 0 ; ∇× ~Hi 6= ~0 in V

~n · ~Hi = 0 on SV

where k2i and ~Hi are the solenoidal magnetic eigenvalues and eigenvectors,
respectively. These set of modes correspond to the physical resonances, and
are related with the solenoidal electric modes as follows:

∇× ~Ei = ki ~Hi , ∇× ~Hi = ki ~Ei

(b) Irrotational modes: These modes satisfy the following differential equa-
tions:

∇2~gi + ν2i ~gi = ~0 in V
∇× ~gi = ~0 ; ∇ · ~gi 6= 0 in V

~n · ~gi = 0 on SV
νi ~gi = ∇wi (31)

∇2wi + ν2i wi = 0 in V (32)
∂ wi
∂ n

= 0 on SV (Neumann boundary condition) (33)

where ν2i and ~gi are the irrotational magnetic eigenvalues and eigenvectors,
respectively. The scalar eigenfunctions wi are used to obtain the correspond-
ing eigenvectors.

6.1.3. Orthonormalization properties and modal expansion
The previous modes satisfy these orthonormalization relationships:∫
V

~Ei · ~Ej dV = δi,j ;

∫
V

~fi · ~fj dV = δi,j ;

∫
V

~Ei · ~fj dV = 0∫
V

~Hi · ~Hj dV = δi,j ;

∫
V
~gi · ~gj dV = δi,j ;

∫
V

~Hi · ~gj dV = 0 .

where δi,j is the Kronecker delta. These properties allow to obtain the modal
expansion coefficients as

Ei =

∫
V

~E · ~Ei dV ; Fi =

∫
V

~E · ~fi dV

Hi =

∫
V

~H · ~Hi dV ; Gi =

∫
V

~H · ~gi dV .
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Finally we can develop the modal expansion for the electromagnetic field
within the resonator, as

~E =
∑
i

Ei ~Ei +
∑
i

Fi ~fi

~H =
∑
i

Hi
~Hi +

∑
i

Gi~gi .

6.2. Potential Green’s functions
BI-RME 3D formalism is based on the use of the electric and magnetic

scalar and dyadic potentials under the Coulomb gauge defined on a cavity
[24], [25]. We want to emphasize that both electric scalar ge and dyadic
~GA potentials are related with the real electric charge and currents densi-
ties existing on the conducting walls of the cavity. However, the magnetic
scalar gm and dyadic ~GF potentials represent fictitious magnetic charge and
current densities that allow to introduce in the formulation the existence of
the access waveguide ports on the surface cavity. These fictitious magnetic
charges and currents are used to impose the correct boundary conditions for
the tangential components of the electromagnetic fields across the port inter-
faces. We want to remark that fictitious magnetic charges and currents have
been typically used in Classical Electromagnetic Theory in waveguides, cav-
ities and antennas problems [41], where they are not related with magnetic
monopoles [32].

6.2.1. Electric potential Green´s functions
The electric scalar static potential ge satisfies

∇2ge(~r, ~r′) = −δ(~r − ~r′) in V
ge(~r, ~r′) = 0 on SV

whose solution under the Columb gauge is

ge(~r, ~r′) =
+∞∑
i=1

1

µ2i
vi(~r)vi(~r′) .

This scalar Green’s function can be split into a singular ges and a regular ger
parts as follows:

ge(~r, ~r′) = ges(~r,
~r′) + ger(~r,

~r′)

ges(~r,
~r′) =

1

4πR

where we have included the explicit expression of the singular part, which
is the scalar potential Green’s function in free space because the singularity
does not depend on the boundary conditions; R is the magnitude of the
relative vector ~R ≡ ~r − ~r′, R ≡ ||~R||.
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The electric dyadic potential ~GA satisfies

∇×∇× ~GA(~r, ~r′)− k2 ~GA(~r, ~r′) = ~Iδ(~r − ~r′)−∇∇′gE(~r, ~r′) in V
~n× ~GA = 0 on SV

whose solution under the Columb gauge is expressed as a mode expansion:

~GA(~r, ~r′) =
+∞∑
i=1

~Ei(~r) ~Ei(~r′)

k2i − k2
.

The convergence of this eigenvector series can be accelerated by extracting its
zero-frequency limit because the singularity is independent of the frequency.
Thus, the electric dyadic potential can be divided in two terms: the static
part ~GA

0 which is singular and does not depend on the frequency, and the
frequency dependent term ~GA

r . In this scenario, it is possible to demonstrate
that the static part can be expressed as the summation of the singular term
and the regular static term ~GA

0r
. Finally we obtain

~GA(~r, ~r′) = ~GA
0 (~r, ~r′) + ~GA

r (~r, ~r′)

~GA
0 (~r, ~r′) =

1

8πR

(
~I +

~R ~R

R2

)
+ ~GA

0r
(~r, ~r′)

~GA
r (~r, ~r′) = k2

+∞∑
i=1

~Ei(~r) ~Ei(~r′)

k2i (k
2
i − k2)

The symbol ~I represents the unit dyadic.

6.2.2. Magnetic potential Green´s functions
The magnetic potential Green’s functions are very similar to the electric

potential Green’s functions. We summarize the most important equations,
using duality on the previous equations:

∇2gm(~r, ~r′) = −δ(~r − ~r′) in V
∂gm

∂n
= 0 on SV

gm(~r, ~r′) =

+∞∑
i=1

1

ν2i
wi(~r)wi(~r′) = gms (~r, ~r′) + gmr (~r, ~r′)

gms (~r, ~r′) =
1

4πR

∇×∇× ~GF(~r, ~r′)− k2 ~GF(~r, ~r′) = ~Iδ(~r − ~r′)−∇∇′gm(~r, ~r′) in V
~n×∇× ~GF = 0 on SV
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~GF(~r, ~r′) =
+∞∑
i=1

~Hi(~r) ~Hi(~r′)

k2i − k2
= ~GF

0(~r, ~r′) + ~GF
r (~r, ~r′)

~GF
0(~r, ~r′) =

1

8πR

(
~I +

~R ~R

R2

)
+ ~GF

0r
(~r, ~r′)

~GF
r (~r, ~r′) = k2

+∞∑
i=1

~Hi(~r) ~Hi(~r′)

k2i (k
2
i − k2)
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