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Abstract: We study diquarks on the lattice in the background of a static quark, in a

gauge-invariant formalism with quark masses down to almost physical mπ. We determine

mass differences between diquark channels as well as diquark-quark mass differences. The

lightest and next-to-lightest diquarks have “good” scalar, 3̄F , 3̄c, J
P = 0+, and “bad”

axial vector, 6F , 3̄c, J
P = 1+, quantum numbers, and a bad-good mass difference for ud

flavors, 198(4) MeV, in excellent agreement with phenomenological determinations. Quark-

quark attraction is found only in the “good” diquark channel. We extract a corresponding

diquark size of ∼ 0.6 fm and perform a first exploration of the “good” diquark shape,

which is shown to be spherical. Our results provide quantitative support for modeling the

low-lying baryon spectrum using good light diquark effective degrees of freedom.

Dedicated to the memory of Artan Boriçi.
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1 Introduction

The renewed popularity (e.g. [1–3]) of the old diquark idea[4–6] makes a detailed ab initio

lattice study useful and timely.

Diquarks, like quarks, carry an open color index, and hence do not exist as asymptotic

states. Since contracting a diquark with a quark produces a baryon operator, a diquark

with an anti-diquark a tetraquark operator, etc., effective diquark degrees of freedom may

be useful building blocks for phenomenological descriptions of hadronic states. Such a

description might prove successful if diquarks are compact objects with fewer degrees of

freedom than the quark pairs they represent. The phenomenological success of diquark

models [3, 7–9] supports this possibility, provided one assumes the diquarks have “good”

(3̄F , 3̄c, J
P = 0+) flavor, color and Dirac quantum numbers. This assumption is natural

since both one-gluon-exchange [10, 11] and instanton interactions [12–14] are attractive in

this channel. The present work aims to investigate this picture quantitatively by studying

diquark masses, sizes and spatial correlations using first-principle lattice QCD simulations.

Since diquarks are colored, and not gauge-invariant, neither are their properties. One

way to deal with this issue is to work in a fixed gauge, typically Landau gauge or a variant

thereof, see, e.g., the lattice studies of Refs. [15–17]. The drawback is that the resulting

diquark properties depend on the gauge choice. This problem is well known for the size

determination [18–20], though diquark masses, and even mass differences, are also affected

since these are extracted from the temporal decay rates of appropriate correlators, which

will change in a gauge non-local in time like Landau gauge. Alternately, one can introduce

a static color source which, together with the diquark, forms a color singlet baryon, whose
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mass is gauge-invariant. Since the mass of such a static-light-light baryon diverges in the

continuum limit, the quantities of interest are mass differences between various diquark

channels. The diquark size can also be obtained in a gauge-invariant way, from the spatial

decay rate of the quark density-density correlator at fixed time [21–26].

We adopt the second, gauge-invariant approach of [22, 23, 26]. Measurements are taken

on dynamical nf = 2 + 1, 323 × 64, clover-improved Wilson fermion gauge configurations

with lattice spacing a ≈ 0.090 fm generated by PACS-CS [27, 28] and publicly available from

the JLDG repository [29]. Five ensembles, with pion masses mπ = 164, 299, 415, 575, 707

MeV, are considered, allowing us to study the dynamical light-quark mass dependence of

diquark properties and perform a short, controlled extrapolation to physical mπ. We re-use

the (gauge-fixed, wall-source) quark propagators from [30, 31]. To connect with previous

quenched studies, we also employ a new 323 × 64, a ≈ 0.092 fm, quenched ensemble with

valence pion mass mπ = 909 MeV. Static quark propagators are computed using the

method of [32, 33] with HYP1 smearing. See Appendix B for further details.

2 Diquark spectroscopy

We first quantify the expected reduction in the “good” diquark mass by studying the static-

light-light baryon spectrum. With Q the static quark, c, C denoting charge conjugation,

and light quarks in a DΓ = qcCΓq diquark configuration, where Γ acts in Dirac space, we

measure the baryon correlators

CΓ(t) =
∑
~x

〈
[DΓQ](~x, t) [DΓQ]†(~0, 0)

〉
. (2.1)

Γ = γ5, γ5γ0 for “good”, 0+ diquarks, γi for “bad”, 1+ diquarks, and 1 and γ5γi, for

the “not-even-bad”, odd-parity 0− and 1− diquarks. We also measure the correlators of

static-light meson operators [Q̄Γq]. The static quark (mQ → ∞) acts as a spectator; its

mass cancels in mass differences, exposing the diquark spectrum.

We consider diquarks with light-light (ud), light-strange (`s, ` = u, d) and strange-

strange′ (ss′) flavors on 5 ensembles with different light-quark, hence pion, masses. Note in

particular that s′ denotes a hypothetical additional strange valence quark. It is introduced

to allow a study of a good diquark with both quarks having the same (strange) quark mass,

which the good diquark flavor antisymmetry makes inaccessible to two identical s quarks.

Technical aspects of the analysis are summarized in App. C.

Figure 1 (top panel) shows the dependence on mπ of the ud 0+ versus 1+, 0− and

1− diquark mass differences. The results provide quantitative support for the phenomeno-

logical diquark approach, which considers only good 0+ diquarks. Explicitly, the good 0+

ud diquark lies lowest in the spectrum, 100-200 MeV below the bad 1+ ud diquark. The

negative-parity 0− and 1− ud diquarks lie even higher, ∼ 0.5 GeV above the good diquark

and will thus play no role in the low-energy physics. The same pattern is observed in

the `s and ss′ sectors. Figure 1 (middle panel) compares the ud, `s and ss′ (1+ − 0+)

splittings. The curves in Fig. 1 are fits using Ansätze guided by limiting cases. Explic-

itly, the (1+ − 0+) mass difference goes to a constant in the chiral limit and decreases as
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Figure 1. Diquark spectroscopy: diquark mass differences as a function of mπ. Vertical lines

identify physical mπ. The colored bands show the results from fitting to the ansätze described in

the text. (Top) The ud differences δ(1+ − 0+), δ(1− − 0+) and δ(0− − 0+). (Middle) Bad-good

ud, `s and ss′ differences, extrapolated to physical mπ using Eq. (2.2). (Bottom) Analogous Qqq−
Q̄q differences, extrapolated using Eq. (2.3). The horizontal line is the phenomenological value

δ(b[ud]0+ − b̄u) = 306 MeV.

1/(mq1mq2), with mπ ∼ (mq1 +mq2), in the heavy-quark limit. The simplest interpolation

between these limits is the two-parameter form

δ(1+ − 0+)q1q2 = A/
[
1 +

(
mπ/B

)n]
, (2.2)

with n = 0, 1, 2 for q1q2 = ss′, `s and ud, respectively. Here, A fixes the chiral limit

behavior, while B separates the light- and heavy-quark regimes. The fits clearly describe

the data very well. A similar Ansatz proposed in [22], with n twice as large, produces a much

poorer fit. Note that the ud, `s and ss′ curves all intersect at the flavor-symmetric nf = 3

point, mu,d → ms. The parameter values and physical-point mass differences are listed

in the top half of Table 1. The latter are in excellent agreement with phenomenological

expectations [1] (see App. A).

Further information on the diquark spectrum is provided by the mass splittings between

static Qqq′ baryons and the corresponding static Q̄q, Q̄q′ mesons. Results for the Qud−Q̄u,

Q`s − Q̄` and Q`s − Q̄s combinations are shown in the bottom panel of Fig. 1, together
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All in [GeV] δE(mphys
π ) A B

δ(1+ − 0+)ud 0.198(4) 0.202(4) 1.00(5)

δ(1+ − 0+)`s 0.145(5) 0.151(7) 3.7(15)

δ(1+ − 0+)ss′ 0.118(2) 0.118(2)

C D

δ(Q[ud]0+ − Q̄u) 0.319(1) 0.310(1) 0.814(8)

δ(Q[`s]0+ − Q̄s) 0.385(9) 0.379(10) 1.09(6)

δ(Q[`s]0+ − Q̄`) 0.450(6) 0.430(6) 2.95(35)

Table 1. Fit parameters A,B,C,D and physical-point bad-good diquark (top half) and good diquark-

quark (bottom half) mass differences, the errors are statistical only. Here the indices ud, `s, ss′

signify the different flavor combinations, with s′ denoting a hypothetical additional valence strange

quark (see Sec. 2). For a detailed discussion of the fit ansätze, we refer to the text. Further

information on phenomenological results can be found in App. A.

Q

Q

Figure 2. Sketch of the density correlators. (Left) 2D temporal view. (Right) Current insertions,

spatial view.

with fits to the Ansatz,

δ(Q[q1q2]0+ − Q̄q2) = C [1 + (mπ/D)n] , (2.3)

where C fixes the chiral limit value and D separates the light- and heavy-q1 quark regimes.

In the latter, the mass splitting must grow linearly with the mass mq1 , which dictates n = 1

if q1 is a heavy quark, n = 2 otherwise. The bottom half of Tab. 1 lists the fit parameter

values and resulting extrapolated physical-point mass differences.

The excellent agreement with phenomenological expectations of our results for all of

the δ(1+ − 0+)ud, δ(1
+ − 0+)us, δ(Q[ud]0+ − Q̄u) and δ(Q[ud]0+ − Q̄u) splittings, detailed

in App. A, provides strong evidence that we have successfully identified the ground-state

heavy baryon signals and that, as expected, residual discretization effects are small. This

justifies investigating the structure of the diquark correlations in those baryon ground states

using fixed-time density-density correlators, described in more detail below. Appendix A

also provides a brief outline of other approaches that have been used to estimate the good-

bad diquark splittings.

An additional interesting relation between the bad-good diquark and ∆−N splittings

is discussed in App. C.
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Figure 3. Diquark attractive effect. (Left) The density-density correlators ρ⊥2 (R = 4.1a,Θ,Γ)

versus cos(Θ) at mπ = 575 MeV. (Right) The ratio ρ⊥2 (R,Θ = 0,Γ)/ρ⊥2 (R,Θ = π/2,Γ = γ5)

versus m2
π. Values above/below 1 for the red/blue points signal an attraction in the good diquark

that is absent for the bad diquark. The vertical line denotes physical mπ.

3 Diquark structure

Having successfully identified the relevant ground-state baryon signals, we now turn to an

investigation of the light diquark structures in those states. To do so, we compute the

fixed-time density-density correlators:

CddΓ (~x1, ~x2, t) =
〈
OΓ(~0, 2t)ρ(~x1, t)ρ(~x2, t)O†Γ(~0, 0)

〉
(3.1)

where ρ(~x, t) = q̄(~x, t)γ0q(~x, t) and OΓ are the baryon operators used before. Γ character-

izes the diquark channel. With the static quark at the origin, the light-quark source and

sink points are (~0, tsrc) and (~0, tsnk). The currents are inserted at tm = (tsnk + tsrc)/2 to

maximize projection onto the ground state. The relative positions of the static source and

current insertions ~x1, ~x2, can be characterized by ~rqq′ = ~x2 − ~x1, ~S = (~x1 + ~x2)/2, the

separation between the static source and diquark midpoint, and φ, the angle between ~rqq′

and ~S, as shown in Fig. 2. We define

ρ2(rqq′ , S, φ; Γ) ≡ CddΓ (~x1, ~x2, tm) , (3.2)

dropping the label Γ when this produces no confusion.

For fixed S and rqq′ , the distance from the static source to the closer of the two insertion

points is minimized (maximized) for φ = π (π/2). If the proximity of a static source disrupts

the diquark correlation in a given channel, this disruption will thus be largest for φ = π

and smallest for φ = π/2. We therefore focus our attention on ρ2 for these two cases.

When φ = π/2, |~x1| = |~x2| ≡ R, and we may instead characterize the relative positions

using R and the angle Θ between ~x1 and ~x2. We define ρ⊥2 (R, θ) ≡ ρ2(rqq′ , S, π/2) and

ρ
‖
2(rqq′ , S) ≡ ρ2(rqq′ , S, π). Our calculations average over all spatial translations.

The impact of the light-quark interactions on the spatial correlation between light

quarks for different Γ is displayed in Fig. 3 (left), which shows the density-density corre-

lations ρ⊥2 (R,Θ,Γ) as a function of cos(Θ). For illustration, we show results for all Γ at
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Figure 4. Good diquark size. (Left) Exponential decay with rqq′ of ρ⊥2 (R,Θ). Each mπ has its

own color. Data sets have been normalised at rqq′ = 0 and offset vertically. Results for all available

R are shown together in one colored set. Each colored band comes from the combined fit used to

determine the diquark size r0(m2
π). (Right) Resulting good diquark size r0 versus m2

π, compared to

results of other lattice studies in the literature. The vertical line denotes physical mπ.

R = 4.1 a for the ensemble with mπ = 575 MeV. As cos(Θ) increases from −1 to +1,

rqq′ decreases from 2R to 0. The clear increase in ρ2 seen in the good diquark channel

is absent in all other channels [34]. The strengths of the quark-quark attractions in the

good and bad diquark channels are further quantified in Fig. 3 (right), which shows the

mπ dependence of the ratios ρ⊥2 (R,Θ = 0,Γ)/ρ⊥2 (R,Θ = π/2,Γ = γ5) for Γ = γ5 and γi.

The ratio is 2 or more for the good diquark across the whole range of mπ, but consistent

with 0 for the bad diquark, with no evidence for any mπ dependence, apart from a possible

low-mπ enhancement for the good diquark. The results confirm a significant attractive

quark-quark spatial correlation in the good diquark channel not present in the bad diquark

channel, for all mπ studied here.

With a significant attractive good diquark spatial correlation established, we can re-

fine our picture of the good diquark by studying its size and shape. We consider first

the case φ = π/2. At fixed R, ρ⊥2 (R,Θ,Γ = γ5) depends only on Θ or, equivalently,

rqq′ = R
√

2(1− cos(Θ)). We find this dependence well represented by an exponential

form, ρ⊥2 (R, rqq′) ∼ exp(−rqq′/r0), for each value of R. As R decreases and the diquark

moves closer to the static quark, one might expect the latter to distort such diquark corre-

lations and cause r0 to vary. We see no evidence for such a variation, so long as R > rqq′ ,

and thus, in the left panel of Fig. 4, display results for all R together, for each mπ. We

take r0 as our definition of the good diquark size and fix its value from a combined fit to

data for all such R. The resulting r0(m2
π) are displayed, and compared to those obtained

in Refs. [22, 24], in the right panel of Fig. 4. Recall that the parameters of our quenched

ensemble match exactly those of [22]. Our results are in very good agreement with [22],
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and with both the quenched and dynamical results of [24].

Increasing mq1,2 should, on its own, produce a more compact object. The accompany-

ing decrease in good diquark attraction seen in Tab. 1 will, however, work in the opposite

direction. We see some evidence that the former effect dominates for larger mπ (above

∼ 400 MeV) though, in the limit of infinitely massive sea quarks (i.e. the quenched case)

the diquarks are definitely larger. As Fig. 4 (right) indicates, in full QCD, over a range of

mπ, r0 is of the order of 0.6 fm, a size similar to that of static-light mesons when measured

the same way [35]. This result is also in good agreement with that of a phenomenological,

relativistic quark-diquark model study of nucleon form factors [36], which found a fitted 0+

diquark form factor corresponding to an rms diquark size of ∼ 0.54 fm. It should be noted

that the determined diquark size does not affect the spectroscopy of models that include

diquarks as effective degrees of freedom. Our results clearly support diquark modelling of

the baryon structure which allows for the possibility of a non-zero diquark size.

Finally, we can learn about the good diquark shape, by comparing the density-density

correlation falloff for the relative radial (φ = π) and tangential (φ = π/2) orientations of

~x2−~x1 and ~S (sketched in Fig. 7 of App. D). We define separate radial (‖) and tangential (⊥)

size parameters, r
‖
0 and r⊥0 , from exponential fits to the data for ρ⊥2 (R,Θ) and ρ

‖
2 (rqq′ , S),

detailed in App. D and shown in the left and right panels of Fig. 8.

The ratio r⊥0 /r
‖
0 provides a measure of whether the diquarks are prolate, oblate, or

neither. The results are shown in Fig. 5. We find r⊥0 /r
‖
0(m2

π) ' 1 within errors for all

mπ, indicating that the diquarks have a near-spherical shape. This is consistent with the

scalar, J = 0 nature of the good diquark, though the presence of the static quark could, in

principle, have induced a diquark polarization. There appears no need to include a dipole

term in diquark models.

4 Summary and conclusions

Using a gauge-invariant setup, we have studied the masses and shapes of diquarks carrying

different quantum numbers. Our study is the first to consider nf = 2 + 1 flavors of

dynamical quarks with a range of u, d masses corresponding to mπ as low as 164 MeV.

This allows for a small, controlled extrapolation to physical mπ ≈ 135 MeV. The resulting

diquark mass differences presented in Fig. 1 and Tab. 1 confirm the special status of the

“good” diquark channel, which shows an attraction of 198(4) MeV over the “bad” channel,
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more over the others. A simple interpolation Ansatz Eq. (2.2) accurately describes how

this attraction varies with mπ, and with the diquark flavor composition. Extrapolation of

our results to the continuum limit is still required, but this has been found to amount to

a small correction, at the percent level, in other hadronic mass measurements on the same

gauge configurations [28, 37–39]. We have also measured the mass difference between a

good diquark and an [anti]quark, as per Tab. 1.

We have also shown that the q−q attraction responsible for the bad-good diquark mass

differences induces a compact spatial correlation, present in the “good” diquark channel

only. The associated “good” diquark size, extracted from the spatial decay rate of quark

density-density correlations, is O(0.6) fm, similar to that of ordinary mesons and baryons

[35], and varies little with light-quark mass.

Finally, we have tried to refine the diquark picture further, by studying the shape of

quark density-density correlations in a good diquark, in the background of a heavy, static

quark. It turns out that good diquarks are nearly spherical, with no signal within errors

of a departure from this simplest shape.

The information obtained above may prove useful, both in identifying channels fa-

vorable to the existence of low-lying tetraquark or pentaquark states, and in obtaining

rough estimates of their expected masses. Such qualitative guidance has, in fact, already

been exploited in identifying double-open-heavy-flavor, SU(3)F flavor 3̄F , JP = 1+ Q̄Q̄′qq′

channels as favorable to the existence of exotic tetraquark states. In such channels, a lo-

calized four-quark configuration benefits from the attractive good-light-diquark and color

3c heavy-antidiquark Coulomb interactions, neither of which is accessible for two well-

separated heavy-light mesons. This observation motivated both phenomenological and

lattice explorations of potential binding in such doubly heavy tetraquark channels1, and

experimental searches for bound doubly heavy tetraquark states, the latter culminating

in the LHCb discovery of the exotic doubly charmed Tcc tetraquark state [54, 55]. Mul-

tiple recent lattice studies using interpolating operators designed to access the expected

good-light-diquark configuration now also provide clear evidence for the existence of a

JP = 1+, SU(3)F 3̄F multiplet of doubly bottom strong-interaction-stable tetraquark

states [30, 45, 46, 48–53]. An analogous qualitative diquark-based argument identifies the

singly-heavy JP = 1/2+, I = 1/2, Q̄sudd channel as one potentially favorable to the

existence of an exotic pentaquark resonance. Explicitly, while at most one good light di-

quark can exist in a state consisting of a well-separated heavy-light meson and light-quark

baryon, a localized singly heavy five-quark state can contain two good light diquarks, one

non-strange and one strange.2 The possibility that the short-distance part of the associated

singly heavy meson-light baryon system might have an attractive component resulting from

this localized ”extra-good-light-diquark” configuration motivates further study of this chan-

nel. Outstanding issues still to be investigated are potential distortions of the good diquark

1See Refs. [30, 31, 40–53] and earlier references therein.
2In such a singly heavy pentaquark channel, the four light quarks can be organized into two good light

diquark pairs only if the four-quark spin and color are 0 and 3c, respectively. To satisfy Pauli statistics, a

low-lying state with no internal spatial excitation must then have four-quark flavor 3F , and hence contain

at least one u, one d and one s quark.

– 8 –



correlation caused by the presence of additional light quarks and/or the impact of Pauli

blocking in channels, like this, where more than one good light diquark may be present.

These are questions that might be amenable to investigation using microscopic models

which survive the tests of predicting very shallow binding in the Tcc channel and bind-

ing energies compatible with now well-established lattice results for the non-strange and

strange doubly bottom JP = 1+, 3̄F channels. Bound or resonant singly-heavy JP = 1/2+,

I = 1/2, Q̄sudd pentaquark states, if they exist, would have four open flavors and hence,

like the doubly heavy tetraquarks, be manifestly exotic.

Our three sets of results – bad-good diquark mass difference, good diquark size and

shape – paint a diquark picture entirely consistent with that used in diquark models and

provide clear, quantitative support for the good diquark picture. Diquark models are

playing an important role in explorations of possible multi-quark exotics, especially in

channels too complex to permit a complete theoretical analysis. In such channels, various

light quark pairings into compact good diquark composites are likely to occur, especially

when heavy c, b quark sources are present (see e.g. [40–42] for phenomenological and

[30, 31, 43–53] for lattice studies). Which pairing is energetically favored depends sensitively

on the numerical values of the parameters of the diquark model. Our study may sharpen

these values, and help improve the reliability of such diquark analyses.
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A Phenomenological Expectations

Ref. [1] discussed in detail how to obtain phenomenological estimates for the static-limit

values of the bad-good diquark and diquark-antiquark mass differences using combinations

of single-charm and single-bottom meson and baryon masses chosen so O(1/mQ) contribu-

tions cancel, bringing the results closer to the static limit. Comparing the estimates for a

given splitting obtained using charm input to that obtained using bottom input provides an

assessment of how close to the static limit the bottom-based estimate is likely to be. This

data-based approach is obviously very closely related to the gauge-invariant, static limit

approach used to obtain our lattice results above. In this appendix we provide an update

of the numerical analysis of Ref. [1]. We also remind the reader of a number of other,

generally more model-dependent approaches, that have been used to obtain estimates of

the good-bad diquark splittings.
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Ref. [1] gives expressions for the combinations needed to provide phenomenological

estimates for four of the splittings we have measured. Explicitly, the combination

1

3

(
2M(Σ∗Q) +M(ΣQ)

)
−M(ΛQ) (A.1)

provides an estimate for δ(1+ − 0+)ud, the combination

2

3

(
M(Ξ∗Q) +M(ΣQ) +M(ΩQ)

)
−M(ΞQ)−M(Ξ′Q) (A.2)

an estimate for δ(1+ − 0+)us, the combination

M(ΛQ)− 1

4
(M(PQu) + 3M(VQu)) , (A.3)

with PQu and VQu the ground-state, heavy-light pseudoscalar and vector mesons, an esti-

mate for δ(Q[ud]0+ − Q̄u), and the combination

M(ΞQ) +M(Ξ′Q)− 1

2
(M(ΣQ) +M(ΩQ))

−1

4
(M(PQs) + 3M(VQs)) , (A.4)

with PQs and VQs the ground-state, heavy-strange pseudoscalar and vector mesons, an

estimate for δ(Q[us]0+ − Q̄s). For a given static-limit splitting, the most accurate esti-

mate should be that obtained using bottom hadron input, while the difference between the

charm- and bottom-based estimates should provide a conservative assessment of the devi-

ation of the bottom-based estimate from the actual static-limit value. At the time Ref. [1]

was written, information on bottom hadron masses was limited, and only one of these four

splittings, δ(Q[ud]0+ − Q̄u), could be estimated with both charm and bottom input. The

agreement between the two was excellent. It is now possible to estimate all four splittings

using both charm and bottom input. Using PDG 2021 input [56], we find, for δ(1+−0+)ud,

210 MeV using charm input and 206 MeV using bottom input; for δ(1+− 0+)us, 148 MeV

using charm input and 145 MeV using bottom input; for δ(Q[ud]0+ − Q̄u), 313 MeV us-

ing charm input and 306 MeV using bottom input; and, for δ(Q[us]0+ − Q̄s) 398 MeV

using charm input and 397 MeV using bottom input. It follows that the bottom-based

phenomenological estimates for the static-limit splittings should be reliable to O(7) MeV

or better. Moreover, these estimates agree well with the results shown in Tab. 1.

A number of other approaches have also been used to estimate the ud and `s good-bad

diquark splittings.

In the Dyson-Schwinger equation (DSE) approach, earlier analyses employing the

rainbow-ladder approximation obtained δ(1+ − 0+)ud = 212 MeV and δ(1+ − 0+)us = 168

MeV [57], δ(1+−0+)ud = 202 MeV [58], δ(1+−0+)ud = 270(30) MeV [59], δ(1+−0+)ud =

280 MeV [60]. A more recent analysis, Ref. [61], reports a result δ(1+ − 0+)ud = 190(20)

MeV, in good agreement with both our lattice determination and the updated version of

the phenomenological estimate of Ref. [1].

The good-bad diquark mass splittings have also been obtained from diquark-quark

model analyses of the non-strange and strange baryon spectrum in which the diquark
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mass enters as a free parameter of the model and is obtained as part of the fit to the

spectrum. An iterative, phenomenological version of this approach [62] produced the results

δ(1+−0+)ud = 205 MeV and δ(1+−0+)us = 140 MeV, while a more microscopic, relativistic

model, which did not, however, allow for the possibility of mixing between quark-scalar-

diquark and quark-axial-vector-diquark configurations, obtained a larger result, δ(1+ −
0+)ud = 350 MeV, for the ud diquark splitting [63]. A modified version of this model, which

significantly improves the quality of the model fit to known 3∗ and 4∗ baryon resonances,

obtained by adding a term to the effective interaction that allows such mixing to occur,

in contrast, produces a result δ(1+ − 0+)ud = 210 MeV in good agreement with both our

lattice determination and the updated version of the phenomenological estimate of Ref. [1].

An alternate implementation of the microscopic quark-diquark model approach first fits

the parameters of a model two-body quark-antiquark effective interaction with one-gluon-

exchange color dependence, Fq · Fq̄, to the meson spectrum, then uses this interaction,

with Fq ·Fq̄ replaced by the corresponding quark-quark one-gluon-exchange factor, Fq ·Fq,
to determine the nominal 3̄c, J

P = 0+ and 1+ masses, and hence the 1+-0+ splittings.

The meson sector model used in Ref. [64] (which has a two-body confinement interaction

involving a linear combination of scalar and vector structures) produces the results δ(1+−
0+)ud = 199 MeV and δ(1+ − 0+)us = 121 MeV [64], while the Godfrey-Isgur model [65]

used in Ref. [66] (with its purely scalar two-body confinement form) produces the results

δ(1+ − 0+)ud = 149 MeV and δ(1+ − 0+)us = 106 MeV.

In view of the good agreement between the updated versions of the charm- and bottom-

based estimates of Ref. [1], we consider the bottom-based results to represent the best

phenomenological estimates of the gauge-invariant static limit splittings we measure on the

lattice. The other approaches, which are more model-dependent, but have the advantage of

being applicable to non-strange and strange baryon sector, produce results in reasonable to

good agreement with the heavy-quark based phenomenological estimates for the good-bad

diquark splittings, with more recent versions of the analyses typically producing improved

agreement. It is, of course, possible that the additional light quarks present in non-strange

and strange baryons might affect the structure of the good light diquark correlation in those

systems, causing it to differ from that found in singly heavy baryon systems. The agreement

of the results for the diquark splittings obtained from (albeit model-dependent) analyses

of the light baryon sector with the heavy-quark-based phenomenological estimates is thus

of interest since it supports the picture in which the same good light diquark correlations

serve as useful effective degrees of the freedom in light and heavy baryon sectors.

B Lattice ensembles and propagators

For the numerical studies, we re-use the set of propagators from [30, 31] determined on

the publicly available nf = 2 + 1 flavor full QCD gauge ensembles provided by the PACS-

CS’09 collaboration [27, 28] via the JLDG repository [29]. The quoted values of mπ and

lattice spacing originate from our own previous re-determination [39, 67]. These gauge

configurations have been used extensively within the lattice community. A known caveat is

the slight mistuning of the strange sea quark mass [27]. The value of the hopping parameter
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Label L× T a−1[GeV] mπ[MeV] ncfg nspecmeas nstructmeas

Q 32× 64 2.15 909 374 374 374

E1 32× 64 2.194 707 399 1596 798

E2 ” ” 575 400 1600 800

E4 ” ” 415 400 3200 2800

E5 ” ” 299 800 6400 5600

E6 ” ” 164 198 6336 2574

Table 2. Parameters of the lattice calculation. nspecmeas and nstructmeas indicate how many measurements

in total were made of the baryon/meson correlators for the spectroscopy study, and of the density-

density correlators for the structure analysis, respectively. For the latter analysis, the sink-source

time propagation is set to (tsnk−tsrc) = 16, with the currents inserted at tm = 8, see also the sketch

in Fig. 2 (left).

which produces the physical strange quark mass is, however, known, and we set the strange

valence quark mass to this value, thus introducing a tiny amount of partial quenching.

To connect with previous studies in the quenched setup discussed in [23], and in more

detail in [22], we generated a new ensemble with the same lattice parameters, in particular

with coupling β = 6.0 and hopping parameter κ = 0.153 for propagator inversions. This

corresponds to a valence pion mass mv
π = 909 MeV.

All propagators were computed using the deflated SAP-GCR solver [68] and have

Coulomb gauge-fixed wall sources, where the gauge was fixed using the FACG-algorithm

in the implementation of [69, 70].

We can re-use the propagators without further inversions since the gauge-fixed wall

sources enable the contraction of the density correlators without an additional sequential

source propagator. Choosing (tsnk−tsrc) = 16 enables us to perform multiple measurements

on each configuration. Setting tm midway between source and sink minimizes excited-state

contamination.

For the static quark we compute propagators on the fly via (t2 > t1)[32]:

S(x, t2,x, t1) =
(1 + γ0

2

)[ t2−a∏
t=t1

U0(x, t)
]

(B.1)

where we dropped the exponential prefactor, since it amounts to a constant shift in the

masses that either drops out in the difference or is irrelevant to the results. To reduce

statistical fluctuations, the gauge links are smeared using HYP smearing (type 1 [33, 71])

in all 4 dimensions, which introduces some non-locality in time. In all cases we made sure

that the propagation time t is large enough and the number of smearing steps small enough

to ensure negligible effects aside from the boosted signal. Furthermore we considered several

smearing setups and smearing radii. We observed comparable results and selected the one

giving the best signal-to-noise properties. Our lattice parameters are listed in Tab. 2.
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Figure 6. Agreement of the bad-good diquark mass splitting with the prediction [1], δ(∆ − N) =

3/2× δ(1+ − 0+)ud.

C Lattice spectroscopy analysis details

To study the mass differences between good and bad diquarks, shown in top and middle

panels of Fig. 1, we fix the energies in the following way: First, we analyze the smeared

and unsmeared correlators separately. For each dataset, we consider one- and two-state

fits. The fit window in Euclidean time is the longest for which both fits give ground-state

energies consistent within errors. The ground-state energies of the smeared and unsmeared

data sets are then averaged, and the larger of the two uncertainties assigned as the final

error.

When performing the extrapolations to physical mπ, we also considered combined fits

with the Ansatz Eq. (2.2) using free n and shared B, but did not find an improvement and

therefore quote results from individual fits. As a further consistency check note that all

three extrapolations intersect for large mπ at the nf = 3 flavor-symmetric point without

having enforced this expectation through a shared parameter.

In the bottom panel of Fig. 1 we show the difference in mass between single-static

octet baryons and static-light pseudoscalar mesons, as explained in the text. In this data

the excited state contamination is much larger and we extract the masses by fitting both

smeared and unsmeared data with a two-state Ansatz. As before we take the values from

the longest time interval where the fitted ground states agree within errors, average the

results, and quote the larger of the two uncertainties as our error. For the ud − u, `s − s
and `s− ` cases we observe the expected nf = 3 degeneracy as mu,d → ms.

As a final diquark spectroscopy investigation, we compare the bad-good diquark mass

difference with the ∆-N mass splitting for each of our 5 ensembles. This comparison

is motivated by the observation [1] that, in the one-gluon-exchange approximation, and

chiral limit, δ(∆ − N) = 3
2δ(1

+ − 0+). Fig. 6 compares the left- and right-hand sides of

this relation, the red curve showing the appropriately rescaled version of the δ(1+ − 0+)ud
fit of the middle panel of Fig. 1 and the blue curve a similar fit to the ∆-N data with

A = 3
2 × 0.203(9), B = 1.10(11) GeV. Agreement between the two is excellent in the chiral

limit, and remains very good over the whole mass range. Measurements of the ∆ − N

splitting were newly performed for this study, using the same propagators as for the static

baryons shown so far. Since in this case we do not benefit from the cancellation of the heavy

quark mass, and nucleon correlators generally suffer from the well known signal-to-noise
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Q Q

prolate: oblate:

Figure 7. Diquark shape: 2D sketch of the 2 current insertions. Comparing exponential fall-offs

in the ⊥ and ‖ directions gives a measure of the diquark shape: prolate (left) or oblate (right).

problem, we expect larger uncertainties in this study. The situation is further complicated

as the ∆ baryon is a resonance in nature: a single operator analysis, as performed here, can

capture only its rough features. To stabilise the extraction of the masses here, we fitted

the channel pairs Γ = (γi, σi0) and (γ5, γ5γ0) simultaneously with single exponentials and

chose to quote the parameters from the longest combined plateau. For the physical-point

extrapolation, the results were fitted to the same Ansatz Eq. (2.2), in the same way as

before.

D Lattice structure analysis details

The diquark size r0 can be estimated from the fitted rate of the exponential decay, ∼
exp(−rqq′/r0), of the density-density correlator ρ⊥2 (R, rqq′), with rqq′ the distance between

the two current insertion points: see Fig. 4 (left).

The colored bands (one for each mπ) are the result of performing a combined fit for all

available R to a single exponential with shared size parameter r0 and separate amplitudes.

Note that our lattice spatial size is about 5r0, so we neglect corrections caused by periodic

boundary conditions which were studied in [24]. We checked the dependence of r0(R) on

R through individual fits and found no significant dependence for R ∈ [3 : 6]. Similar

findings were reported in [22]. Of course, if R is increased beyond ∼ 1 fm, the effective

string between the static quark and the diquark will break and a light baryon will form,

with qualitatively different diquark correlations. Our study does not consider this large-

distance regime. Also, for a given R, we normally would quote the number from the largest

stable fit window. However, due to our chosen geometry we may expect interference from

the static quark when rqq′ & R, and we limit the fit window accordingly.

Separate sizes r⊥0 and r
‖
0 can be defined for the tangential and radial geometries shown

in Fig. 7. The ratio of sizes r⊥0 /r
‖
0 then gives a measure of whether the diquarks are

spherical (r⊥0 /r
‖
0 = 1), prolate (r⊥0 /r

‖
0 < 1), or oblate (r⊥0 /r

‖
0 > 1).

To estimate r⊥0 and r
‖
0, we measure ρ2(rqq′ , S, φ) for the two geometries of Fig. 7, with

r⊥0 and r
‖
0 corresponding to φ = π/2 and π in Fig. 2, respectively. When the line labelled S

in Fig. 2 points along the x axis, the current insertion points for the radial configuration (the

blue points in Fig. 7) are x1,2 = (S ± r‖, 0, 0), while those for the tangential configuration
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Figure 8. Good diquark shape. mπ = 575 MeV results for the rqq′-dependence of ρ2(rqq′ , S, φ)

for tangential (φ = π/2, left panel) and radial (φ = π, right panel) quark-quark orientations. The

colored error bands are the results of combined fits to data for each of S = 4a, 5a and 6a.

(the red points in Fig. 7) are x1,2 = (S,±r⊥, 0). For simplicity, we take the line labelled S

to always lie in one of the x, y or z axis directions, considering all such permutations.

Focusing first on the radial case, x1 + x2 = 2S is constant at fixed S and independent

of r‖. Here we define our radial size parameter, r
‖
0, at this fixed S, by fitting the r‖

dependence to the form

ρ
‖
2(S, r‖) ∼ exp(−r‖/r‖0) . (D.1)

Since no obvious S dependence is observed, we arrive at r
‖
0 by analyzing the data in a

combined fit for several S using the same fit method applied before.

In the tangential case, a complication arises. Our previously introduced size parameter,

r0, was defined through a fit to ρ⊥2 (R, r⊥) with variable r⊥, but fixed R. Since, however,

R =
√

(r⊥)2 + S2, when r⊥ varies at fixed R, S also varies. This is not the fixed-S

situation used to define r
‖
0. We thus need to define an alternate tangential size parameter,

r⊥0 , through a fit to data with variable r⊥ but fixed S, in order to compare tangential

and radial size parameters both defined at fixed S. As seen above, the density-density

correlation ρ⊥2 (R, r⊥) at fixed r⊥ varies with R. We find this dependence well described by

an exponential form ∼ exp(−2R/R0). The dependence of the density-density correlation

on r⊥ at fixed S in the tangential configuration can then be obtained by fitting the product

ρ⊥2 (R, r⊥) exp(+2R/R0), evaluated at fixed S and variable r⊥, to the form exp(−r⊥/r⊥0 ).

Since the fixed-S tangential r⊥ = 0 and radial r‖ = 0 configurations are geometrically

degenerate, it is convenient to instead use the form exp(−r⊥/r⊥0 ) to fit the modified product

ρ̂⊥2 (S, 2r⊥) = ρ2(R, 2r⊥) exp(+
2R

R0
) exp(−2S

R0
) , (D.2)

with R0 a second fit parameter, and the right-hand side evaluated at fixed S. The extra

r⊥-independent factor, exp(−2S/R0), ensures that, in the limit that r⊥ → 0 and hence
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R→ S, the quantity being fit reduces to ρ⊥2 (R = S, r⊥ = 0). Since this is identical to the

analogous zero-separation quantity, ρ
‖
2(S, r‖ = 0), which enters the fit used to determine

r
‖
0, this choice ensures a common normalization for the tangential and radial fits, at the

r⊥ = r‖ = 0 point common to both.

In the left and right panels of Fig. 8 we show, for the mπ = 575 MeV ensemble and

S ranging from 4 to 7 times the lattice spacing, the dependences of ρ̂⊥2 (S, 2r⊥) on r⊥ and

ρ
‖
2(S, 2r‖) on r‖, respectively. The results are normalized so ρ̂⊥2 (S, 2r⊥) and ρ

‖
2(S, 2r‖) take

the common value 1 at S = 4a and zero separation.

While the parameters r⊥0 and R0 have been determined in the two-parameter fit de-

scribed above, R0 could, in principle, also be determined by fitting ρ⊥2 (R, r⊥), with r⊥

fixed to zero, to the form ∼ exp(−2R/R0). We found that inserting the resulting R0 into

the Ansatz Eq. (D.2) and subsequently fitting r⊥0 produced no improvement over the direct

two-parameter fit result, once errors were propagated and correlations taken into account.

In both the radial and tangential cases, we have propagated all errors within a boot-

strap procedure, which allows us to also evaluate the uncertainty on the ratio r⊥0 /r
‖
0 con-

sistently. Results for this ratio are shown as a function of m2
π in Fig. 5 of the main text.

We observe that the errors on the data limit the precision of the analysis, with a stable

result, for example, not even attainable for the mπ = 164 MeV ensemble. This is due in

part to the noisiness of the results at large S, which were not precise enough to constrain

R0, r⊥0 and r
‖
0 further.
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