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Abstract. A large scientific computing infrastructure must offer versatility
to host any kind of experiment that can lead to innovative ideas. The
ATLAS experiment offers wide access possibilities to perform intelligent
algorithms and analyze the massive amount of data produced in the Large
Hadron Collider at CERN. The BigPanDA monitoring is a component of the
PanDA (Production ANd Distributed Analysis) system, and its main role is to
monitor the entire lifecycle of a job/task running in the ATLAS Distributed
Computing infrastructure. Because many scientific experiments now rely
upon Machine Learning algorithms, the BigPanDA community desires to
expand the platform’s capabilities and fill the gap between Machine Learning
processing and data visualization. In this regard, BigPanDA partially adopts the
cloud-native paradigm and entrusts the data presentation to MLFlow services
running on Openshift OKD. Thus, BigPanDA interacts with the OKD API
and instructs the containers orchestrator how to locate and expose the results
of the Machine Learning analysis. The proposed architecture also introduces
various DevOps-specific patterns, including continuous integration for MLFlow
middleware configuration and continuous deployment pipelines that implement
rolling upgrades. The Machine Learning data visualization services operate on
demand and run for a limited time, thus optimizing the resource consumption.

1 Introduction

Cloud computing is perhaps one of the most important game changers in the IT business
industry in the last 10 years. With the advent of container engines and complementary cloud
orchestrators, the entire industry moved forward to a new era - an era of portability. Therefore,
the software can now be bundled together with dependencies and runtime and run on various
heterogeneous systems. In addition, aspects like scalability, security or high availability can
be outsourced to a cloud orchestrator and fully provided by this software solution.

Unquestionably, Kubernetes remains a relevant technology when talking about modern
cloud computing. It is a highly customizable orchestration solution that can address a wide
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range of production scenarios and configurations[1, 2]. It is mainly used to manage containers
via Pods and it also facilitates the development of native cloud applications. Led by the
Cloud Native Computing Foundation, the Kubernetes project is used as a foundation for
multiple commercial and community-driven orchestrators. An important Kuberentes flavor
available on the market, is OKD, an open-source version of the Openshift Container Platform,
currently maintained by the Redhat community. OKD combines the versatility of Kubernetes
with some production-graded automation mechanisms and security admission controllers,
to provide a fully clusterized solution, ready for production activities. In terms of DevOps
methodologies[3], the OKD supports the construction of continuous integration, delivery or
deployment pipelines, aiming to support the entire application development lifecycle. Similar
to Kubernetes, the OKD exposes a complex API, offering the possibility to interact and
integrate with 3rd party solutions.

In the context of ATLAS Distributed Computing[4], Openshift OKD[5] can serve as
an extension to BigPanDA[6]. BigPanDA is a complex monitoring tool that provides
information about distributed analysis processing[7, 8]. Developed as a pilot project, the
current case study focuses on demonstrating that Openshift OKD can take over part of
the workload of BigPanDA. The proposed solution will give the BigPanDA service the
possibility to delegate the governance of the Machine Learning[9, 10] data visualization
microservices to a Kuberentes solution. Thus, if a tenant would like to see the results of a
machine learning activity previously processed by the dedicated infrastructure of the ATLAS
Distributed Computing[11], a corresponding catalog service can be accessed, on request,
from the BigPanDA interface. BigPanDA will further locate the results, and it will spin up
a new MLFlow[12] service container in the OKD Openshift cluster to display the required
data. MLFlow is an open source platform that aims to support the entire Machine learning
life cycle. It has several features very useful for scientists working with Machine Learning
data. Among these features, we can find tracking capabilities for experiments, packaging
mechanisms for projects, models management and versioning. For our particular purpose, we
selected MLFlow to view experimental data in an intuitive format. Each MLFlow instance
will be exposed to the outside world, and it will be accessible from the browser. The web
service will be discoverable for a limited time, after which the BigPanDA core controller will
delete the MLFLow instance and, consequently, will automatically recover the associated
computational resources. Openshift OKD implements multi-tenancy, therefore, multiple
MLFlow instances can run in parallel, serving multiple stakeholders.

The aim of this pilot project is to probe whether Openshift can supplement BigPanDA
on a daily basis for activities that are not the main purpose of the platform. Furthermore,
by taking this approach into account, some doors can be opened for a transition from the
current architectural model to a cloud native or hybrid model, able to run in any public or
private cloud. The goal is to expand the platform’s capability with loosely-coupled features,
managed by 3rd party cloud orchestrators. The logic of governance will also be outsourced,
taking advantage of the orchestration routines and all the abstractions provided by Kubernetes
and Openshift OKD.

In the current paper, we will formally discuss aspects related to the implementation
of a new capability of the BigPanDA platform which consists in visualizing the results
of Machine Learning jobs in an on-demand system. In Section 2, we will present the
concept architecture of our hybrid solution, including the architectural decisions based on
the constraints encountered. In Section 3, we will reiterate through the functional objects
and present the way we approached each particular aspect from a technical perspective. In
addition, we will present some aspects that can be optimized in a future release. In Section 4,
we will run a quick functional test suite in order to validate end-to-end usability. In Section



Figure 1: Concept architecture of a self-service system for data visualization services
resulting from the processing of machine learning jobs/tasks

5, and the last section, we will conclude the development and integration process and provide
the results of our tests.

2 Architecture

In the current case study, the authors will focus on defining the interaction between BigPanDA
and Openshift OKD. The context of such an interaction is related to the need to view Machine
Learning analysis data in a friendly format. At the same time, a management model detached
from the core ATLAS orchestration is being tested. As can be observed in the concept
architecture and interaction flow (Figure 1), a tenant, which has previously submitted a
Machine Learning job or task to the ATLAS processing infrastructure, can also request a
visualization service to display the results. For each demand, the BigPanda controller triggers
the creation of a web service in Openshift OKD. As part of this routine, BigPanda’s role
is to locate the results and download[6] them from the ATLAS distributed infrastructure,
via Rucio[13]. Once data is stored and indexed within BigPanDA, the controller calls the
Openshift OKD API and triggers the creation of an MLFlow web service along with all
the Openshift (Kubernetes) communication and configuration objects. The MLFlow pod
downloads the Machine Learning artefacts from BigPanDA and stores them locally, in a
temporary/volatile location.

Following such an approach, the BigPanDA solution outsources data visualization
management to an external cloud platform, optimized for this type of interaction. The
principle on which we based our architectural model is "segregation of duty". Therefore,
instead of having one solution that fits all, various auxiliary routines can be detached from
the main solution and executed through specialized platforms. Openshift OKD is a viable
platform for various scenarios, especially when it involves creating on-demand services,
multi-tenancy and intelligent container management. To take advantage of OpenShift and
also to increase the portability of our solution, we deliver our MLFlow instances in containers
and pods. Following this cloud native model, our solution is extremely portable and can be
easily adjusted to run on most public and private clouds.



Figure 2: Openshift objects and
communication model Figure 3: DevOps practices

Openshift OKD is a Kubernetes implementation, therefore, it inherits the same base
architecture as the one implemented by the core project. A service that needs to be exposed
to the outside world will most often be accessible through the ingress-managed load balancer.
Therefore, if a client would want to connect to a service running inside an Openshift
OKD cluster, the client will be able to use a specific domain name to reach that service.
Furthermore, an ingress controller can also manipulate internal routes to forward traffic
toward various services based on subdomains or paths selectors. As we will further discuss
in the next section, BigPanDA will use the routing mechanism (ingress controller) to enable
multi-tenancy by creating unique fan-out definitions (Figure 2) and communication primitives
for each MLFlow instance, through the OKD API.

In addition, we observed that both OKD 3.11 and MLFlow v1.9 (versions selected for
our proof of concept) do not support target rewriting. This concept means that if an HTTP
request path does not correspond to an existing resource or application endpoint, the request
will end up generating a resource-not-found error. Since we will be using one DNS domain
for all MLFlow instances running in parallel, we will identify each instance by a random
string embedded within the resource path. Some web servers or web applications support
remapping a non-existing endpoint to the root path. However, both out-of-the-box OKD
3.11 with HAProxy Ingress Controller and MLFlow v1.9 do not have support for such
configuration. To work around this issue, we adopted a multi-container design pattern for
pods - the adapter pattern[14]. An Adapter object is located in front of the main MLFlow
application service, and it handles the requests coming from the load balancer. Each HTTP
request will be translated and sent to the MLFlow service through the localhost interface
(Figure 2).

Finally, and also part of the architectural vision, we decided to create our own base
container. It includes the MLFlow middleware and the assembly scripts and is built using the
native build capabilities available in Openshift OKD. Therefore, we separated the preparation
of the base MLFlow image from the actual application deployment, respecting the DevOps
methodology and practices (Figure 3). All the configuration items are currently stored
separately from the BigPanDA code base, and everytime a change is detected, a trigger
executes the Continuous Deployment pipeline.

3 Implementation

In order to spin up a data visualization process for Machine Learning analysis tasks in
Kubernetes, a series of steps has to be performed in order to make this service available for
consumption. Each configurable item in Kubernetes and Openshift can be generated through



Figure 4: Adapter entity configuration
and communication flow

Figure 5: The interaction flow to external
events

native or custom object definitions, processed by specific internal controllers and manipulated
from outside via Kubernetes/Openshift API. In our case study, BigPanda needs to create
four such objects, two defining the web-service that includes the MLFlow application and
Machine Learning artefacts and other two abstracting the network configuration (Figure 2).

The access to data visualization service is provided through Routes (ingress definitions).
When a new MLFlow service is requested from BigPanDA, the platform generates a seven
byte unique id per request. BigPanDA uses this string to create a mapping between
the workload id of a job/task submitted in the ATLAS processing infrastructure and the
corresponding Openshift request. As this string uniquely identifies a MLFlow service
instance, it is also used to compose the unique URI for external access. Therefore, the string
is concatenated as an endpoint (path) to a shared, pre-provisioned DNS domain (fan-out
definition) and configured internally to reach the corresponding MLFlow instance. This
approach facilitates the multi-tenancy character of the ensemble, as each MLFlow service will
be obfuscated and reachable by a specific, randomized URI. However, once a request passes
the ingress controller and it is forwarded to the MLFlow web service, the HTTP request keeps
the original path (unique id) in the HTTP request header. When an HTTP request reaches
the MLFlow service, the middleware tries to find, in the application structure, an endpoint
corresponding to the path selected. Since there is no such resource, MLFLOW will return an
HTTP 404 error - resource not found.

Because the purpose of having a random endpoint in the URI is to select the appropriate
MLFlow instance, the need to have an intermediate HTTP proxy arises. Therefore, if the
application itself is not able to deliver resources from custom endpoints, an HTTP request
adapter must handle the original HTTP call and alter the original content. Therefore, the
adaptor must remove the random path string and replace it with the root ( /) path. In the
vanilla Kubernetes implementations, the most common ingress management solution adopted
is the NGINX ingress controller, which, by design, supports target rewriting via annotations.
However, Openshift OKD 3.11 comes with an out-of-the-box HAproxy Ingress Controller
for managing routes which does not have support for these particular use cases. Also the
MLFLow version 1.9 which has been selected for the current Proof-of-Concept, is also
unable to handle custom endpoints for serving data. In this regard, as described in the
previous section, we adopted an adaptive pod design pattern. Therefore, instead of having
only one container exposing the Machine Learning job results, our solution proposes a two
container model, one acting as a proxy (adapter), filtering all requests and staying in front of
the MLFlow service and the other, the web service itself, responsible for data presentation.



In programming, this approach is called the adapter model/pattern. As shown in Figure 4, the
adapter entity works as a reverse proxy, altering the HTTP header of the initial request and
replacing the random path sting with the root path. Since a Pod, in Kubernetes terminology,
shares the same network namespace among the containers, the communication between the
MLFlow service and the Proxy-Pass NGINX server is handled by the localhost. In more
extensive scenarios, an adapter service can define more complex models, acting on the entire
spectrum of input data. In our particular case, the main role is to remove any identification
information from the request and to expose the MLflow capabilities to outside on behalf of
the webservice.

Machine learning analysis data must be located within the MLFlow container. For this
initial iteration of our pilot project, the data is downloaded from BigPanda and temporarily
stored inside the container. When a new Pod is created, the initial step performed by the main
container is to connect to the BigPanDA and to obtain the specific machine learning results.
The source of data is encoded in an environment variable and set in the pod definition at the
time of creation. At this point in time, the BigPanDA openshift controller sends a request to
the Openshift OKD API in order to create the application service and all the communication
primitives. Since the underlying pod volumes are volatile, data downloaded from BigPanDA
will be conserved as long as the web service is up and running. In case of a failure, the
pod may be recreated, and the data may be lost during this process. Therefore, a new
container will have to re-download all the artefacts. This approach respects the principle of
idempotency, essential when developing cloud applications for Kubernetes. Thus, one has to
ensure that consecutive executions of the same initialization routine will not affect the results.
A more optimal solution would be to use init containers and maybe also to mount directly the
distributed ATLAS storage system[15] in the container. By implementing the latter feature,
our solution will avoid duplicating the date and it may contribute to the sustained effort to
ensure a smaller disk footprint in the organization. For the former idea, the approach will
help in cleaning the architectural model by detaching the initialization function from the
actual execution.

Opting for the OKD Openshift could also provide the opportunity to adhere to a safer and
more restrictive operating model. OKD enforces several security policies over the container
context, including non root execution and UID randomization. Therefore, in the context of an
on-premise cluster implementation, a vulnerability in one of the components running inside
a container will not expose the entire hosting system. Moreover, for our particular toolkit,
all the artefacts selected were imported from official certified sources, which are constantly
updated and actively maintained. An essential process to ensure a quick reaction in the
event of a major security problem is the use of the OKD automation pipelines (Figure 3 and
Figure 5). In addition to the existing Kubernetes primitives, OKD Openshift brings several
other solution-specific objects to support the creation of an application development lifecycle
pipeline. Thus, we benefit from the existence of such a feature to manage the construction
and configuration of our own MLFlow middleware container image, using OKD’s native
BuildConfig routine. Moreover, once the middleware image is reconstructed and stored
in the embedded registry (artefacts repo), the build routine notifies the DeploymentConfig
controller about the changes. This process will further trigger the upgrade routine, and it will
redeploy all the existing running MLFlow instances with the new middleware version. The
update strategy selected for our pilot is the rolling-upgrade model. This strategy significantly
reduces the downtime by running two application instances at the same time - one with the
new version and the other the current one. Once the new application instance is initialized
and ready to serve content, the network will automatically configure the routing service to
point to the new instance.



All the middleware configuration items and build artefacts are stored in an external
GitLab repository. Once a PUSH event is detected, Gitlab notifies Openshift via a predefined
webhook. When the endpoint is reached, Openshift OKD starts a new build process, which
imports the latest version of the artefacts and assembles them according to the instructions.
During this process a new container image is built. Once this process is successfully
completed, the rolling-upgrade routine is also triggered. Therefore, all the existing MLFlow
instances, running on the cluster, are automatically updated one by one (Figure 5). As can be
seen in Figure 3, the entire pipeline is developed in accordance with DevOps methodologies
and practices and it is fully generated with native OKD Openshift routines.

The last component developed for the integration between BigPanDA and Openshift
is a service deletion routine (garbage collector). The adopted model proposes a retention
period of 24 hours for both services and data. After this period, BigPanda will clear all
resources associated with a previously submitted request. In order to partially detach this
routine from the BigPanDA controller, one way would be to use privileged Kubernetes
cron jobs. For this particular approach, we have developed a Python procedure that
interacts with the OKD API and scans for DeploymentConfig objects within the project
namespace. This procedure retrieves the creation timestamp from the objects attributes
(deploymentconfig.metadata.creationTimestamp) and calculates the number of hours elapsed
since initialization. If the 24-hour deadline has passed, the python routine will also collect
the instance ID, encoded in the labels section at the time of creation, and delete all associated
objects (all four Kuberentes/Openshift objects identified by the same instance id). Kuberentes
uses user-defined labels (key value pairs) to identify and manipulate objects. For our solution,
we decided to attach the MLFLow service identification request string in the label section of
each object created in OKD. Thus, when the garbage collector identifies an old instance
running within the cluster, by just retrieving the identity string, our Python procedure should
be able to identify all the objects corresponding to an old request (Fig. 02) and delete them.
The Kubernetes cron job can be set to run once per hour and therefore, to continuously
monitor the cluster.

3.1 Opportunities for improvement and future work

For a second release, we have already identified several optimization development tracks
aiming to improve both the provisioning process and architectural model. A way to better
segregate the responsibility for certain processes is to work with micro services, small
routines that accomplish only one atomic activity[10]. Currently, the main application
container processes two important tasks at bootstrap time: download Machine Learning
analysis data from BigPanda and start the MLFlow web service. In order to separate
responsibilities and to improve the overall experience, especially regarding recovery policies
applied by Kubernetes, the data retrieval task can be delegated to an initialization container
entity. An init container is an application container that runs during the initialization stage
and must run to completion before starting the main application containers (MLFlow and
Adapter). Once such a segregation model is applied, if a health check probe fails for example
(eg: liveness probe detects an anomaly), Kubernetes will only try to restart the application
service and not the entire initialization process. The artefacts can be shared through emptydir
volumes and attached to both sequential containers. Furthermore, in order to keep the
idempotency and to follow the best practices, BigPanDA will also have to compute and
provide the checksum of the Machine Learning artefacts. This will allow the init process to
compare what version of data is available upstream and what is already downloaded locally.

As previously mentioned, another tangential scenario could be the configuration of
Kuberentes pod-specific health checks (liveness, readiness and startup) for each MLFlow



Figure 6: The interaction between the source code management platform and the cloud
orchestrator at middleware configuration change events

instance. Although MLFlow service doesn’t have a special / health endpoint to be queried,
one can use the tracking services ( mlflow. set_tracking_uri () ) to check the consistency of
the web service.

Another possible improvement would be to combine all OKD object definitions into a
single jumbo object (template), applied through a single REST API call from BigPanda to
OKD Openshift. However, in a modern approach, the previous capability can be further
enhanced through operators, a design pattern and development framework that extends the
existing Kubernetes / OKD API and can delegate the provisioning management of MLFlow
instances to a custom developed controller. Thus, instead of sending one or more HTTP
calls describing four native Kubernetes/Openshift objects, we will need to create a single
custom object description that instructs our custom controller how to provision a new ATLAS
MLflow instance.

In addition, the migration to OKD 4 could also improve the current architectural model, as
since its official launch, this flavor provides an enhanced HA proxy, capable of handling target
rewrites. Therefore, we can reduce the footprint of the main application pod by removing the
adapter function.

4 Functional testing (end-to-end testing)

As mentioned in the previous sections, we are using GitLab to store all the configuration
items for middleware (MLFlow). GitLab supports event monitoring and notification and it has
native integrability with 3rd party solutions through several interfaces including webhooks.
Therefore, when a PUSH event occurs, GitLab runs the webhook routine and it sends an
HTTP POST message to the Openshift OKD, announcing that a change has been detected.
As can be seen in the Figure 6, this event triggers a build process that concludes by pushing a
new container image to the internal registry. Following the DevOps methodology, this chain
of events defines a continuous integration pipeline.

During the build process, the entire image configuration repository is cloned. The build
pipeline uses the Docker Build strategy, a method that searches for a Dockerfile in the
repository and creates a docker container image based on the instructions written there. In
the Figure 7, it can be seen that the previous statement is correct. Once the build pipeline is



Figure 7: Middleware container image build routine triggered automatically when
configuration changes are detected

Figure 8: Applying the rolling upgrade strategy on active middleware instances when new
service image becomes available

triggered, the entire repository is cloned with the last commit, the Dockerfile is located within
the root folder and the build process runs to completion.

The link between a build and a deployment can be provided by triggers, an Openshift
OKD native mechanism that monitors a build process and notifies the upgrade routine about
the existence of a new base container image version. Thus, we have used a trigger to
constantly check the base image fingerprint (MLFlow docker image) and to initiate a rolling
upgrade process when the base image has changed. Following this strategy, a new pod with
the new version is created and executed in parallel with the current one. Once the initialization
stage is concluded and all the health checks are passed, the networking is switched to the new
pod, and the old one is killed. In Figure 8, this process can be seen in action, as we captured
the moment of transition between pods.



Figure 9: Data visualization service exposed as a web application and uniquely identified by
the request ID

Each MLFLow instance will have a unique ID generated by BigPanDA and configured in
the Openshift object definitions. This random string is applied as a fan-out definition in the
ingress router and also as part of the proxy-pass config in the Adapter component. As can be
seen in the Figure 9, the fan-out definition is properly configured and the randomized URL
is pointing to the corresponding MLFLow instance. Also the service is accessible from the
browser, meaning that the service has been properly exposed to the outside world.

5 Conclusion

In the current paper we have developed a new feature for BigPanDA that offers the ability
to visualize the machine learning results, produced in the ATLAS Distributed Computing
infrastructure. A tenant (PhD student, scientific groups etc.) can request such a service
directly from BigPanDA, and the workload will be further delegated to an Openshift OKD
cluster via REST API Calls. Openshift will spin-up a MLFlow pod per request, download
the Machine Learning artefacts from BigPanDA, expose the web service to the outside
world and maintain high availability through the native healing mechanisms. Following this
delegation model, we demonstrated that BigPanDA can easily adopt a cloud native approach
and also that it can function as a catalog of scientific services, in the context of the ATLAS
Distributed Computing at CERN. Moreover, we also followed several DevOps methodologies
and practices to facilitate the build of the base MLFlow container from scratch. Therefore, we
implemented continuous integration and continuous deployment pipelines using the native
mechanisms of Openshift OKD. These pipelines are triggered automatically each time a
PUSH event occurs in the external configuration items repository. Furthermore, as a good
practice, the deployment strategy is using the rolling-upgrade model, a method that minimizes
downtime inevitable for an upgrading process. Finally, we also implemented a garbage
collector, a Python procedure that identifies old service instances and deletes them if they
passed the 24 hours expiration time.

The results obtained during the testing phase certifies the end-to-end functionality of
the integrated solution. For new iterations, we have already identified a few other paths
of development and optimization and here we include: the use of initialization containers, a
migration to the operators pattern, use of health probes and the delegation of the routing



process to another ingress controller solution. These changes can also bring significant
improvements to the solution architecture since they apply a better segregation model and
also eliminate the need of having auxiliary components like the adapter object.
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