
Prepared for submission to JCAP

Modeling Galaxies in Redshift Space at
the Field Level

Marcel Schmittfull 1 a Marko Simonović 2 b Mikhail M. Ivanov c,d
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Abstract. We develop an analytical forward model based on perturbation theory to predict the
redshift-space galaxy overdensity at the field level given a realization of the initial conditions.
We find that the residual noise between the model and simulated galaxy density has a power
spectrum that is white on large scales, with size comparable to the shot noise. In the mildly
nonlinear regime, we see a k2µ2 correction to the noise power spectrum, corresponding to larger
noise along the line of sight and on smaller scales. The parametric form of this correction has been
predicted on theoretical grounds before, and our simulations provide important confirmation of
its presence. We have also modeled the galaxy velocity at the field-level and compared it against
simulated galaxy velocities, finding that about 10% of the galaxies are responsible for half of the
rms velocity residual for our simulated galaxy sample.
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1 Introduction

The clustering of galaxies is an increasingly important cosmological probe of the low-redshift
Universe. Building on the success of recent surveys like SDSS BOSS/eBOSS [1, 2], multiple
experiments will increase the volume and the number of observed galaxies in the near fu-
ture, including DESI [3], Subaru HSC/PFS [4, 5], Euclid [6], Vera Rubin Obervatory/LSST
[7], SPHEREx [8], Roman Telescope/WFIRST [9], and others. Having lower cosmic variance
and shot noise, these experiments demand accurate theoretical modeling at the percent-level or
better to allow for unbiased cosmological parameter inference (e.g., [10]). Numerical simulations
can provide such modeling for the clustering of dark matter, and while they are numerically
expensive, interpolation schemes may be employed to overcome the computational challenge of
this approach. However, the clustering of galaxies is biased with respect to that of the dark
matter, in an a priori unknown way that depends on the type of galaxies observed, for example
on their mass or the environment in which they formed. While numerical schemes can be im-
plemented to place galaxies in collapsed dark matter halos in simulations, it is not known what
family of assignment schemes is correct for a given galaxy sample, and how to make this fully
general is a topic of ongoing research; see e.g. [11, 12] for two recent studies.

An alternative approach, which we follow here, is to describe the galaxy density field
perturbatively, including all possible terms in the bias expansion allowed by the symmetries of
the problem [13]. In this case, one has an analytical model for the clustering of galaxies in
redshift space, which can readily be used for cosmological parameter inference using standard
MCMC techniques [10, 14, 15]. Apart from gravitational and biasing nonlinearities, one other
important part of this model is stochastic noise. Using the correct parametric form of the
power spectrum of this noise is critical for cosmological parameter analyses from galaxy surveys,
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because the noise power spectrum contributes to the total model power spectrum so that any
missing ingredient in the noise model could lead to biases in cosmological parameter inferences.

The simplest approach is to assume a white noise power spectrum, roughly of the size of
the shot noise. However, it can be argued based on symmetries that the stochastic noise of the
galaxy overdensity in redshift space should have corrections on the white power spectrum, scaling
as k2 and k2µ2, where µ is the cosine with respect to the line of sight and k is the wavenumber
of the galaxy overdensity [16]. This prediction can be tested using simulated galaxy catalogs.
When sample variance is present and a simulated galaxy power spectrum is fitted with multiple
parameters (e.g., galaxy bias parameters, counter terms, and stochasticity parameters), it is
challenging to identify the exact parametric form of the noise power spectrum. A more powerful
technique to characterize the form of the noise is to measure it directly, subtracting the model
prediction from the simulated galaxy overdensity field. This avoids sample variance if model
prediction and simulation are computed for the same initial random seed. While this noise has
been measured for simulations of dark matter [17, 18], dark matter halos in real space [19], and
21cm radiation [20], it has not been investigated for halos or galaxies in redshift space. This
is the subject of this paper. A primary goal is to use field level methods to conduct a sample-
variance-free test of the anisotropic noise prediction. At the same time, such measurement is also
a test of the perturbative model for galaxy clustering in redshift space. Such investigations of the
noise properties, combined with efforts to model the galaxy power spectrum at the subpercent
level, provide a solid theoretical foundation for analyzing future galaxy surveys.

The paper is outlined as follows. We first model and measure the velocities of a simulated
sample of galaxies. Based on the redshift space distortions generated by these velocities, we
introduce a model for the galaxy density in redshift space. We then measure the error of this
model by comparing against simulated galaxies in redshift space. We characterize its scale
dependence and compare it against theoretical expectations, before concluding.

An accompanying Python software package, perr, is available online � 1. It is based on
nbodykit [21] � 2 and can be used to generate the 3D models for the velocity and galaxy
density and compare them with simulations.

2 Galaxy velocities and redshift space displacements

We start by discussing the velocity of galaxies in real space, which determines the redshift space
displacement, i.e. the line-of-sight displacement that must be applied to galaxies’ real space
positions to obtain their observed positions in redshift space. We review a perturbative model
for this redshift space displacement and compare it against simulations. Later, we will build
on this to obtain a model of the galaxy overdensity in redshift space and test that against
simulations.

2.1 Velocity of Lagrangian particles

We can model velocities following Matsubara [22] (also see, e.g., [23]). In redshift space s, the
location of an object at x is mis-identified due the peculiar velocity v = aẋ along the line of
sight ẑ,

s = x+
ẑ · v(x)

aH
ẑ , (2.1)

where a is the scale factor and H Hubble parameter. Without redshift space distortions (RSD),
the relationship between Lagrangian coordinates q and Eulerian coordinates x is given by the

1https://github.com/mschmittfull/perr
2https://github.com/bccp/nbodykit
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nonlinear displacement ψ,

x = q +ψ(q) . (2.2)

Including RSD, this becomes

s = q +ψ(q) +
ẑ · v(x)

aH
ẑ. (2.3)

In perturbation theory, the velocity field is related to the time derivative of the displacement
field

v(x) = aẋ = aψ̇ = a
∞∑
n=1

nfHψn(q) , (2.4)

where we have used the perturbative expansion ψ =
∑

nψn. Note that ψn ∝ Dn(z), so that
ψ̇n = nfHψn, where D(z) is the linear growth factor and f ≡ d logD/d log a. Therefore, we
can write

s = q +ψs(q) . (2.5)

The redshift space displacement ψs(q) can be written in compact form as follows

ψs(q) =

∞∑
n=1

R[n](ẑ) ·ψn(q) , (2.6)

where the matrices R[n](ẑ) are defined as

R
[n]
ij (ẑ) ≡ δij + nfẑiẑj . (2.7)

This standard result describes the mapping of Lagrangian particles at q to their Eulerian
redshift-space coordinates s, using the velocity predicted by Lagrangian perturbation theory.

2.2 Continuous velocity field

Before using the above mapping of Lagrangian particles to Eulerian redshift space, let us go one
step back and consider the velocity field itself, so we can compare it between the model and
simulations. To compute the velocity as a continuous field in Eulerian space one can proceed as
follows. First, the continuity equation in Eulerian space gives

aδ̇(x) +∇ · [(1 + δ(x))v(x)] = 0 . (2.8)

Second, the Lagrangian Perturbation Theory (LPT) expression for the time derivative of the
Eulerian density in Fourier space is

aδ̇(k) = a
∂

∂t

∫
d3q eik·(q+ψ(q,t)) = aik · ˜̇

ψ(k) . (2.9)

Here, we defined the real-space shifted field

˜̇
ψ(k) ≡

∫
d3q ψ̇(q)eik·(q+ψ(q)) . (2.10)

This is similar to the Zel’dovich approximation, moving Lagrangian particles from q to q + ψ,
but weighing each particle by ψ̇; this operation is analogous to the shifted bias operators in [19].
Combining Eqs. (2.8) and (2.9) shows that the curl-free part of the momentum density is

(1 + δ(x))v(x) = −a ˜̇
ψ(x) . (2.11)
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The resulting curl-free velocity or RSD displacement is given by

v(x)

aH
= −f

∞∑
n=1

nψ̃n(x)

1 + δ(x)
≡ −f

∞∑
n=1

nψ̂n(x) . (2.12)

Note that we have used

ψ̇(q) =
∞∑
n=1

nfHψn(q) . (2.13)

The equations above are exact if ψ is the true displacement field. In practice, we use the linear
displacement for shifting, and we truncate the sum over n keeping only n = 1.

2.3 Evaluating the continuous velocity model in a 3D box

To obtain the shifted nth order displacement ψ̃n(x) in Eq. (2.12), Lagrangian particles are
weighted by ψn(q) and then shifted from their Lagrangian position q by the real-space displace-
ment ψ1(q). When painting the particles to a regular grid, particles are summed up, including
their weights. This is the same procedure as for the shifted bias operators defined in [19]. Instead
of dividing by 1 + δ in Eq. (2.12), one can use a modified painting scheme that divides by the
number of particles contributing to each cell. This is denoted with a hat on the right-hand-side
of Eq. (2.12), and this is what we will use in the following. In detail, we implement the modified
painting scheme for evaluating the above model for the continuous velocity field in a 3D box as
follows.

• Place particles on a regular grid in Lagrangian space. Call their positions qi.

• Compute ψ̇1,i = ψ̇1(qi) = fHψ1(q) for each particle.

• Shift each particle to xi = qi +ψ1(qi).

• Paint the shifted catalog to a grid, weighting each particle by ψ̇1,i. For each cell, divide
by the number of particles contributing to that cell.

• The resulting field
̂̇
ψ(x) as a function of Eulerian coordinates is our model for the Eulerian

velocity.

Due to the averaging operation in the painting step, the field value does not increase if more q
particles with the same velocity end up in the same region; this ensures that we indeed obtain
the velocity and not the momentum field. The procedure is similar to the one used to generate
shifted bias operators [19], except that we are now shifting ψ̇(qi) instead of bias operators O(qi),
and we modify the painting scheme such that particles contributing to a cell are averaged instead
of summed.

A 2D slice of the continuous Eulerian velocity field generated with this method is shown
in the two right panels in Fig. 1. This shows that the model predicts large-scale flows that are
coherent over tens of megaparsecs and represent flows towards large-scale overdense regions by
a few megaparsecs.

2.4 Comparison with simulated velocity

To test the above model for the velocity field, we compare it against velocities of different
objects measured in an N-body simulation (in real space). In general it is not known exactly
which objects in an N-body simulation correspond to galaxies observed by a specific galaxy
survey. We produce a galaxy sample that approximately reproduces observed properties of
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Figure 1: 2D slice of the linear density, Zel’dovich density, and x- and y-component of the continuous
velocity field predicted by Eq. (2.12) for nmax = 1. The predicted velocity field is coherent over tens of
Megaparsecs, with most regions flowing towards the cluster and filament in the center of the slice. To
generate the Zel’dovich density and the velocity prediction, 15363 particles in a Lagrangian space box
with L = 500 h−1Mpc were shifted by the first-order displacement. All fields are evaluated at redshift
z = 0.6.

SDSS BOSS CMASS galaxies following the procedure of [10].3 Note that this does not explicitly
populate halos with centrals and satellites using an halo occupation distribution (HOD), but
uses subhalos found with the phase-space halo finder Rockstar [24] and selects them with a soft
mass cut to represent galaxies. This accounts for the velocity offsets between the halo center of
mass and central subhalos [24], where galaxies are expected to form. Also, satellites are based
on actual subhalo positions and velocities within larger halos rather than assigning satellites
with some manual prescription (e.g., using the velocity of random dark matter particles in a
halo or an NFW profile). The velocities of these mock galaxies, converted to the corresponding
RSD displacement, are shown in the left panel of Fig. 2. The middle panel shows the analytical
prediction using the model from the last section, reading out the continuous velocity field at the
location of the simulated galaxies, and the right panel shows the residual displacement between
simulation and model.

This shows that the analytical model describes the large-scale velocity field of galaxies
rather well. But it fails in some highly clustered regions, where the residual displacement can be
tens of Mpc and is pointing in random directions. These galaxies are subhalos whose velocity is
close to the virial velocity of their parent halo rather than the large-scale velocity field in their
vicinity. Given the random direction of these velocity offsets, it seems challenging to model
these velocities with any deterministic model. For the galaxies in redshift space, this can be
regarded as the well-known Fingers of God effect, which corresponds to random motions of
satellite galaxies along the line of sight, leading to a relative suppression of clustering along the
line of sight.

From Fig. 2 it is clear that only a minority of galaxies have these large velocities and
corresponding large RSD displacements which are very discrepant with the analytical model
prediction, while the prediction is rather accurate for the majority of galaxies. Indeed, we find
that the model predicts the simulated RSD displacement with an error of less than 2 h−1Mpc
for 80% of the galaxies and with an error less than 3 h−1Mpc for 90% of the galaxies; see the
left panel of Fig. 3. This means that only 10-20% of galaxies have velocities that are crudely
wrong. Removing such galaxies could enable perturbation theory to reach smaller scales when

3The Rockstar [24] [ phase-space halo finder is used to identify halos and subhalos in the snapshot of a dark-
matter-only N-body simulation with 15363 particles in a L = 500 h−1Mpc periodic box at redshift z = 0.6, run with
MP-Gadget [25] �. These halos and subhalos are then populated with galaxies with a probability that depends on
the virial mass of the object; see Eq. (1) in [10]. We choose their CMASS1 parameters, i.e. log10Mmin[h−1M�] =
12.97 and σlog10 M = 0.35.
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Figure 2: RSD displacements in Mpc/h in the x − y plane, for simulated galaxies (left), the model
prediction from Eq. (2.12) evaluated at galaxy positions (center), and their residual (right). The model
captures the large-scale bulk flows rather well. The largest mistakes happen in clustered regions where
the velocity vector in the simulation is large and goes in random directions at nearly the same location;
these are likely satellites with virial velocity. Since the velocity goes in opposite directions in nearly
the same location, there is little hope to model this deterministically, so it should be regarded as an
unpredictable noise contribution.

modeling the power spectrum in redshift space, at the expense of a small increase in shot noise.
Removing the 13% worst-modeled galaxies reduces the rms displacement error by a factor of 2,
from 2 h−1Mpc to 1 h−1Mpc. In other words, about half the rms displacement error (1 h−1Mpc)
comes from the worst 13% of galaxies (these have a residual displacement > 2.5 h−1Mpc), while
the other half of the rms (1 h−1Mpc) comes from the best 87% of galaxies (these have residual
displacement < 2.5 h−1Mpc).4 Identifying these satellite galaxies observationally in redshift
space is a challenging task; though see e.g. [26] for recent progress and application to SDSS
data.5

Of course the results above are specific to the mock galaxies generated, and they will differ
for other tracers and models. We briefly discuss this in Appendix A. We also note that it
is challenging to quantify the velocity error in more detail, for example using power spectra,
because it is difficult to compute a continuous velocity field from a discrete tracer as it is unclear
how to define the velocity field at locations with no objects. While we will use the model
prediction for the velocity field to model the galaxy clustering in redshift space, it may also be
useful in its own right for modeling the kSZ effect or other cosmological probes of the velocity
field.

4For comparison, the rms RSD displacement is 3.9 h−1Mpc for the simulated galaxies and 3.0 h−1Mpc for the
model prediction evaluated at galaxy positions.

5Typical approaches seek to identify clustered groups in the observed data. Nonlocal selections like this can
induce additional scale dependence in the power spectrum. Another approach could be to use summary statistics
in Fourier space. For example, one could optimize weights of galaxies such that the small-scale power spectrum
quadrupole is maximized, corresponding to a suppression of the Fingers of God, while keeping the small-scale
power spectrum monopole (shot noise) small to ensure that most galaxies are still included. A concrete way would
be to maximize the ratio of the power spectrum quadrupole over monopole at high k. The optimal weights can
be found by solving an eigenvalue problem. Going further, one can impose a prior on the weights, e.g. to set some
fraction of them to 0 and the rest to 1, or to follow the halo mass function to implement halo mass weighting and
suppress shot noise. To enforce non-negative weights one can use a sigmoid function. The resulting cost function
can be optimized using gradient descent, noting that derivatives of power spectrum multipoles with respect to
galaxy weights can be evaluated using FFTs. As long as the weights are parameterized as functions of observed
galaxy properties, the resulting weighted galaxy sample is still a biased tracer and can be described by the same
galaxy bias model as in conventional galaxy clustering analyses. We leave it to future work to explore this idea.
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Figure 3: Left panel : Fraction of galaxies for which the residual RSD displacement (PT challenge galaxies
minus shifted ψ̇ model) is smaller than some value d. Right panel : Rms residual RSD displacement after
removing different fractions of galaxies with the worst residual. Removing the worst 13% of galaxies
reduces the rms residual displacement by a factor of 2.

3 Galaxy overdensity in redshift space

Having shown that the velocity field predicted by Lagrangian perturbation theory adequately
traces that in simulations, we now proceed to model the galaxy overdensity in redshift space
and compare it against simulations to characterize the quality and error of the model.

3.1 Model of the galaxy overdensity in redshift space

A perturbative model for the galaxy overdensity field in redshift space can be derived following
the same procedure as for the real space modeling [19]. One of the key ingredients needed for a
successful model are large displacements induced by the long-wavelength density fluctuations. If
they are not accounted for properly, the model will fail on scales smaller than O(10) Mpc, since
the positions of the over- or underdensities will be wrong. It is important to stress that this
decorrelation with the nonlinear field is much larger than the naive expectation from the one-loop
calculation [18, 19]. Indeed, while the effects of the bulk flows are guaranteed to cancel in any
n-point correlation function (in real or redshift space) due to the Equivalence Principle [27–29],
their impact on the level of realizations of density fields is much more dramatic. For this reason
it is natural to use Lagrangian perturbation theory as a description for the nonlinear galaxy
density field, since it properly captures the effect of large displacements by design. However,
since our measurements in simulations are in Eulerian coordinates, it is useful to rewrite the
model to resemble the perturbative expansion in Eulerian perturbation theory. We give the
details of this derivation in this section.

The galaxy density field realization in Eulerian space, including RSD, can be modeled as
follows [30]

δsg(k, ẑ) =

∫
d3q (1 + δL

g (q))e−ik·(q+ψs(q)) , (3.1)

where the bias expansion in Lagrangian coordinates up to cubic order is given by [13]

δL
g (q) = bL1 δ1(q) + bL2 [δ2(q)− σ2

1] + bLG2G2(q)

+ bL3 δ3(q) + bLG2δ [G2δ](q) + bLG3 G3(q) + bLΓ3
Γ3(q) . (3.2)

In our notation δn(q) ≡ δn1 (q) and δ1(q) is the linear density field. The explicit form of all bias
operators as well as their relation to other bases used in the literature can be found in [13]. We
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can also use the perturbative expansion of the nonlinear displacement

ψs(q) =

∞∑
n=1

R[n](ẑ) ·ψn(q) . (3.3)

Since the linear displacement is the largest contribution to ψ, we can expand all higher order
terms from the exponent in Eq. (3.1) and treat them as additional nonlinearities in the bias
expansion for the galaxy density field. The explicit derivation is given in Appendix D. Here we
report only the final result

δsg(k, ẑ) =

∫
d3q

[
1 + δL

g −
3

14
G2 −

3

14
(1 + bL1 )δ1G2 +

1

6
Γ3 +

1

9
G3

− 3

7
fG‖2 −

3

7
fbL1 δ1G‖2 −

5

8
fΓ
‖
3 +

1

3
fG‖3 −

9

14
fK3 −

3

14
f2δ
‖
1G
‖
2

−R[2]
ij ψ

i
2∂j
(
(1 + bL1 )δ1 + fδ

‖
1

)]
e−ik·(q+R[1]ψ1) . (3.4)

Note that the explicit Lagrangian coordinates are suppressed to avoid clutter. The additional
nonlinear terms that appear only in redshift space are defined as

O‖(q, ẑ) ≡ ẑiẑj ∂i∂j
∇2
O(q) , (3.5)

K3(q, ẑ) ≡ ẑiẑj
∂i∂m
∇2

δ1(q)
∂m∂j
∇2
G2(q) . (3.6)

Let us make a couple of comments about this model for the galaxy density field in redshift
space. On top of δL

g , all additional nonlinear operators come from expanding the second and
third order displacement from the exponent. Most of these nonlinear terms can be written in
the form of bias operators in redshift space, with the exception of the second and third line
in (3.4), which represent the second-order shift acting on the linear density field. It is worth
noting that all new terms have fixed coefficients as expected. While this model can appear a
bit cumbersome at first sight, it is equivalent (up to two-loop terms that we neglected) to the
more familiar results either in Lagrangian [23, 31, 32] or IR-resummed Eulerian perturbation
theory [16, 33–37]. Finally, for the purposes of comparing the theory and simulations, all third-
order terms in square brackets can be absorbed in a transfer function multiplying δ1. We can
therefore write

δsg(k, ẑ) =

∫
d3q

[
1− 3

7
fG‖2(q)

+ β1(k, µ) δ1(q) + bL2 [δ2(q)− σ2
1] +

(
bLG2 −

3
14

)
G2(q)

]
e−ik·(q+R[1]ψ1(q)) , (3.7)

where µ is the cosine of the angle between the Fourier mode k and the line-of-sight ẑ: µ ≡ k·ẑ/k.
We have finally arrived at the point where we can write the simplified model for the galaxy
density field in redshift space directly in Eulerian coordinates. Following [19] and defining
redshift-space shifted operators as

Õ(k, ẑ) =

∫
d3qO(q)e−ik·(q+R[1]ψ1(q)) , (3.8)

the model is given by

δsg(k, ẑ) = δsZ(k, ẑ)− 3

7
f G̃‖2(k, ẑ)

+ β1(k, µ)δ̃1(k, ẑ) + bL2 δ̃
⊥
2 (k, ẑ) +

(
bLG2 −

3
14

)
G̃⊥2 (k, ẑ) . (3.9)
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Note that the transfer function β1(k, µ) is defined as

β1(k, µ) ≡ bL1 +
∑
a

ca
〈δ̃1(k, ẑ)Õ[3]

a (−k, ẑ)〉
〈δ̃1(k, ẑ)δ̃1(−k, ẑ)〉

, (3.10)

The sum runs over all cubic terms in equation (3.4) and coefficients ca can be either Lagrangian
biases or deterministic constants. Crucially, using the transfer function comes at no price, since
the new model has exactly the same power spectrum up to one-loop order as the original galaxy
field given in Eq. (3.4). Note that this transfer function also contains all higher derivative
counterterms and higher derivative bias operators, such as

δL
g (q) ⊃

(
R2

1∇2 +R2
2(ẑ · ∇)2 +R4

3(ẑ · ∇)4
)
δ1(q) + · · · , (3.11)

where Ri are corresponding length scales. Even though the last term seems to be of higher order
in perturbation theory, it has been shown that it is very significant, particularly if the fingers of
god effect is more pronounced [38]. The contribution of these operators to the transfer function
is a simple polynomial in k and µ

β1(k, µ) ⊃ R2
1k

2 +R2
2k

2µ2 +R4
3k

4µ4 + · · · . (3.12)

To obtain the best-possible fit to the data involving second-order fields only, and at the
same time test the perturbative model, we can also promote the second-order biases to transfer
functions. We will find later that they can be indeed set to constant without affecting the model
error much, in agreement with the perturbation theory prediction. With this in mind, the most
general model we can write is

δsg(k, ẑ) = δsZ(k, ẑ)− 3

7
f G̃‖2(k, ẑ)

+ β1(k, µ)δ̃1(k, ẑ) + β2(k, µ)δ̃⊥2 (k, ẑ) + βG2(k, µ)G̃⊥2 (k, ẑ) . (3.13)

The βn(k, µ) are transfer functions that can absorb a part of the higher order nonlinearities as
well as counterterms. The field δsZ refers to the redshift-space Zel’dovich density,

δsZ(k, ẑ) =

∫
d3q e−ik·(q+R[1]ψ1(q)) . (3.14)

For easier interpretation of the transfer functions, we orthogonalize δ̃2 with respect to δ̃1, and
G̃2 with respect to δ̃1 and δ̃2, in every (k, µ) bin using Gram-Schmidt as in [19].

The model (3.13) is rather similar to the real-space model of [19]. The only differences
that are not absorbed by transfer functions are the RSD displacement R[1]ψ1 in the exponent

and the additional term proportional to G‖2 . Additionally, transfer functions now depend on k
as well as µ. In the same way as in real space [19], we can decide to rewrite the Zel’dovich RSD
density δsZ in terms of the shifted bias operators. For simplicity, however, we will keep the full
Zel’dovich density without rewriting it in this way. We will include the shifted cubic operator
δ3(q) in the model below, because it is simple to add; results are very similar without the cubic
term.

3.2 Evaluating the galaxy overdensity model in a 3D box

To evaluate the model (3.13) in a 3D box we proceed similarly to [19]. We first draw a realization
of the linear density in the 3D box. We then shift the uniform density 1, the linear Lagrangian-

space density δ1(q), and the second-order fields δ2(q) − σ2, G2(q) and G‖2(q) by the linear
RSD displacement R[1]ψ1, and paint the result to a regular grid in Eulerian space. Given a
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simulated redshift-space galaxy density δsim, the transfer functions βn(k, µ) are then computed
using ordinary linear least-squares regression in every (k, µ) bin. This minimizes the squared
model error Perr(k, µ) ∝ 〈|δsim(k)− δsg(k)|2〉.6 These transfer functions are smooth functions of
k and µ. We will replace them with a simple 7-parameter fit as described at the end of the next
subsection and in the appendix.

3.3 Comparison with simulations

To test the bias model (3.13) for the galaxy density we compare it against the same N-body
simulation galaxies described in Section 2.4 above, serving as a proxy for SDSS BOSS CMASS
galaxies. We implement RSD by moving galaxies along the line-of-sight according to the subhalo
velocity computed with Rockstar.

Fig. 4 shows a 2D slice of the resulting simulated galaxy density, the bias model (3.13), and
the residual between the two. The bias model captures the galaxy density well on large scales,
but tends to underpredict it in highly overdense regions where the bias model is not applicable.

0 100
x [Mpc/h]

0

100

200

300

400

z
[M

pc
/h

]

Real-space sim.

0 100
x [Mpc/h]

Real-space model

0 100
x [Mpc/h]

z-space sim.

0 100
x [Mpc/h]

z-space model

0 20 40

Figure 4: Galaxy overdensity δg in a 2D slice around the largest halo in the N-body simulation (red
blob in the center; logM [h−1M�] = 15.2). From left to right, the panels show the real-space simulation,
real-space model, redshift-space simulation and redshift-space model. In the center there is a Finger-of-
God effect, elongating the cluster along the line-of-sight (magenta arrow); this is not captured by the
model. The structure above the cluster (magenta box) moves towards the cluster by about 8 h−1Mpc; this
large-scale flow is captured by the model. More typical redshift-space displacements are 3-4 h−1Mpc and
difficult to see by eye, but the model matches the simulation well on large scales. In each panel, the density
is smoothed with a 2 h−1Mpc 3D Gaussian, and the dimension of each slice is 200× 1× 500 h−1Mpc.

6Having a model with small model error is useful because it has larger signal-to-noise than models with larger
model error. Additionally, it is important to obtain a model for which the parametric form of the model error
power spectrum is known so that the total power spectrum, composed of model and noise power, can be predicted;
we will test this in the next subsection.
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Figure 5: Left panel: Power spectrum of the simulated galaxy sample (dashed), the bias model (dotted),
and the residual error (solid), and error power spectrum minus a constant fit at low k (thin solid). The
power spectra are measured in 5 bins in the cosine µ with respect to the line of sight, µ = 0−0.2, 0.2−0.4,
etc (colors). Right panel: Zoom-in of the error power spectrum, Perr(k, µ) ∝ 〈|δsim(k) − δsg(k)|2〉. This
error power spectrum is well fit by Eq. (3.15) (black lines). In both panels, the bias model (3.13)
uses transfer functions fitted with seven parameters as shown in Fig. 10 below. The simulated galaxies
are generated by populating Rockstar subhalos in six independent N-body simulations with 15363 DM
particles in L = 1500 h−1Mpc cubic boxes evolved to redshift z = 0.6; the subhalos are populated
with galaxies to represent SDSS BOSS CMASS galaxies following [10], with a soft lower mass cutoff of
log10Mmin[h−1M�] = 12.97.

To investigate the model performance more quantitatively, we go to Fourier space and
compute the squared model error Perr(k, µ) ∝ 〈|δsim(k) − δsg(k)|2〉. This is shown in Fig. 5. To
include larger scales and reduce scatter in the plots, we increased the volume of the simulation
to L = 1500 h−1Mpc per side, still using 15363 DM particles, and averaged over six realizations.
The resulting error power spectrum is constant on large scales, and exhibits a k2µ2 correction
that becomes important at k ' 0.1 hMpc−1. This is consistent with the stochastic noise power
spectrum derived in [16]. Indeed, we find that at k ≤ 0.3 hMpc−1 the error power spectrum is
well approximated by

Perr(k, µ) =
1

n̄g

(
cε,1 + cε,3fµ

2

(
k

kM

)2
)
, (3.15)

where

cε,1 = 0.599 ,

cε,3 = 2.45

(
kM

1hMpc−1

)2

. (3.16)

The number density of simulated galaxies is n̄g = 4.25 × 10−4 h3Mpc−3 and the logarithmic
growth rate is f = 0.786 at redshift z = 0.6. The amplitude of the noise is compatible with real
space results for similar halo number density [19]. The amplitude of the scale dependent part of
the noise is related to the stochastic velocity dispersion and it is consistent with measurements in
the previous section and values of the counter terms measured in large-volume simulations [10]
and real data [39–41]. From Fig. 5 it is clear that both stochastic noise terms are detected
with high significance in the error power spectrum. This demonstrates that the field-level model
for the galaxy density in redshift space is accurate with errors as expected theoretically up to
k ' 0.3 hMpc−1, for the galaxies extracted from our simulations. Since agreement at the field
level is a much more stringent test than comparing power spectra only, we can see these results
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as yet another nontrivial check that the one-loop power spectrum in redshift space is indeed the
adequate model to describe galaxy clustering on large scales.

We do not find evidence for an isotropic k2 correction to the error power spectrum, although
this term can be present theoretically [16]. This is consistent with the noise of halos in real space,
and can be understood by considering the scale corresponding to the typical halo size [19]. Such
a k2 correction may be present for other tracers, especially if they probe larger halos, and on
smaller scales.

In Appendix B we show the transfer functions obtained by minimizing the error power
spectrum in every (k, µ) bin, and fits of them using a 7-parameter fitting function (4 parameters
to describe the scale dependence of β1, and 3 parameters to fit the other transfer functions with
constants). The error power spectrum shown in Fig. 5 assumes these fitted transfer functions, as
they are more smooth and therefore more realistic (although the error power spectrum for fully
free transfer functions looks similar, see Fig. 9 in the appendix). Instead of the fitting functions,
one could use perturbation theory to predict the functional form of the transfer functions and
then fit for the bias parameters, as done in real space in [19]; we leave this to future work.

In Appendix C we show results when including lower-mass subhalos, that will be observed
by DESI. The error power spectrum is again well described by Eq. (3.15), of course with different
values for the fitting parameters.

4 Conclusions

Previous work modeled the overdensity realization of dark matter particles and dark matter
halos in real space [17–19]. Here, we generalized this approach to galaxies in redshift-space.
To model the redshift space distortions caused by the peculiar velocities of galaxies, we shift
galaxy bias operators by an additional displacement along the line of sight predicted by the
first-order Lagrangian-space velocity. We then calibrate transfer functions to obtain the best-
possible deterministic large-scale model using these shifted galaxy bias operators. The resulting
model captures the redshift-space galaxy overdensity in N-body simulations well on perturbative
scales.

We computed the stochastic noise of the model by subtracting the model prediction from
the simulated galaxy overdensity. The power spectrum of this noise is white on large scales,
k . 0.1 hMpc−1, for the BOSS CMASS-like and the lower-mass mock galaxies we considered
at redshift z = 0.6. On smaller scales, the noise becomes anisotropic and scale-dependent. It
increases along the line of sight and towards smaller scales. This is expected from noise of galaxy
velocities that enters the redshift space distortions along the line of sight. We find that for mildly
nonlinear scales, k . 0.3 hMpc−1, the anisotropic and scale-dependent correction to the white
noise power spectrum is well fit by a k2µ2 term, where µ is the cosine with the line of sight;
see Eq. (3.15). This parametric form of the stochastic noise power spectrum agrees with the
theoretical expectation [16]. We do not find evidence for an additional k2 term, but this may be
specific to the mock galaxies that we used and may be present for other galaxy samples. These
results provide new important evidence that the one-loop power spectrum (including all relevant
counter terms) with the anisotropic scale-dependent noise is a good model for galaxy clustering
in redshift space on large scales and yet another justification for using it in analyzing the real
data [39–41]. Furthermore, the field level measurements of the difference between simulations
and the model provide the most realistic estimates of the so-called theoretical error, and they
can be used instead of templates based on perturbation theory or calibration to simulations at
the power spectrum level [38].

We also studied the continuous velocity field as predicted by perturbation theory and
compared it against simulated galaxy velocities. We found that roughly 90% of the simulated
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galaxies have a velocity that matches the large-scale flows predicted by perturbation theory,
while the remaining 10% of galaxies have larger velocity errors that are responsible for half of
the rms velocity error. Identifying the galaxies with large velocity errors and removing them in
observational settings could be beneficial for parameter inference because it could allow modeling
smaller scales with a modest increase in shot noise; however it is challenging to identify these
galaxies with large velocity errors observationally.

One aspect of our work that could be improved is that we fitted transfer functions that
enter the bias model with simple smooth functions in k and µ rather than modeling their
parametric form from first principles. Doing the latter would be an important next step to
further check the properties of the noise. Another limitation is that galaxies in galaxy surveys
may have different clustering properties and velocities than the simulated mock galaxies that
we considered (subhalos in dark matter-only N-body simulations). It is also possible to extend
the galaxy bias model to higher order in perturbation theory, both in terms of bias operators
and in terms of the order used for the displacement field.
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Spergel, M. A. Strauss, H. Sugai, Y. Suto, H. Takami, and R. Wyse, “Extragalactic science,
cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph,”
Publ. Astron. Soc. Jap. 66 no. 1, (Feb., 2014) R1, arXiv:1206.0737 [astro-ph.CO].

[5] HSC Collaboration, C. Hikage et al., “Cosmology from cosmic shear power spectra with Subaru
Hyper Suprime-Cam first-year data,” Publ. Astron. Soc. Jap. 71 no. 2, (2019) ,
arXiv:1809.09148 [astro-ph.CO].

[6] EUCLID Collaboration, L. Amendola et al., “Cosmology and Fundamental Physics with the
Euclid Satellite,” arXiv:1606.00180 [astro-ph.CO].

[7] LSST Collaboration, P. A. Abell et al., “LSST Science Book, Version 2.0,” arXiv:0912.0201

[astro-ph.IM].
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Relations of Large Scale Structure. Part III: Test of the Equivalence Principle,” JCAP 06 (2014)
009, arXiv:1312.6074 [astro-ph.CO].

– 14 –

http://arxiv.org/abs/1902.05569
http://arxiv.org/abs/1902.05569
http://arxiv.org/abs/2003.08277
http://arxiv.org/abs/2003.08277
http://dx.doi.org/10.1093/mnras/staa623
http://arxiv.org/abs/1911.02610
http://arxiv.org/abs/2011.05331
http://dx.doi.org/10.1016/j.physrep.2017.12.002
http://dx.doi.org/10.1016/j.physrep.2017.12.002
http://arxiv.org/abs/1611.09787
http://dx.doi.org/10.1103/PhysRevD.102.063533
http://arxiv.org/abs/2004.10607
http://arxiv.org/abs/2003.07956
http://arxiv.org/abs/1610.09321
http://dx.doi.org/10.1088/1475-7516/2016/03/007
http://arxiv.org/abs/1507.02255
http://dx.doi.org/10.1103/PhysRevD.98.103532
http://arxiv.org/abs/1807.04215
http://dx.doi.org/10.1103/PhysRevD.100.043514
http://arxiv.org/abs/1811.10640
http://dx.doi.org/10.1088/1475-7516/2018/10/016
http://arxiv.org/abs/1806.08372
http://dx.doi.org/10.3847/1538-3881/aadae0
http://arxiv.org/abs/1712.05834
http://dx.doi.org/10.1103/PhysRevD.77.063530
http://arxiv.org/abs/0711.2521
http://dx.doi.org/10.1093/mnras/sts457
http://arxiv.org/abs/1209.0780
http://arxiv.org/abs/1209.0780
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://arxiv.org/abs/1110.4372
https://doi.org/10.5281/zenodo.1451799
http://dx.doi.org/10.1051/0004-6361/201937423
http://arxiv.org/abs/2003.09442
http://arxiv.org/abs/2003.09442
http://dx.doi.org/10.1088/1475-7516/2014/06/009
http://dx.doi.org/10.1088/1475-7516/2014/06/009
http://arxiv.org/abs/1312.6074
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H. Gil-Maŕın, “The Cosmological Analysis of the SDSS/BOSS data from the Effective Field
Theory of Large-Scale Structure,” JCAP 05 (2020) 005, arXiv:1909.05271 [astro-ph.CO].
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It is instructive to compare the simulated velocities also with other models for the velocity.
Fig. 6 shows the prediction of linear Eulerian perturbation theory for the velocity, k/k2δ1(k).
This is clearly worse than the LPT-based model in the main text, which takes into account the
volume distortions according to the Zeldovich approximation.

One may also wonder whether objects based on friends-of-friends (FOF) halos exhibit
similar velocities. In Fig. 7 we show that the velocity of center-of-mass halos can be modeled
much better. This is not surprising, because center-of-mass halos follow the large-scale velocity
field and there are less or no virial motions involved. In Fig. 8 we show that HOD galaxies
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Figure 6: Same as Fig. 2, but modeling the RSD displacement corresponding to the linear velocity
k/k2δ1(k). This is visibly worse than the LPT model used in Fig. 2.

painted on FOF halos can produce velocities that are more similar to the Rockstar galaxies
described earlier, though there are notable differences, at least for the HOD parameters chosen
here (same as in [42]).
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Figure 7: Same as previous figure, but for the center-of-mass position and velocity of FOF halos with
logM [h−1M�] ≥ 12.8. The LPT velocity model from the main text works rather well for these center-
of-mass FOF halos, without showing the large residuals seen in the main text and in the previous figure.
This shows that main mistake of the model comes from the fact that galaxy or Rockstar subhalo velocities
differ from the center-of-mass velocity of FOF halos. This is caused by the fact that the subhalo velocity
can be offset from the halo core velocity, and due to virial motion of subhalos (e.g. [24]).
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Figure 8: Same as previous figure, but for HOD galaxies painted into FOF halos, compared with the
velocity model from the main text. This looks similar to the galaxy sample in the main text, though
the HOD satellites seem to have larger velocities here. These velocities are based on the NFW profile
assigned to FOF halos.
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B Transfer functions for BOSS CMASS-like galaxies

Fig. 10 shows the transfer functions computed by minimizing the model error for the simulated
BOSS CMASS-like galaxies. This can be fitted by a 7-parameter fitting function as described
in the caption. These fits to the transfer functions (black lines in Fig. 10) are used to compute
the model error in the main text. If one instead uses the full transfer functions (colored lines
in Fig. 10), the resulting error power is slightly lower, but not by much; see Fig. 9. This shows
that the transfer functions can be approximated by smooth functions parameterized by seven
numbers, and that the model does not require the hundreds of free parameters corresponding
to transfer functions that are free functions of k and µ.
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Figure 9: Error power spectrum when using transfer functions βn(k, µ) that are allowed to be free
functions of k and µ and determined by minimizing the error power spectrum.
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Figure 10: Colored lines: Transfer functions when modeling the simulated galaxies with the bias
model (3.13). Black lines: Fit of transfer functions with β1 = 0.99 + 0.96k + 3.9k2 + 0.84kµ4 and
(β⊥2 , β

⊥
G2 , β

⊥
3 ) = (0.11, 1× 10−4,−0.28), where k is in units of hMpc−1. Note that the transfer function

β3 corresponds to simplest cubic operator δ̃3.

C Lower-mass halos

In this appendix we repeat the analysis of the main text for a sample that also includes galaxies
in lower-mass subhalos. Specifically, we populate Rockstar subhalos with galaxies by choosing
log10Mmin[h−1M�] = 11.5 for the mass cut-off (instead of 12.97 used in the main text). The
resulting transfer functions of the bias model is shown in Fig. 12. These are again well-described
by a 7-parameter fitting function. The error power spectrum of the model using these fitted
transfer functions is shown in Fig. 11. This error power spectrum is again well described by
Eq. (3.15) at k . 0.3 hMpc−1. The amplitudes of the stochastic noise contributions are now

cε,1 = 0.723 ,

cε,3 = 6.93

(
kM

hMpc−1

)2

, (C.1)

where the number density of this galaxy sample is n̄g = 3.6×10−3 h3Mpc−3. The k2µ2 stochastic
term is larger than for the higher-mass sample considered in the main text. This is likely
caused by the additional satellite galaxies included in the lower-mass sample, with larger velocity
dispersion. Note that the sample is still based on dark matter-only N-body simulations which
do not include quenching or other effects related to star formation. This makes it nontrivial to
extrapolate the results to galaxies that are selected by specific survey targeting strategies.
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Figure 11: Simulation, model, and error power spectrum Perr(k, µ) for lower-mass subhalos than in the
main text, using a soft lower mass cutoff of log10Mmin[h−1M�] = 11.5 instead of 12.97. The error power
spectrum is well described by Eq. (3.15) (black lines in the right panel). The bias model uses transfer
functions that are fitted with a 7-parameter fitting formula as shown in Fig. 12 as resulting from the bias
model with transfer functions as shown in the previous plot.

0.40

0.45

0.50

0.55

0.60

1

= 0.9
= 0.7
= 0.5
= 0.3
= 0.1

0.2

0.1

0.0

0.1

2

0.0000

0.0002

0.0004

0.0006

0.0008

2

10 2 10 1 100

k [hMpc 1]

0.25

0.20

0.15

0.10

3

Figure 12: Transfer functions for the lower-mass subhalos. Fit of transfer functions: β1 = 0.44+0.38k+
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D Galaxy overdensity in redshift space to cubic order in perturbation theory

In this Appendix we derive the cubic model for the galaxy density field in redshift space used
in the main text. We start from

δsg(k, ẑ) =

∫
d3q (1 + δL

g (q))e−ik·(q+ψs(q)) , (D.1)

and expand the nonlinear displacement terms in the exponent. Omitting the explicit Lagrangian
coordinates for simplicity, we get

δsg(k, ẑ) =

∫
d3q (1 + δL

g )
[
1− ik · ψ̄

]
e−ik·(q+R[1]ψ1)

=

∫
d3q e−ikR

[1]ψ1(1 + δL
g )
[
1 + ψ̄ · ∇q

]
e−ik·q

=

∫
d3q e−ikR

[1]ψ1

[
1 + δL

g + iki(1 + δL
g )R

[1]
il ∂jψ

l
1ψ̄

j − (1 + δL
g )∇ · ψ̄ − ψ̄ · ∇δL

g

]
e−ik·q ,

(D.2)

where
ψ̄(q, ẑ) ≡ R[2](ẑ)ψ2(q) +R[3](ẑ)ψ3(q) . (D.3)

Now we can start simplifying this expression. In the third term in the square brackets we can
drop δL

g since it multiplies expression that is at least cubic in perturbation theory. We can
further replace ki with a derivative with respect to qi of the exponent, do one more integration
by parts and write

δsg(k, ẑ) =

∫
d3q

[
1 + δL

g + ψ̄j∂j(R
[1]
il ∂iψ

l
1) +R

[2]
il R

[1]
jm∂iψ

m
1 ∂jψ

l
2 − (1 + δL

g )∇ · ψ̄

− ψ̄ · ∇δL
g

]
e−ik·(q+R[1]ψ1) , (D.4)

keeping only operators up to cubic order as always. We have achieved that the only k dependence
is in the exponent, and therefore all the terms in the sum can be represented as some shifted
operator. Next, we combine the third and the last term in the square brackets as follows

ψ̄j∂j(R
[1]
il ∂iψ

l
1)− ψ̄ · ∇δL

g = −R[2]
ij ψ

i
2∂j
(
(1 + bL1 )δ1 + fδ

‖
1

)
+ higher orders . (D.5)

Note that this operator is the shift of the linear redshift space solution by the second order
redshift space displacement. This is exactly the structure we expect at cubic order in pertur-
bation theory, and it is a good check that all relevant terms have been kept in the derivation.
Expanding ψ̄ everywhere, we find

δsg(k, ẑ) =

∫
d3q

[
1 + δL

h+R
[2]
il R

[1]
jm∂iψ

m
1 ∂jψ

l
2 − (1 + bL1 δ1)R

[2]
ij ∂iψ

j
2 −R

[3]
ij ∂iψ

j
3

−R[2]
ij ψ

i
2∂j
(
(1 + bL1 )δ1 + fδ

‖
1

)]
e−ik·(q+R[1]ψ1) . (D.6)

To further simplify this formula we can exploit the fact that all perturbative displacements
can be written in terms of the appropriate bias operators as follows [19]

ψi1 = − ∂i
∇2

δ1 , ψi2 =
3

14

∂i
∇2
G2 and ψi3 =

∂i
∇2

(
5

24
Γ3 −

1

9
G3

)
. (D.7)
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Now it is easy to see that the following relations hold

R
[2]
ij ∂iψ

j
2 =

3

14
G2 +

3

7
fG‖2 , (D.8)

R
[3]
ij ∂iψ

j
3 =

5

24
Γ3 −

1

9
G3 +

5

8
fΓ
‖
3 −

1

3
fG‖3 , (D.9)

R
[2]
il R

[1]
jm∂iψ

m
1 ∂jψ

l
2 = − 3

14
δ1G2 +

3

8
Γ3 −

3

14
f2δ
‖
1G
‖
2 −

9

14
fK3 . (D.10)

Putting everything together, we finally arrive at the desired form of the cubic model used in the
main text

δsg(k, ẑ) =

∫
d3q

[
1 + δL

g −
3

14
G2 −

3

14
(1 + bL1 )δ1G2 +

1

6
Γ3 +

1

9
G3

− 3

7
fG‖2 −

3

7
fbL1 δ1G‖2 −

5

8
fΓ
‖
3 +

1

3
fG‖3 −

9

14
fK3 −

3

14
f2δ
‖
1G
‖
2

−R[2]
ij ψ

i
2∂j
(
(1 + bL1 )δ1 + fδ

‖
1

)]
e−ik·(q+R[1]ψ1) . (D.11)
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