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Abstract. The upgraded LHCb detector, due to start datataking in 2022, will
have to process an average data rate of 4 TB/s in real time. Because LHCb’s
physics objectives require that the full detector information for every LHC
bunch crossing is read out and made available for real-time processing, this
bandwidth challenge is equivalent to that of the ATLAS and CMS HL-LHC
software read-out, but deliverable five years earlier. Over the past six years,
the LHCb collaboration has undertaken a bottom-up rewrite of its software in-
frastructure, pattern recognition, and selection algorithms to make them better
able to efficiently exploit modern highly parallel computing architectures. We
review the impact of this reoptimization on the energy efficiency of the real-
time processing software and hardware which will be used for the upgrade of
the LHCb detector. We also review the impact of the decision to adopt a hybrid
computing architecture consisting of GPUs and CPUs for the real-time part of
LHCb’s future data processing. We discuss the implications of these results on
how LHCb’s real-time power requirements may evolve in the future, particu-
larly in the context of a planned second upgrade of the detector.

1 Introduction

The upgrade of the LHCb detector, due to begin datataking in Run 3, will use a triggerless
readout to send the raw data for the full 30 MHz of LHC bunch crossings to a custom data
processing centre. Its dataflow is illustrated in Figure 1. With a peak data rate of 5 TB/s and
an expected average rate of 4 TB/s, LHCb’s upgrade will have to handle similar data rates as
the ATLAS and CMS HL-LHC software triggers, but around five years earlier, making this
one of the most complex data processing challenges in HEP today.
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Figure 1. Dataflow in the upgraded LHCb detector, reproduced from [2].

This data processing will use off-the-shelf components to first build the raw bunch cross-
ing fragments from each subdetector into a single “event” (Event Building), and subsequently
to group the detector hits into higher level physics objects (High Level Trigger or HLT) and
decide whether these are of sufficient interest to warrant further analysis of the event. Its
requirements and design were described in [1]. The first HLT stage (HLT1) performs a par-
tial event reconstruction based on a relatively small subset of inclusive selection algorithms,
each of which selects a general topology of interest to a range of LHCb’s physics analyses.
The events which receive a positive decision at HLT1 are then processed by HLT2, which
performs a full reconstruction and uses hundreds of selection algorithms to fully build and
isolate signal candidates of interest to specific LHCb analyses. The events which receive a
positive decision at HLT2 are recorded to permanent storage and sent to the GRID for further
processing and distribution to the analysts.

LHCb’s real-time processing software is historically based on the GAUDI [3] framework,
with a number of additional features related to data integrity and the bookkeeping of prove-
nance information required by the real-time use case. At the start of Run 1 the HLT ran
a significantly simplified version of the offline pattern recognition and event selection al-
gorithms, even in HLT2. [4] Over the course of Run 1 the available processing power was
increased and the processing algorithms gradually made faster, so that by Run 2 LHCb was
able to deploy its full offline reconstruction in HLT2. [5] This led to the so-called “Real Time
Analysis” (RTA) processing model which remains the baseline for the LHCb upgrade. [6, 7]

In the RTA model, events selected by HLT1 are buffered for long enough to perform
an offline-quality detector alignment and calibration. This in turn allows the full detector
reconstruction deployed in HLT2 to build complete signal candidates of interest, and then
record only information strictly necessary for the final physics analysis of those candidates,
throwing away the raw detector information and most of the intermediate pattern recognition
objects. The RTA model was further refined during Run 2 datataking to allow an analysis-
specific subset of raw detector data or associated pattern recognition objects to be appended
to each RTA signal candidate. [8] This transformed the binary choice between the traditional
offline and RTA analysis models into a spectrum, which each analyst could tune to balance
the data rate per selected event in the way which best suited their analysis.

LHCb decided on the basic parameters of its upgrade real-time processing architecture,
including cost, in 2014. At the time CPUs were expected to rapidy evolve towards having
dozens if not hundreds of cores. This guided LHCb’s priorities: the software had to become
thread-safe, and the transient data classes had to become much lighter to fit better into the
processor cache and optimally support vectorized computations. In parallel LHCb hedged its



bets by implementing various reconstruction algorithms on GPUs and other highly parallel
architectures. These efforts converged in 2020, with LHCb choosing a GPU architecture for
HLT1 while remaining with the traditional CPU architecture for HLT2. [9, 10]

The fact that this hybrid architecture could be delivered within the available cost envelope
is a combination of the price evolution of the GPU and CPU architectures, the ability to
exploit CPU processing resources left over from Run 2, and performance gains made by
LHCb’s software developers over the past years. Although this performance evolution has
been documented in public notes, we summarise it here in a coherent manner, making clear
the importance of each component. We document for the first time the impact of the new
GPU and CPU architectures, and the performance gains of LHCb’s software, on the power
consumption of the system. Finally, we discuss the implications of these developments on
the future evolution of LHCb’s real-time processing, particularly in the context of a planned
second upgrade of the LHCb detector. [11, 12]

2 Evolution of LHCb’s HLT performance

We will use HLT1 in order to illustrate how the performance of LHCb’s software developed
over the past years. As this part of the codebase has to handle the biggest processing through-
put, of around 30 MHz and 4 TB per second, it also places the most stringent requirements on
the software framework and algorithms, and exposes suboptimal implementations that could
remain hidden in later processing steps where more time is available. It is worth noting here
that because of LHCb’s budget constraints, HLT1 had to be implemented on O(104) physical
cores, which at 30 MHz requires a processing rate of 3 kHz from each core. This is a good
demonstration of how LHCb’s asynchronous DAQ architecture, and the use of deep memory
buffers in the servers which receive the event data, allows to hide the latency inherent with
the use of CPU (and later GPU) architectures while operating in a per-bunch-crossing time
budget typically associated with FPGAs.

The main goal of the HLT1 trigger is to find charged particles (tracks) in LHCb’s ver-
tex detector and the tracking system downstream of the LHCb magnet, combine them into
charged particle trajectories, and identify particularly interesting one- and two-track combi-
nations in order to decide which events to keep for further processing. Muon identification is
used to allow looser kinematic and geometric selection criteria to be applied in muonic final
states. The evolution of the HLT1 CPU throughput is summarized in Figure 2. Although the
plotting begins at the start of 2019, the gains made during 2019 were of course in large part
due to preparatory work done between 2016 and 2019 to which it is difficult to do justice on
a plot, since many of the components had to come together before really significant improve-
ments could be seen. Nevertheless, the plot and its legend summarise the essential steps in
the process. The achieved gains were a combination of three complementary development
directions:

1. The “physics” reoptimization of algorithms, for example tightening search windows
and selection criteria in the charged particle reconstruction, and using a simplified
straight-line track fit instead of a Kalman fit. These changes gained about a factor
two in throughput performance without significant losses in the physics performance,
but would not on their own have been enough to make the system viable for Run 3.

2. Reoptimization of the transient data structures inspired by the PODIO [14] paradigm.
This work involved the removal of unnecessary pointer chasing, a switch to SIMD-
friendly structure-of-arrays format wherever possible, and the removal of unnecessary
data members to minimize memory use and fit better into the CPU cache.



Figure 2. The evolution of HLT1 throughput as measured on a reference dual-socket E5-2630-v4 Intel
Xeon node, reproduced from [13]. Expected pileup per bunch: 6.

3. A complete rewrite of the key tracking algorithms in order to vectorize the majority
of time-consuming computational steps, taking advantage of the lighter and SIMD-
friendly data structures designed in the previous step. The combination of vectorized
algorithms and lighter data structures gained over a factor two in performance on top
of what was achieved through physics optimizations alone.

In addition a dedicated optimization of the I/O configuration was required because of the
extremely high per-core throughputs which had to be sustained. Thanks to this optimization,
throughputs of over 5 kHz or 500 MB per second per physical CPU core could be achieved
without saturating the I/O as documented in [15]. In particular this work enabled the efficient
use of AMD’s new EPYC generation of CPUs, which were released in 2019 and offered up
to 64 physical cores per socket as compared to the 10 cores of the reference E5-2630-v4 Intel
Xeon node which formed the backbone of LHCb’s Run 2 real-time processing infrastructure.
The performance of LHCb’s CPU HLT1 on the 7502 AMD EPYC with 32 physical cores per
socket was also documented in [13], reaching 171 kHz per dual-socketed server, a factor 4.5
times faster than the reference dual-socket E5-2630-v4 Intel Xeon node. As the TDP of the
7502 EPYC is 180 Watts, while that of the E5-2630-v4 Xeon is 85 Watts, it seems apparent
that the new generation of servers would also enable a significant improvement in energy
efficiency, as we will document quantitatively in the next section.

In parallel to this reoptimization of its CPU software, LHCb had been pursuing R&D ac-
tivities into GPUs and other highly parallel computing architectures since the early 2010s. In
early 2018, since there was not yet a CPU HLT1 which could fit into the available computing
resources, it was decided to attempt to implement the full HLT1 on GPUs as a hedge against
the possibility that the CPU implementation would not make it in time. This project, code-
named “Allen”, successfully concluded in 2020 and demonstrated sufficient benefits over the



CPU implementation that LHCb finally decided to switch its baseline to a GPU HLT1. This
decision was taken despite the fact that by 2020 the optimized CPU HLT1 discussed earlier
could fit into the available computing resources, and the reasons for it have been documented
in more detail elsewhere. [16] In terms of software design both the CPU HLT1 and GPU
HLT1 followed analogous design principles for efficient, parallel and architecture-aware pro-
gramming. The latest documented performance of the GPU HLT1 can be found in [17]; for
the purposes of this paper the relevant number is a throughput of 148 kHz on a reference
Nvidia GeForce 2080 Ti GPU with a TDP of 250 Watts. Here again we see that LHCb’s
asynchronous processing architecture allows a GPU to leverage its parallel processing capa-
bilities so that a compact system of O(200) GPU cards, comparable to the number of boards
typically used in “hardware” first-level triggers, is capable of ingesting the full bunch cross-
ing rate of 30 MHz. The beauty of this system is that by eliminating latency from the equation
we do not have to provide a decision within microseconds, but rather that we “just” have to
manage a high average throughput.

3 Impact on power consumption

The improvements in processing speed documented in the previous section also clearly im-
ply an improvement in the energy efficiency of the system, in other words the number of
trigger decisions which can be taken per kWh of energy consumed. While the improvement
documented from the physics and software reoptimization of the CPU HLT1 can be easily
translated into a gain in energy efficiency, the improvement from using a more modern CPU
or from using a GPU cannot be deduced simply from the processor’s TDP, as overheads re-
lated to the server, as well as software inefficiencies which not always allow to reach the full
TDP, must also be taken into account. We have therefore carried out a dedicated set of power
consumption measurements for three reference architectures: a dual-socket E5-2630-v4 Intel
Xeon node1; a dual-socket 7502 AMD EPYC2 node; and the same dual-socket AMD 7502
EPYC node with between one and three GeForce RTX 2080 Ti3 Nvidia GPUs.

In the case of the two CPU architectures we take the total power consumption of the server
as the reference measurement. In the case of GPUs the calculation is a bit more difficult.
The GPUs are hosted opportunistically in the same servers used for LHCb’s real-time event
building (Event Building Nodes), replacing two high-speed network cards which would have
otherwise been required to send data to a CPU HLT1 implemented in dedicated CPU servers.
We therefore take the difference between the power consumption of the server when the GPUs
are idle and when they are under load, and subtract the power consumption of the network
cards which are no longer required to be present. The results are presented in Table 1 under
the network replacement heading. The table also contains the calculation for a dedicated
GPU machine. I.e. instead of putting the GPUs into the Event Building Nodes, data would
be sent to dedicated GPU servers which contain appropriate numbers of network cards and
processing GPUs.

Compared to Run 2 LHCb has gained over an order of magnitude in energy efficiency,
with the gains divided rather evenly between improvements in the physics logic of HLT1,
improvements in the underlying software architecture and the use of SIMD programming
paradigms, and improvements from the use of newer processing architectures such as AMD’s
EPYC CPUs or Nvidia GPUs.

The power measurements were performed using the server internal power monitoring of
the baseboard management controller (BMC). The Xeon platform comes in the form factor

1Quanta DA0S2SMBCE0
2Gigabyte G482-Z5
3Gigabyte GV-N208TTURBO-11GC-rev-10



Table 1. Energy per trigger decision, in Millijoule, of different HLT1 architectures. The gain and
cumulative gain are given with respect to the previous row in the table. For the exclusive and pure
GPU rows, the gain and cumulative gain in power consumption are given with respect to the 7502
EPYC architecture. For the GeForce RTX 2080 Ti results, NR stands for “network replacement”.

Architecture Energy per trigger (mJ) Gain Total gain
E5-2630-v4 Xeon

Before SW optimization 39.9 1.0x
w/Physics optimizations 21.0 1.9x 1.9x
w/SIMD optimizations 8.4 2.5x 4.8x

7502 EPYC
w/SIMD optimizations 3.2 2.6x 12.5x

Event Building Node, NR
1 GPU 3.1 1.03x 12.9x
2 GPUs 2.4 1.29x 16.6x
3 GPUs 2.1 1.15x 19.0x

Dedicated GPU machine
4 x 2080 Ti + 2 Network Cards 2.8 1.14x 14.3x
5 x 2080 Ti + 3 Network Cards 2.5 1.12x 16.0x

Pure GPU machine
8 x 2080 Ti + Onboard Network 2.1 1.15x 19.0x

of a quad node (4 servers sharing one power supply and cooling system). These high density
servers are generally regarded as extremely power efficient. For a fair comparison we ran
our software on all 4 machines and then normalized to a single node. The AMD EPYC
platform for this test was a single unit chassis which is normally used as a GPU hosting
machine for up to 8 cards. Since these chassis are less power efficient to cope with the
expected GPU hardware inside, we tuned the cooling system (for the CPU-only runs) to a
mode that provided only cooling for the CPUs. For the GPU and GPU + Event Building
configurations the cooling system was tuned to for the requirements of the DAQ cards. While
these cards consume less power than a GPU, their thermal management is not as sophisticated
and requires much higher air flows than GPUs. Each test configuration on all platforms was
run and averaged over at least 10 minutes to allow the values to stabilize.

Since the AMD platform provides excellent instrumentation for power measurements we
are able to go into a bit more detail and Figure 3 provides a breakdown of the consumption
of the various main components in the server. This break down tries to illustrates why there
is such a wide range of power efficiency values for different GPU configurations.

• 7502 EPYC with SIMD: The machine is only used to perform trigger decisions on the CPU,
which was the candidate of the original CPU based trigger architecture. As expected, this
configuration is dominated by CPU and Memory power consumption.

• 2 GPUs: The machine contains only 2 GPU cards which run the trigger. the CPU is mostly
idle and is only orchestrating and monitoring the data flow to the GPU. This configuration
contains no network cards and is dominated by cooling and the GPU. It is included here to
illustrate the differences to the next configuration.

• Event Building Node + 2 GPUs: The current candidate for the combined event builder +

HLT1 trigger. While the GPUs consume about one third of the total power consumption,
about a quarter of the power consumption goes into the DAQ task of the machine (event
building network and DAQ FPGA cards). Note: The network depicted here is not the



Figure 3. Power distribution of AMD EPYC platform according to the different extension card config-
urations described in the text.

same network that the GPUs are replacing. This would be another slice, equivalent to the
network part shown here.

• Pure GPU machine (8 x 2080 Ti): This configuration is what the machine was originally
designed to do. It is of very little use to us, since it does not have enough network bandwidth
to feed the GPUs with data in our case. It is used here illustrates the typical use case for a
GPU focused processing node with lower throughput requirements.

Since cooling is such a large contributor in all configurations, it is important to take it
into account for the efficiency calculations. In the case of the network replacement section
of Table 1 we additionally distribute the power for cooling proportionally to the cards that
are in the server. I.e. The EB Node + 2 GPUs configuration contains 2 GPU cards, 2 event
building network cards and 3 DAQ cards. Of the 390 W going into the chassis fans, only 2

5
is attributed to the GPU cards. While this might seem a bit unfair at first (the GPUs consume
more power) the cooling requirements are solely driven by the DAQ cards. The heat spreaders
on the DAQ cards are less efficient than the GPUs and the GPUs are actually overcooled in
this configuration. Energy per compute efficiency could be at the 8 GPUs level if we could
tune for the GPU requirements only.

4 Conclusions and implications for the future

The power consumption of real-time processing architectures has traditionally been a sec-
ondary consideration compared to their physics performance and cost. However, as our ex-
periments prepare to process ever bigger and more complex datasets in decades which will



be dominated by the fight against global warming, we must expect this situation to change.
To put the results of Table 1 in context, LHCb’s detector and support electronics consume
approximately 0.6 MW. LHCb’s warm dipole magnet has a power consumption of 4.2 MW.
Had LHCb done no work to improve the efficiency of its software, the power consumption
of an HLT1 implemented on Intel’s E5-2630-v4 Xeon servers (which formed the backbone
of LHCb’s Run 2 real-time processing) would have exceeded 1.2 MW. If we add to this the
power consumption of HLT2 as documented at the start of 2019 in [18], which must process
an input event rate of at least 1MHz, we would have reached an overall power consumption
of over 4.8 MW, even without taking into account the overheads due to network communica-
tions, the disk servers which LHCb uses to buffer data while performing real-time alignment
and calibration, and so on. Even if such a processing could be economically affordable, the
relevant power consumption would be hard to defend. Additionally, LHCb’s new data pro-
cessing facilities (HLT1, HLT2, Event Building and data Buffering) are limited to 2.0 MW,
which would have been insufficient. Even with the gain in compute power of more modern
processors we would have fallen short here.

Looking further ahead, LHCb is currently proposing to build a second upgrade [11] in
the 2030s which would roughly speaking increase the data rate and hence processing com-
plexity by another order of magnitude. It is then clear that without significant gains in energy
efficiency, the situation will quickly become untenable.

Fortunately, as we have documented, such significant gains have been achieved over the
past years through a combination of software optimization, physics improvements, and ex-
ploitation of new processing architectures. The overall gain of one order of magnitude in
energy efficiency is split fairly evenly between these different components, although the re-
thinking of our algorithms and software framework to support SIMD and SIMT processing
paradigms is undoubtedly the single most important aspect contributing to this improvement.
The financial savings associated with this improvement is a modest 76 kEUR per year.4 The
situation with HLT2, where much larger potential power savings are available, is complicated
by the necessity to reuse LHCb‘s existing Run 2 servers due to financial constraints. On one
hand, optimizing for these legacy machines would give better efficiency, on the other hand it
is not clear how much of these efforts can be ported over to more modern architectures. Some
of the machines here are reaching 10 years of service. We expect analogous improvements
and savings there on the timescale of the second LHCb upgrade, when these machines can be
replaced by more modern architectures.

As encouraging as these results are, a word of caution is required with regards to the
future. The improvements to our software in order to exploit SIMD and SIMT processing
paradigms are not something we can expect to easily repeat for the second upgrade. While
further incremental improvements are certainly to be expected, gaining factors from purely
software engineering improvements is unlikely. Another way to look at this is that the opti-
mized HLT1 codebase saturates the FLOP capacity of current CPU architectures. The situa-
tion is not quite the same for GPUs, where the available theoretical FLOPs remain far larger
than those used by the current GPU HLT1 implementation. However the fragmented nature
of GPU processors and their cores which specialize in one kind of calculation or another
mean that fully exploiting the theoretical computing capacity for complex HEP workflows
will be difficult if not impossible. Gaining another order of magnitude in energy efficiency in
time for the second LHCb upgrade will therefore require a great deal of patient optimization
of each component in our processing chain.

4If we assume 6 · 106 seconds of datataking per year and the cost of 0.042 Euro per kWh for electricity which
CERN pays. [19]
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