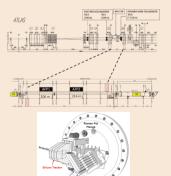
The ATLAS Forward Proton Time-of-Flight detector: use and projected performance for LHC Run3

9th Edition of the Large Hadron Collider Physics Conference

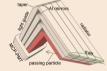
Tomáš Komárek tomas.komarek@cern.ch

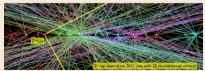
On behalf of ATLAS Forward Detectors


Joint Laboratory of Optics of Palacky University and FZÚ AV ČR 17. listopadu 50A, 772 07 Olomouc Czech Republic

10-11 June 2021

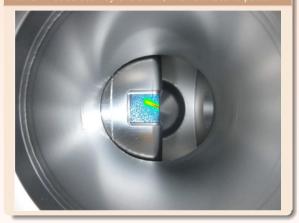
The AFP project

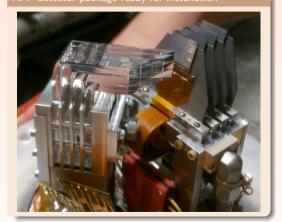

AFP stations


- ATLAS Forward Proton
- Forward detector focused on diffractive protons
- \blacksquare Detector packages placed in four Roman Pot stations located on both sides, $\sim 210\,\mathrm{m}$ from ATLAS collision point
- 3D silicon tracker + ToF (only far stations)

ToF detector

- A fast Cherenkov timing detector
- 4x4 channel matrix, 4 bars form a train
- Purpose:
 - reduce background by mathing vertex reconstructed by central ATLAS detector with one computed from proton arrival time difference
 - provide fast trigger



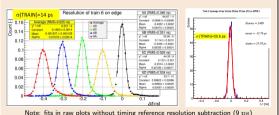

 Expected background reduction: factor of 10 for 20 ps detector.

AFP – how the real thing looks like

Roman Pot as seen by the beam, with diffractive pattern

AED detector package ready for installation

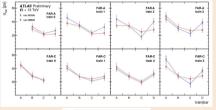
Timing resolution results


Beam test

Results obtained at SPS NA beam test (140 GeV pions)

Raw PMT signal (oscilloscope): 20 ps single channel, 14 ps train combined

After passing High Performance Time to Digital Converter (HPTDC): 20.6 ps train combined


Timing resolution distributions (raw left, HPTDC right)

Performance analysis of 2017 data

- Poor efficiency of few percent (PMT degraded fast)
- Good timing resolution (21 ps) nonetheless!

Timing resolution of individual channels, vertex matching distribution

Performance of the ATLAS Forward Proton Time-of-Flight Detector in 2017,

ATL-FWD-PLIR-2021-002

Upgrades and summary

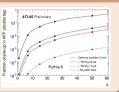
Photomultipliers

Long life tubes with low MCP resistance, operated at low gain (performance would deteriorate at high rates)

Out of Vacuum solution

Out of vacuum redesign – PMT moved out of the pot \rightarrow easier access to electronics, new alignment system

Glueless ToF bars


Glue absorbed some deeper UV signal, was a radiation hardness weak point

Flectronics

- Faster read-out: PicoTDC instead of HPTDC
- Remotely controlled amplifiers
- Better PMT interference shielding
- Modified HV divider improved timing and efficiency at low PMT gain

Expected timing and background suppression

- \sim 25 30 ps single bar
- $ightharpoonup 20-25\,\mathrm{ps}$ train combined
- Without PicoTDC a bit worse (~ 16 ps HPTDC contribution)

