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Abstract: Muon beams of low emittance provide the basis for the intense, well-characterised
neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon
collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the
principle of ionization cooling, the technique by which it is proposed to reduce the phase-space
volume occupied by the muon beam at such facilities. This paper documents the performance of
the detectors used in MICE to measure the muon-beam parameters, and the physical properties of
the liquid hydrogen energy absorber during running.
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1 Introduction

Stored muon beams have been proposed as the basis of a facility capable of delivering lepton-
antilepton collisions at very high energy [1, 2] and as the source of uniquely well-characterised neu-
trino beams [3–5]. In the majority of designs for such facilities the muons are produced from the de-
cay of pions created when an intense proton beam strikes a target. The phase-space volume occupied
by the tertiary muon beam must be reduced (cooled) before the beam is accelerated and subsequently
injected into a storage ring. The times taken to cool the beam using techniques that are presently in
use at particle accelerators (synchrotron-radiation cooling [6], laser cooling [7–9], stochastic cool-
ing [10], electron cooling [11] and frictional cooling [12]) are long when compared with the lifetime
of the muon. Ionization cooling [13, 14], in which a muon beam is passed through a material (the
absorber) where it loses energy, and is then re-accelerated, occurs on a timescale short compared
with the muon lifetime. Ionization cooling is therefore the only technique available to cool the muon
beam at a neutrino factory or muon collider. The international Muon Ionization Cooling Experiment
(MICE) provided the proof-of-principle demonstration of the ionization-cooling technique [15].

MICE operated at the ISIS Neutron and Muon Source at the STFC Rutherford Appleton
Laboratory. The ISIS synchrotron accelerates pulses of protons to a kinetic energy of 800 MeV
at 50 Hz. For MICE operation, a titanium target was dipped into the halo of the proton beam at
0.78 Hz. Pions created in the interaction of the beam and target were captured in a quadrupole triplet
(see figure 1). A beam line composed of dipole, solenoid, and quadrupole magnets captured muons
produced through pion decay and transported the resulting muon beam to the MICE apparatus. The

– 1 –
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momentum of the muon beam was determined by the settings of the two dipole magnets D1 and D2.
Beams having muon central momenta between 140 MeV/𝑐 and 240 MeV/𝑐 were used for ionisation
cooling studies. The emittance of the beam injected into the experiment was tuned using a set of
adjustable diffusers, some made of tungsten and some of brass. The cooling cell was composed of
a liquid hydrogen or lithium hydride absorber placed inside a focus coil (FC) module, sandwiched
between two scintillating-fibre trackers (TKU, TKD) placed in superconducting solenoids (SSU,
SSD). Together, SSU, FC, and SSD formed the magnetic channel. The MICE coordinate system is
such that the 𝑧-axis is coincident with the beam direction, the 𝑦-axis points vertically upwards, and
the 𝑥-axis completes a right-handed coordinate system.

Figure 1. MICE, top (a) and side (b) views, showing the full beam line starting from the target position
on the proton synchrotron with the quadrupoles and dipoles (Q1 to Q9, D1, D2), the Decay Solenoid, and
instrumented magnetic channel elements (including the trackers upstream, TKU, and downstream, TKD, of
the cooling channel, placed inside superconducting solenoids, respectively SSU and SSD) with all the other
PID detectors (three TOF stations, two Ckov detectors, KL and the EMR). The cooling cell, defined to be
the liquid hydrogen absorber vessel inside the focus coil (FC), is shown in figure 17.

MICE measured the passage of single particles through the apparatus which were aggregated
into a beam offline. This paper documents the performance, during 2015-2017, of the instrumenta-
tion which was used to fully characterise the beam and its evolution along the magnetic channel, and
quantifies the physical properties of the liquid hydrogen absorber. The beam instrumentation con-
sisted of three time-of-flight detectors (TOF0, TOF1, TOF2) discussed in section 2, two threshold
Cherenkov counters (CkovA, CkovB) discussed in section 3, a sampling calorimeter (KL) discussed
in section 4, a tracking calorimeter (EMR) discussed in section 5, and the scintillating-fibre trackers
discussed in section 6. The properties of the liquid hydrogen absorber are described in section 7.

– 2 –
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2 Time-of-flight detectors

Three scintillator hodoscopes were used: to measure the time of flight (TOF) of the particles that
made up the beam; to measure the transverse position at which the particle crossed each of the detec-
tors; and to provide the trigger for the experiment. TOF0 and TOF1 [16–18] were placed upstream of
the magnetic channel, while TOF2 [19] was located downstream of the channel, mounted in front of
the KL pre-shower detector (see figure 1). At 240 MeV/𝑐, the difference in the TOF for a muon and
a pion between TOF0 and TOF1 was about 1.3 ns. The system was therefore designed to measure
the TOF with a precision of 100 ps. This allowed the TOF between the first pair of TOF stations to
be used to discriminate between pions, muons, and electrons, contained within the beam, with near
100% efficiency [20]. In addition, by assuming a mass hypothesis for each particle, the TOF mea-
surement was used to infer the particle momentum. The TOF detectors, which operated smoothly
during the running periods, were essential for all the measurements that were performed [15, 20–24].

Each TOF station was made of two planes of 1 inch thick scintillator bars oriented along the 𝑥
and 𝑦 directions. The bars of TOF0 (TOF1, TOF2) were made of Bricon BC-404 (BC-420) plastic
scintillators. A simple fishtail light-guide was used to attach each end of each bar to Hamamatsu
R4998 fast photomultiplier tubes (PMTs). Each PMT was enclosed in an assembly that included
the voltage divider chain and a 1 mm thick 𝜇-metal shield. For TOF1 and TOF2 an additional soft
iron (ARMCO) local shield was also used [25, 26]. The shield was required to reduce the stray
magnetic field within the PMT to a negligible level [18]. To increase the count-rate stability, active
dividers were used. One TOF detector is illustrated in figure 2.

Figure 2. The structure of the time-of-flight detectors [16, 18] showing the horizontal and vertical layers of
slabs (left) and an exploded view of each slab (right). The components of each slab are the central scintillator
bar, two fishtail, clear plastic light-guides coupled to clear plastic matching pieces, and two PMTs. The beam
direction is represented by the blue arrow perpendicular to the slabs.

The active areas of the three hodoscopes were 40×40 cm2 (TOF0), 42×42 cm2 (TOF1), and
60×60 cm2 (TOF2). Each of the planes in TOF0 and TOF2 had 10 slabs while those in TOF1
had 7. A passive splitter was used to take the signal from each of the PMTs to a LeCroy 4115
leading-edge discriminator followed by a CAEN V1290 TDC for time measurement and to a CAEN
V1724 FADC for pulse-height measurement. A local readout trigger was issued if the signals from
each of the two PMTs on a single slab crossed a specific threshold and overlapped. TOF1 was used
to trigger the readout of the experiment for most of the data taking.

– 3 –
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Calibration. The intensity of the scintillation light produced when a particle crossed the plastic
scintillator rose rapidly before decaying with a characteristic time of 1.8 ns. The scintillation light
travelled from the particle-crossing point to each end of the scintillator slab. The light’s travel time
depended on the distance of the particle crossing from the PMT. The propagation speed of the light
pulse along the slabs was determined to be 13.5 cm/ns.

The local readout-trigger signal was distributed to all TDC boards and was used as the reference
time. The time between a particle hit in a TOF slab and the time when the trigger was generated
varied with the position of the hit along the slab. As a consequence, the reference time had an
offset dependent on the crossing position, an effect referred to as the readout-trigger signal delay.
To compensate for this, the final time measurement in each station was an average of the times
recorded for each channel above threshold.

Further delay was introduced by the signal-transit time of each PMT and of the cable that led
the signal to the readout electronics. These signal-transit times were unique for each individual
readout channel and were determined by dedicated measurements. The use of a linear, leading-edge
discriminator led to a correlation between the total charge in the pulse and the time at which the
discriminator fired. This correlation, referred to as the time-walk, introduced a systematic offset in
the time recorded by the TDC that was dependent on the pulse height.

Precise determination of the TOF required a calibration procedure that allowed channel-by-
channel variations in the response of the system to be accounted for. The calibration procedure
described in [27] accounted for each of the effects identified above.

Reconstruction. A particle crossing a TOF station passed through two orthogonal slabs. Signals
from each PMT were corrected for time-walk, readout-trigger signal delay, and the channel-specific
delays. The slab-crossing time was taken to be the average of the corrected PMT times. Two slab
signals were taken to have been produced by the passage of a particle if their slab-crossing times
were within a 4 ns window. These two matched slabs were used to define a pixel of area given
by the width of the slabs. The particle-crossing time was then determined as the average of the
slab-crossing times and the approximate position of the particle crossing was refined using the PMT
signals in the two orthogonal slabs.

Performance. The difference, Δ𝑡, between the slab-crossing times for matched slabs was used to
determine the intrinsic time resolution, 𝜎𝑡 of the TOF system. The Δ𝑡 resolution, 𝜎Δ𝑡 , is given by
𝜎Δ𝑡 = 2𝜎𝑡 , assuming that the intrinsic resolution is the same in each of the planes that make up a
particular TOF station. Figure 3 shows the distributions of Δ𝑡 for TOF0, TOF1, and TOF2 for a
representative set of data taken in 2017. The RMS width of the distributions are 114 ps, 126 ps,
and 108 ps for TOF0, TOF1, and TOF2 respectively. The distributions are similar, and the RMS of
each distribution is consistent with the measured intrinsic resolution of approximately 60 ps [18].

Figure 4 shows an example distribution of the measured TOF between TOF0 and TOF1. The
TOF peaks characteristic of electrons, muons, and pions are clearly separated. The width of the
electron peak is approximately 0.10 ns, consistent with the spread calculated from a naive quadrature
addition of the timing resolution of the individual TOF stations.

– 4 –
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   Dt [ns]    Dt [ns]    Dt [ns] 

Figure 3. Slab Δ𝑡 distributions. Total width of the distribution is due to the resolution of the individual
channels and due to the offsets in their Δ𝑡 distributions.

Constant  4619.19
Mean      25.37
Sigma      0.10

24 26 28 30 32 34 36 38
Time [ns]

0

1000

2000

3000

4000

Mean      30.19
RMS      0.37

TOF1 - TOF0
Mean     
RMS    0.10

 25.37  MICE
MAUS v3.2.0

Figure 4. Time of flight between TOF0 and TOF1 after all corrections have been applied. The electron
(left-most peak, shown in red), the muon (central peak, shown in green), and the pion (right-most peak,
shown in blue) peaks are clearly separated.

3 Cherenkov detectors

The threshold Cherenkov counters were designed to distinguish muons from pions at particle
momenta & 200 MeV/𝑐, where the precision of the time-of-flight measurement was not sufficient
for conclusive identification. Two high-density silica aerogel Cherenkov detectors with refractive
indices 𝑛=1.07 (CkovA) and 𝑛=1.12 (CkovB) were used [28]. The structure of the detectors is
shown in figure 5. Light was collected in each counter by four eight-inch, UV-enhanced PMTs and
recorded using CAEN V1731 FADCs [29]. The two detectors were placed directly one after the
other in the beamline and located just after TOF0.

The refractive indices of CkovA and CkovB result in detection thresholds for muons of ap-
proximately 280 MeV/𝑐 and 210 MeV/𝑐 respectively. For pions, the thresholds are approximately
367 MeV/𝑐 (CkovA) and 276 MeV/𝑐 (CkovB). MICE was designed to operate using beams with a
central momentum between 140 MeV/𝑐 and 240 MeV/𝑐. The Cherenkov counters’ thresholds were
chosen to provide muon identification for beams of 210 MeV/𝑐 and above, while the TOFs provide
muon identification for beam below 210 MeV/𝑐. Unambiguous identification of particle species
using the Cherenkovs exploited the momentum measurement provided by the trackers.

– 5 –
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Figure 5. MICE aerogel Cherenkov counter: a) entrance window, b) mirror, c) aerogel mosaic, d) acetate
window, e) GORE DRP reflector panel, f) exit window and g) eight-inch PMT in iron shield. The beam
direction is represented by the blue arrow traversing the detector.

Performance. The performance of the detectors was determined using beams for which the
momentum range was broad enough to observe the turn-on points and to allow the asymptotic light
yields (as the particle velocity divided by the speed of light, 𝛽, approaches 1) to be obtained from
fits to the data. The normalised photo-electron yields observed in CkovA and CkovB are plotted
as a function of 𝛽𝛾 (where 𝛾 = (1 − 𝛽2)− 1

2 ) in figure 6. The pedestal in the photo-tube response
arising from background photons has been subtracted. The approximate turn-on points for CkovA
and CkovB were found at 𝛽𝛾 ≈ 2.6 and ≈ 2.1 respectively, corresponding to refractive indices of
𝑛 ≈ 1.07 and ≈ 1.11 which are in broad agreement with the properties of the aerogel radiators.

Figure 6. Photoelectron yields versus 𝛽𝛾 in CkovA and CkovB, where 𝛽𝑐 is the particle velocity and
𝛾 = (1 − 𝛽2)− 1

2 .

– 6 –
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Figure 7. Single slab design of MICE KLOE-Light Calorimeter [31]; only one of the six PMT assemblies
is shown. The beam direction is represented by the blue arrow traversing the slab.

4 KLOE-light calorimeter

The KLOE-Light (KL) pre-shower sampling calorimeter was composed of extruded lead foils in
which scintillating fibres were placed. At normal incidence the thickness of the detector was 2.5
radiation lengths. The detector provided energy deposition and timing information and was used to
distinguish muons from decay electrons [20]. The KL consisted of a series of layers of 1 mm diameter
BICRON BCF-12 scintillating fibres embedded in an appropriately shaped lead sheets (see figure 7).
Each fibre was separated by 1.35 mm from its neighbours within a layer and the distance between
the centres of the fibres in adjacent layers was 0.98 mm. One layer was shifted by half the fibre pitch
with respect to the next. The volume ratio of scintillator to lead was approximately 2:1, “lighter”
than the ratio of 1:1 used in the similar calorimeter of the KLOE experiment [30]. Lead/scintillator
layers were stacked into slabs, 132 mm in depth. A total of 7 slabs formed the whole detector, which
had an active volume of 93 cm×93 cm×4 cm. Scintillation light was guided from each slab into a
total of six PMTs (three at each end). Iron shields were fitted to each photomultiplier to mitigate the
effect of stray magnetic fields. The signal from each PMT was sent to a shaping amplifier module
that stretched the signal in time to match the sampling rate of the CAEN 1724 FADCs.

Performance. To study the response of the KL, the particle momentum was determined from the
measured time-of-flight between TOF0 and TOF1. To compensate for the effect of attenuation the
performance was evaluated in terms of the “ADC product” given by:

ADCprod =
2 × ADCleft × ADCright

(ADCleft + ADCright)
; (4.1)

where ADCleft and ADCright are the signals from the two ends of a slab and the factor of 2 is
present for normalisation. Data was taken with no field in the spectrometer solenoids or the focus
coil at beam-momentum settings chosen to span the range of momenta used during MICE running.
The resulting momentum distributions were centred at 140, 170, 200, 240, and 300 MeV/𝑐. The
response of the KL to muons and pions was observed to increase with beam momentum.
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KL, at 140 MeV/𝑐 (top left), 170 MeV/𝑐 (top right), 200 MeV/𝑐 (middle left), 240 MeV/𝑐 (middle right) and
300 MeV/𝑐 (bottom).

Figure 8 presents a comparison of the response to muons, pions and electrons for various beam
momentum settings. At high momentum, for example 300 MeV/𝑐, the ADC product distributions for
muons and pions are similar. At lower momentum the distributions become increasingly dissimilar,
the pions having a broader distribution arising from hadronic interactions. The difference between
the detector’s response to pions and muons has been exploited to determine the pion contamination
in the muon beams used for the MICE cooling measurements [20].

The ADC product distribution measured using a 300 MeV/𝑐 beam is compared to the
MAUS [32] simulation of the detector response in figure 9. The simulation takes into account
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Figure 9. Comparison between data and Monte Carlo simulation of KL response to muons (left) and pions
(right) at 300 MeV/𝑐.

the light production distribution of the scintillating fibres, and the response of the PMTs for which
the gain was approximately 2 × 106. The data is well described by the simulation.

5 Electron muon ranger

The EMR was a fully-active scintillator detector [33] with a granularity that allowed track recon-
struction. The EMR consisted of extruded triangular scintillator bars arranged in planes. Each
plane contained 59 bars and covered an area of 1.27 m2. Figure 10 shows the bar cross section and
the arrangement of the bars in a plane. Triangular bars were chosen so that tracks moving parallel
to the detector axis could not travel along the gaps between bars. Successive planes were mounted
perpendicularly, so that hits in neighbouring planes defined a position. A single “X-Y module”
was a pair of orthogonal planes. The scintillation light was collected using a wavelength shifting
(WLS) fibre glued inside each bar. At each end, the WLS fibre was coupled to clear fibres that
transported the light to a PMT. All the WLS fibres from one edge of a plane were read out using one
single-anode PMT (SAPMT) so that an integrated charge measurement could be used to determine
the energy deposited in the plane. The signals from the fibres emerging from the other edge of the
plane were recorded individually using multi-anode PMTs (MAPMTs). The full detector was made
up of 24 X-Y modules giving a total active volume of approximately 1 m3.

Measurements of the performance of the completed detector demonstrated an efficiency per
plane of 99.73± 0.02% [33, 34]. The level of crosstalk was within acceptable values for the type of
MAPMT used, with an average of 0.20 ± 0.03% between adjacent channels and a mean amplitude
equivalent to 4.5 ± 0.1% of the primary signal. Only four dead bars were present.

The primary purpose of the EMR was to distinguish between a muon that crossed the entire
magnetic channel and those which decayed in flight producing an electron. Muons and electrons
exhibited distinct behaviours in the detector. A muon produced a single straight track before either
stopping or exiting the scintillating volume. Electrons showered in the lead of the KL and created
a broad cascade of secondary particles. Two main geometric variables, the “plane density” and
the “shower spread”, were used to differentiate them. The detector was capable of identifying
electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%.
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Figure 10. Drawing of one EMR plane (top left), cross section of the arrangement of 3 bars and their
wavelength shifting fibres (bottom left) and drawing of the full detector and its supporting structure from a
top perspective (right). The beam direction is represented by the blue arrow perpendicular to the detector.

The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range
100–280 MeV/𝑐 [23].

Performance. A full description of the detector and the reconstruction algorithms used may be
found in reference [23]. Here the performance of the EMR detector over the course of the experiment
is summarised.

To measure the performance of the EMR the MICE beamline was set to deliver a nominal
momentum of 400 MeV/𝑐. This maximised the muon transmission to the EMR and its range in the
detector. In this configuration the beamline produced pions and muons in comparable quantities,
as well as a smaller number of electrons. Time-of-flight between TOF1 and TOF2 was used to
identify particle species and only particles compatible with the muon hypothesis were included in
the analysis. Particles entering the muon sample had a momentum larger than 350 MeV/𝑐 at the
upstream surface of TOF2 and were expected to cross both TOF2 and the KL and penetrate the
EMR. 99.62 ± 0.03% of the particles entering TOF2 were observed to produce hits in the EMR.
The small inefficiency may be attributed to pions in the muon sample that experienced hadronic
interactions in the KL. If hits were produced in the detector, an (𝑥, 𝑦) pair, defining a space point,
was reconstructed 98.56 ± 0.06% of the time.

To evaluate the efficiency of the scintillator planes, only the muons that traversed the entire
detector were used. Muons were selected which produced a hit in the most downstream plane.
For these events a hit was expected in at least one bar in each plane on its path. The mode of the
hit-multiplicity distribution per plane was one, in 3.26±0.02% of cases a plane traversed by a muon
did not produce a signal in the MAPMT, and the probability that the track was not observed in the
SAPMT was 1.88 ± 0.01%.

Electron rejection. A broad range of beamline momentum settings was used to characterise
the electron-rejection efficiency. Particle species were characterised upstream of the EMR using
the time-of-flight between TOF1 and TOF2. For each momentum setting, a fit was carried out
to determine the position of the muon and electron time-of-flight peaks and events were selected
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accordingly to form muon and electron-template samples. Particles with a time-of-flight larger than
the upper limit of the muon sample were either pions or slow muons and were rejected.

To distinguish the muon tracks from the electron-induced showers, two particle-identification
variables were defined based on the distinct characteristics of the two particle species. The first is
the plane density, 𝜌𝑝:

𝜌𝑝 =
𝑁𝑝

𝑍𝑝 + 1
, (5.1)

where 𝑁𝑝 is the number of planes hit and 𝑍𝑝 the number of the most downstream plane [23]. A
muon deposits energy in every plane it crosses until it stops, producing a plane density close to one.
An electron shower contains photons that may produce hits deep inside the fiducial volume without
leaving a trace on their path, reducing the plane density. The second variable is the normalised �̂�2

of the fitted straight track given by

�̂�2 =
1

𝑁 − 4

𝑁∑︁
𝑖=1

res2
𝑥,𝑖

+ res2
𝑦,𝑖

𝜎2
𝑥 + 𝜎2

𝑦

; (5.2)

where 𝑁 is the number of space points (one per bar hit), res𝑞,𝑖 the residual of the space point with
respect to the track in the 𝑞𝑧 projection and𝜎𝑞 the uncertainty on the space point in the 𝑞𝑧 projection,
𝑞 = 𝑥, 𝑦 [35]. This quantity represents the transverse spread of the hits produced by the particle in
the EMR. A muon produced a single track giving �̂�2 close to one, while an electron shower produced
a larger value. The two discriminating variables can be combined to form a statistical test on the
particle hypothesis. Dense and narrow events will be tagged as muons while non-continuous and
wide showers will not. The quality of this statistical test was characterised in terms of the fraction
of the muon sample that is rejected, 𝛼, and the fraction of the electron sample that is selected, 𝛽.

The momentum of the particles was measured by the downstream tracker and this information
used to determine the momentum dependence of the contamination and loss in the range 100–
300 MeV/𝑐. Figure 11 shows the loss, 𝛼, and the contamination, 𝛽, as a function of the momentum
measured in TKD. 𝛼 increases towards low muon momentum. This is due both to an increase in the
decay probability between TOF2 and the EMR and a decrease in the number of muons that cross
the KL to reach the EMR.

6 Tracking

The MICE instrumentation allowed individual particles to be tracked from TOF0 to the EMR, a
distance of more than 15 m. High-resolution particle tracking was provided by two scintillating-
fibre trackers (section 6.1). The precise relative alignment of the time-of-flight hodoscopes and the
trackers was obtained by combining the measurements of both detector systems (section 6.2).

6.1 Trackers

The two high-precision scintillating-fibre trackers each had a sensitive volume that was 110 cm
in length and 30 cm in diameter [36]. Each tracker was composed of five stations (labelled 1 to
5, with station 1 being closest to the cooling cell) held in position using a carbon-fibre space-
frame. Adjacent stations were separated by different distances ranging from 20 cm to 35 cm. The
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Figure 11. Percentage of electron contamination, 𝛽, and muon loss, 𝛼, for different ranges of momentum
measured in the downstream tracker, 𝑝𝑑 . The error bars are based on the statistical uncertainty in a bin, and
the bin width set by the resolution of the measurement.

Figure 12. Photograph, with UV-filtered light, of one of the MICE trackers, showing the five stations. Each
station has three doublet planes of scintillating fibres, each plane at 120◦ to the next (the central fibres of
each plane can be seen as darker lines traversing the station).

separations were chosen to ensure that the azimuthal rotation of track position did not repeat from
one station to the next. This property was exploited in the ambiguity-resolution phase of the pattern
recognition. Each tracker was instrumented with an internal LED calibration system and four 3-axis
Hall probes to monitor the field. A photograph of one of the trackers on the bed of the coordinate
measuring machine used to verify the mechanical alignment of the stations is shown in figure 12.

Each tracker station consisted of three doublet layers of 350 μm scintillating fibres; these layers
were arranged such that each was set at an angle of 120◦ with respect to the next. This arrangement
ensured that there were no inactive regions between adjacent fibres. Fibres were grouped into
one bundle of seven for each readout channel, to match the resolution to that imposed by multiple
scattering and reduce the overall number of readout channels. This resulted in a spatial resolution
per doublet layer of 470 μm and a measured light yield of approximately 10 photo-electrons [36].
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The light from the seven scintillating fibres was coupled into a single clear fibre which took it to
a visible light photon counter (VLPC) [37]. The signals from the VLPCs were digitised using
electronics developed by the D0 collaboration [38].

Reconstruction. The reconstruction software for the trackers is described in [39]. Each of the
15 doublet layers provided 214 readout channels. Calibration data taken without beam was used to
determine the pedestal and the gain of each channel. These calibrations were used to correct the
number of photoelectrons (NPE) corresponding to the signal recorded by the tracker electronics. The
first step in the reconstruction was to record the unique channel number associated with each NPE
value in a “digit”. Digit profiles were used to identify hot or dead channels which were masked from
the reconstruction to reduce the rate of ambiguities that had to be resolved in the pattern recognition
and to ensure the accuracy of the calibration. The reconstruction proceeded to create “spacepoints”
from the intersection of digits in adjacent doublet layers. Spacepoints were constructed from
clusters from all three planes (a triplet spacepoint) or from any two out of the three planes (a doublet
spacepoint). The pattern-recognition algorithm searched for spacepoints from neighbouring stations
that were consistent with the helical trajectory of a charged particle in the solenoidal field. In the
final stage of the tracker reconstruction the track parameters were estimated using a Kalman filter.

Noise. Digits above a certain NPE threshold were admitted to the spacepoint-finding algorithm.
Noise in the electronics arising from, for example, the thermal emission of electrons, could give
rise to digits passing the threshold. Any digit not caused by the passage of a charged particle was
classified as noise. To isolate noise from signal during beam-on data collection, events containing
a track which included a spacepoint in each of the five tracker stations were selected. All digits
corresponding to the track were removed from the total set of digits and the remainder were
considered to be noise. The average noise rate per channel per event was then calculated as the total
number of digits above the NPE threshold divided by the number of active channels and the number
of events in the sample. The result of this calculation was that, for an NPE threshold of 2, the fraction
of digits arising from noise was 0.18% in the upstream tracker and 0.06% in the downstream tracker.

Track-finding efficiency. The track-finding efficiency was determined using a sample of events
for which the time-of-flight determined from hits in TOF1 and TOF2 was consistent with passage
of a muon. This requirement ensured that the particle had been transmitted successfully through
the magnetic channel, crossing both trackers. The track-finding efficiency was defined to be the
number of events in which a track was successfully reconstructed divided by the total number of
events in the sample. The results of the efficiency analysis are tabulated in table 1 for a range of
nominal beam momentum and emittance settings. The track-finding efficiency obtained in this way
averaged over beam conditions was 98.70% for the upstream tracker and 98.93% for the downstream
tracker. The spacepoint-finding efficiency, defined as the number of spacepoints found divided by
the number of space points expected, was also determined. The spacepoint-finding efficiency is
summarised for a range of beam conditions in table 2.

The efficiency of the trackers over the data taking period was evaluated by selecting events with
a measured time-of-flight between TOF1 and TOF2 consistent with the passage of a muon. Events
were required to contain at least one hit within the fiducial volume of the tracker. An event was
added to the numerator of the efficiency calculation if it contained a single space point in each of
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Table 1. The track finding efficiency for the upstream and downstream trackers for 140 MeV/𝑐 and 200 MeV/𝑐
beams, and for 3, 6 and 10 mm nominal emittances.

Momentum Emittance Upstream tracks found Downstream tracks found
200 MeV/𝑐 3 mm 98.38% 99.19%
200 MeV/𝑐 6 mm 99.42% 96.07%
140 MeV/𝑐 6 mm 98.37% 99.16%
140 MeV/𝑐 10 mm 98.47% 98.93%

Average 98.70% 98.21%

Table 2. The spacepoint-finding efficiency, in the presence of a track, for the upstream and downstream
trackers for 140 MeV/𝑐 and 200 MeV/𝑐 beams, and for 3, 6 and 10 mm nominal emittances.

Momentum Emittance Upstream spacepoints found Downstream spacepoints found
200 MeV/𝑐 3 mm 98.04% 97.41%
200 MeV/𝑐 6 mm 99.41% 94.63%
140 MeV/𝑐 6 mm 97.99% 99.16%
140 MeV/𝑐 10 mm 98.07% 97.44%

Average 98.44% 97.01%

the five tracker stations. The evolution of the tracking efficiency in the upstream and downstream
trackers is shown in figure 13. The efficiency is shown separately for data taken in the presence of
a magnetic field (“helical”) and with the solenoids turned off (“straight”). The data shows that the
efficiency was generally greater than 99.0%. Water vapour ingress to the cold end of the VLPC
cassettes caused the loss of channels and contributed to a reduction in the tracking efficiency. This
was recovered by warming and drying the VLPCs.

Track-fit performance. Monte Carlo simulation with realistic field, beam conditions and detector
geometry was used to estimate the performance of the track fit. A beam centred at 140 MeV/𝑐
with 10 mm nominal emittance, representing a typical data set, was used for the study. Results
are presented in figure 14 for the upstream tracker and figure 15 for the downstream tracker.
The resolution in the total momentum and transverse momentum is observed to be ∼ 1.1 MeV/𝑐
independent of momentum in the range 120 MeV/𝑐 to 160 MeV/𝑐. The small bias in the transverse
and the total momentum did not give rise to significant effects in the analysis and was considered
in systematic error studies.

6.2 Beam-based detector alignment

A beam-based alignment algorithm was developed to improve the resolution on the position of
the scintillating-fibre trackers relative to the time-of-flight hodoscopes. The starting point for the
beam-based alignment was the geometrical survey of the detectors in the MICE Hall which was
performed using laser geodesy. Survey monuments on the TOF frames were surveyed with respect
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Figure 13. Evolution of the straight and helical track finding efficiencies over time for: the upstream (left);
and downstream (right) trackers during the key periods of data taking since 2015. Each dot represents a
single data taking run between 10 minutes and 3 hours long.

to the MICE Hall survey network. The trackers had been dowelled in position in the bores of the
spectrometer solenoids. The dowels were used to locate each tracker precisely with respect to the
axis of the warm bore of its solenoid. The position of the trackers along the beam line was inferred
from the measurement of survey monuments mounted on the spectrometer-solenoid cryostats outer
jackets. The beam-based alignment was used to determine the azimuthal orientation of the trackers
with a resolution of 6 mrad/

√
𝑁 and their position transverse to the beamline with a resolution of

20 mm/
√
𝑁 , where 𝑁 is the number of tracks used in the analysis [40].

Analysis method. The position of each tracker in the MICE Hall coordinate system was described
using the location of its centre and a set of three angles corresponding to rotation about the 𝑥 axis
(𝛼), the 𝑦 axis (𝛽) and the 𝑧 axis (𝜙). The rotation of the tracker about the 𝑧 axis has a negligible
effect on the alignment since 𝜙 was determined precisely at installation. An initial estimate for the
position of each tracker along the beamline had been inferred from the survey. The surveyed location
of the TOFs was used as the reference for the tracker alignment. The line that joins the centre of
TOF1 with the centre of TOF2 was chosen as the reference axis. A deviation from this axis was
considered to be due to misalignment of the trackers. The alignment could not be determined on a
single-particle basis due to multiple Coulomb scattering in the absorber and other material present
on the beamline. Therefore, the mean residuals in position (𝑥 and 𝑦) and angle (𝛼 and 𝛽) of the
trackers with respect to the TOF1-TOF2 axis were evaluated to determine the alignment constants.
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Figure 14. Momentum reconstruction resolution (left) and bias (right) for the total momentum (top) and
transverse momentum component (bottom) in the upstream tracker.

Each TOF provided a single spacepoint in the Hall coordinate system. In Hall coordinates, on
average, the track reconstructed between TOF1 and TOF2 should agree with the track reconstructed
in each tracker, i.e. the mean residuals in 𝑥, 𝑦, 𝛼, and 𝛽 should be zero. Applying this reasoning to
the unknown offset and angles leads to a system of equations for the four unknown constants [40].
The measurement of four residual distributions per tracker yields the alignment constants. The main
source of bias was the scattering in the material between TOF1 and TOF2. If the beam was not
perfectly centred, particles preferentially scraped out on one side of the magnet bore, anisotropically
truncating the tail of the residual distribution. A fiducial cut was applied to the upstream sample in
order to remove this effect.

Data were recorded with the superconducting magnets turned off. High momentum beams
were used to reduce the RMS scattering angle and to maximise transmission. Each data set was
processed independently. Figure 16 shows the alignment parameters determined for each run during
a specific data taking period. The measurements are in good agreement with one another and show
no significant discrepancy: an agreement between the independent fits guaranteed an unbiased
measurement of the alignment constants. The constant-fit 𝜒2/ndf was close to unity for each fit,
indicating that there were no additional sources of significant uncertainty. The optimal parameters
are summarised in table 3.
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Figure 15. Momentum reconstruction resolution (left) and bias (right) for the total momentum (top) and
transverse momentum component (bottom) in the downstream tracker.

Table 3. Optimal alignment constants measured in the high-momentum straight-track data acquired during
May 2017 (summarised from figure 16).

x [mm] y [mm] 𝛼 [mrad] 𝛽 [mrad]
TKU −0.032 ± 0.094 −1.538 ± 0.095 3.382 ± 0.030 0.412 ± 0.029
TKD −2.958 ± 0.095 2.921 ± 0.096 −0.036 ± 0.030 1.333 ± 0.030

7 Liquid hydrogen absorber

The accurate characterisation of the properties of the liquid hydrogen absorber was a critically-
important contribution to the study of ionisation cooling. The instrumentation used for this purpose
and its performance are presented in this section.

The absorber vessel consisted of a cylindrical aluminium body sealed with two thin aluminium
end windows, as shown in figure 17. The absorber vessel contained 22 l of liquid. The body of
the absorber had an inner diameter of 300 mm and the end flanges were separated by a distance of
230 mm. The vessel was surrounded by a second pair of safety windows. The length along the
central axis, between the two domes of the end windows, was 350 mm [41].

Variation of the density of liquid hydrogen due to varying temperature and pressure. The
energy lost by a muon travelling through the liquid hydrogen absorber depends on the path length and
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Figure 16. Consistency of the alignment algorithm results for upstream (blue) and downstream (red) trackers
across runs acquired during the 2017/01 ISIS user cycle. The quantities 𝑥, 𝑦, 𝛼, and 𝛽 are defined in the text.

350

23
0

Figure 17. Left panel: drawing of the focus coil (FC) module showing the principal components. Right
panel: detail of the liquid hydrogen absorber vessel [41].

on the density of the liquid hydrogen. The density of liquid hydrogen is a function of temperature and
pressure. The temperature of the vessel was measured by eight LakeShore Cernox 1050 SD sensors,
but with the values truncated for storage at a granularity of 0.1 K. Four of the sensors were used
solely as temperature sensors, while the other four were also used as level sensors to ensure the liquid
hydrogen reached the top of the vessel. The sensors were arranged in pairs, with two mechanically
clamped at the top of the vessel, two at a polar angle of 45◦ to vertical from the top of the vessel,
two at a polar angle of 45◦ to the bottom of the vessel, and a final two at the bottom of the vessel.
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Cooldown and liquefaction were completed slowly over eight days at a pressure of 1105 mbar
after which the vessel’s pressure was lowered to 1085 mbar [41]. The vessel then remained in
this steady state during the 21 day period of data taking, after which the vessel was vented. For
the venting process, the cryocooler used to liquefy hydrogen was switched off and heaters were
switched on to deliver a nominal power of 50 W to the absorber vessel. This resulted in an increase
in pressure to 1505 mbar until the temperature stabilised at the boiling point. A rapid increase in
temperature was observed once all the liquid hydrogen had boiled off.

The temperature sensors had a typical accuracy of ± 9 mK and a long-term stability of ± 12 mK
at 20 K. The magnetic-field dependent temperature error, ΔT/T, at 2.5 T is 0.04%, equivalent
to ± 8 mK at 20 K [42]. These uncertainties were quoted by the manufacturer of the sensors.
Magnetic fields caused reversible calibration shifts on the temperature measurements. To reduce
the uncertainty in the liquid hydrogen density a calibration procedure was devised that used the
boiling point, as observed during the venting process. A correction to the observed temperature
reading was obtained by applying a cut-off correction, a correction for the effect of the magnetic
field based on the current in the focus coil and its polarity, a correction for the non-linearity of the
sensors, and a boiling point scaling factor [43].

The boiling point of hydrogen at 1085 mbar is 20.511 K. The sensors had a total uncertainty of
17 mK (9 mK accuracy, 12 mK stability, 8 mK magnetic). The deviation from the non-linearity of
the sensors [42] added, on average, 0.03 K to the uncertainty. The temperature scaling and magnet-
current correction factors also had an associated uncertainty as they were derived based on the 0.1 K
resolution of the retrieved, truncated, values. For example, a calibrated sensor at boiling temperature
and 1505 mbar should read 21.692 K, but we can only retrieve a value of 21.65 K (21.6 K truncated
plus 0.05 K cut-off correction [43]) i.e. off by 0.042 K. The pressure sensors had an uncertainty
of ± 5 mbar which equated to ± 0.016 K during steady state. The pressure uncertainty (± 5 mbar)
added another uncertainty to the temperature calibration constants of ± 0.014 K. Collectively, all
these uncertainties summed in quadrature to 0.2 K for each sensor.

While in the steady state condition the liquid hydrogen was close to the boiling temperature of
liquid parahydrogen [43] (density of 70.53 kg/m3): the average temperature of the eight sensors was
(20.51± 0.07) K at 1085 mbar (figure 18) allowing us to determine the uncertainty in the density
over this period as 0.08 kg/m3.

Contraction of the absorber vessel due to cooling. The absorber was cooled from room temper-
ature to the operating temperature of the experiment (20.51 K), contracting the vessel. The linear
contraction of Al-6061 as it is cooled from 293 K is given by:

𝛼 = −4.1277 × 10−3𝑇 − 3.0389 × 10−6𝑇2 + 8.7696 × 10−8𝑇3 − 9.9821 × 10−11𝑇4 (7.1)

where 𝑇 is the operating temperature [44]. The equation is the result of a fit to data collated by the
National Institute of Standards and Technology (NIST) and has an associated curve fit error of 4%.
At the MICE operating temperature, this corresponds to a linear contraction of the vessel along
each plane of 0.415%. As a result the length of the bore contracted by (1.45 ± 0.05) mm. The
vessel was suspended within the warm bore of the focus coil and was therefore free to contract in
each plane without restriction.
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Figure 18. Average liquid hydrogen temperature recorded by the sensors during the steady state period.
After applying all the correction factors the temperature remains at or close to the boiling point temperature.

Deflection of absorber vessel windows due to internal pressure. To minimise energy loss and
Coulomb scattering by the absorber vessel, the window thickness was minimised. The liquid
hydrogen circuit was pressurised above atmospheric pressure to prevent air ingress [41, 45]. The
vessel was designed to withstand at least 2500 mbar internally. The internal pressure was limited
by the 1.5 bar relief valve to atmosphere, whilst the vessel was surrounded by vacuum.

The pressure at which the absorber operated resulted in deflection of the absorber windows.
These deflections were modelled using ANSYS [46], and the uncertainty in the window deflection
derived from this model was 20%. The model showed a linear dependence of the window deflection
on pressure up to 2 Bar when the windows begin to yield. The pressure sensors were accurate
to ± 5 mbar (0.25% of 2 Bar). At (1085± 5) mbar, the typical MICE operating pressure, this
corresponded to a deflection of (0.5374± 0.1076) mm (model uncertainty) ± 0.0022 mm (sensor
uncertainty) at the centre of the absorber window.

Variation of the absorber vessel window thicknesses. On its passage through the absorber a
muon would lose energy in the aluminium of the pair of hydrogen-containment windows, the two
aluminium safety windows, and the liquid hydrogen itself. At the centre of the absorber, the total
amount of aluminium the muon beam passed through was (785± 13) μm, producing a variance of
1.68%. However, as the windows were thin, the effects on energy loss were negligible. A 200 MeV/𝑐
muon passing along the central axis of an empty absorber lost 0.345 MeV, introducing a 0.006 MeV
uncertainty on energy loss.

Total systematic uncertainty on energy loss. The principal contributions to the systematic
uncertainty on energy loss in the liquid hydrogen absorber are: the uncertainty in the contraction of
the absorber vessel, the uncertainty in the deflection of the hydrogen-containment windows due to
internal pressure, and the uncertainty in the variation of the window thickness. The impact of the
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contraction of vessel and the deflection of the windows resulted in a reduction of the length of the
vessel on axis of (0.4± 0.2) mm. The change in the combined thicknesses of the absorber windows
on axis is 13 μm. The average temperature during the steady state period of the experiment when
the pressure remained constant at (1085± 5) mbar is (20.51± 0.07) K corresponding to a liquid
hydrogen density of (70.53± 0.08) kg/m3.

During the MICE data taking, muon beams with nominal momenta of 140, 170, 200 and
240 MeV/𝑐 were used. The energy loss and its uncertainty were calculated. The calculation used
a central bore length of (349.6± 0.2) mm, a total window thickness of (0.785± 0.013) mm and a
liquid hydrogen density of (70.53± 0.08) kg/m3. For a 140 MeV/𝑐 muon this corresponds to an
energy loss of (10.88± 0.02) MeV, while for a 200 MeV/𝑐 muon particle this corresponds to an
energy loss of (10.44± 0.02) MeV. For a muon travelling along the centre axis of the absorber the
systematic uncertainty in the energy loss is 0.2%.

8 Summary and conclusions

A complete set of particle detectors has permitted the full characterisation and study of the evolution
of the phase space of a muon beam through a section of a cooling channel in the presence of liquid
hydrogen and lithium hydride absorbers, leading to the first measurement of ionization cooling.
The PID performance of the detectors is summarised in table 4 and table 5 and is fully compatible
with the specification of the apparatus [47].

Table 4. Summary of the performance of the MICE PID detectors.

Detector Characteristic Performance
Time-of-Flight time resolution 0.10 ns
KLOE-Light muon PID efficiency 99%

Electron Muon Ranger electron PID efficiency 98.6%

Table 5. Summary of the MICE PID detector performance for different beam settings.

KL efficiency EMR efficiency Track finding efficiency

Momentum electrons muons pions electrons muons
3 mm 6 mm 10 mm

US DS US DS US DS
140 MeV/𝑐 95% 97% n.a. 98% 35% 98% 99% 98% 99%
170 MeV/𝑐 95% 99% 89% 99% 99%
200 MeV/𝑐 94% 99% 95% 100% 99% 99% 96% 99% 96%
240 MeV/𝑐 96% 99% 97% 99% 99%
300 MeV/𝑐 95% 99% 98% n.a. 99%

All the different elements of the MICE instrumentation have been used to characterise the
beam and the measurement of the cooling performance for a different variety of beam momenta,
emittance, and absorbers. The measurement of the physical properties of the liquid hydrogen
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absorber have been fully described here. The experiment has thus demonstrated a technique critical
for a muon collider and a neutrino factory and brings those facilities one step closer.
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