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Abstract

We investigate the connection between spacetime wormholes and ensemble

averaging in the context of higher spin AdS3/CFT2. Using techniques from

modular bootstrap combined with some holographic inputs, we evaluate the

partition function of a Euclidean wormhole in AdS3 higher spin gravity. The fixed

spin sectors of the dual CFT2 exhibit features that starkly go beyond conventional

random matrix ensembles: power-law ramps in the spectral form factor and

potentials with a double-well/crest underlying the level statistics.
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1 Introduction

The mechanism by which quantum information escapes an evaporating black hole is one of

the deepest mysteries of modern theoretical physics. Over the past few years, there has been

significant progress on this front that reproduce a unitary Page curve from semi-classical

gravity path integrals [1–3]. A crucial ingredient in the analysis involves the inclusion of

wormhole saddles that interpolate between regions connected by an entanglement cut. In a

similar vein, Euclidean wormholes can also connect two separate boundaries. In the context

of AdS/CFT, the existence of such wormhole solutions lead to a loss of factorization in the

observables of, what is apparently, a direct product of CFTs [4, 5].

A promising way out of this conundrum is to formulate versions of holography in which
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the dual CFT isn’t a single theory but an ensemble average of theories. This idea finds its

origins in the context of spin-glasses where the effective description emerges from a disorder-

average over Hamiltonians. The partition function is then given by the mean of the partition

functions of the ensemble, 〈Z(β)〉, while the non-vanishing fluctuations or higher moments,

〈Z(β1)Z(β2) · · ·〉, encode the wormhole amplitudes of the bulk dual. Such a construction is

largely motivated by the fact that topological JT gravity in 2d is precisely dual to an ensemble

of random matrices [6]. In one dimension higher, similar ideas have been developed which

demonstrate that pure AdS3 gravity shares common features with random matrix theory

(RMT) and perturbative U(1)D × U(1)D Chern-Simons (CS) theory is dual to a theory of D

free bosons averaged over Narain moduli [7–13].

This brings us to a natural question: how fundamental is the notion of ensemble averaged

holography? Ultimately, one would like to depart from a semi-classical gravity approximation

and understand whether ensemble averaging makes sense in string theoretic constructions

of AdS/CFT. String theory in AdS3 with a single unit of NS-NS flux has been shown to be

exactly dual to the symmetric orbifold of T4 [14]. In this setup, it has been demonstrated

that wormhole partition functions do factorize and, therefore, the averaging operation is

unnecessary at the free orbifold point [15]. We are then inclined to ask: where does the

averaged description break down?

As we lack fundamental principles at this point, it is valuable to explore whether ensemble

averaging can be embedded into more general settings and see what lessons these situations

can offer. In this work, we explore this possibility in the framework of higher spin AdS3/CFT2.

Theories of massless higher spin fields describe the leading Regge trajectory of string theory in

the tensionless limit. These theories are grown-up versions of classical (super)gravity theories

and are more tractable than full-fledged string theories. As the symmetries of the gravity

theory get enhanced beyond diffeomorphisms, we lose traditional geometrical notions such as

horizons and geodesics. The CFT duals, described by coset constructions, have additional

higher spin conserved currents that enlarge the chiral algebra to W∞ [16]. The coset models

are however rational CFTs and do not possess the features of sparseness or chaos which are

central to describe black hole microstates. We shall therefore focus on irrational CFTs with

WN symmetries (with c > N − 1) which are dual to finite tower higher spin fields in AdS3,

often dubbed pure higher spin gravity [17].

The key object we consider in this paper is the partition function of a Euclidean wormhole

in higher spin gravity. This wormhole connects two spacetime boundaries which are tori.

As the precise details of the CFT dual are a priori unclear, we employ modular bootstrap

techniques (along with some well-informed assumptions from holography) to arrive at the

partition function. In particular, we adapt the techniques of [18] to the case where the CFT

has WN symmetries instead of Virasoro. The analysis in this work, therefore, provides a
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concrete realization of the wider applicability of the methods to bootstrap ensembles. The

wormhole partition function takes the form of a Poincaré series along with some prefactors

encoding contributions from zero-modes andWN descendants. We shall see that the wormhole

amplitude appropriately generalizes the pure gravity case and, at first sight, has a form very

similar to the Narain moduli average of (N − 1) bosons. The zero-modes and descendant

contributions turn out to be the same as the Narain averaged case but the Poincaré series

itself is slightly different. This leads to drastic differences in the spectral correlations.

We dissect the wormhole amplitude further by Fourier transforming to sectors of fixed

spin. A useful quantity that captures statistics of energy eigenvalues is the spectral form

factor: 〈Z(β + it)Z(β − it)〉. This quantity can be obtained from the correctly projected

wormhole amplitude upon analytic continuation. We find that at late times the spectral form

factor of a fixed spin sector strikingly displays a power-law ramp ∼ tN−1, in contrast to the

linear one for RMT or the pure gravity/Virasoro case (for N = 2). Although we haven’t

tracked down the species of RMTs that mimic this behaviour, the faster ramp ties in well

with earlier findings that the irrational WN CFTs violate the bound on chaos, under certain

approximations [19]. In the non-chaotic N → ∞ limit, where the theory is described by a

’t Hooft limit of rational coset CFTs [16], the ramp might be expected to show exponential

behaviour similar to integrable fermion models [20, 21].

The pair correlation functions of the spectral densities exhibit some novel properties for

the higher spin case. We evaluate this quantity directly from the wormhole amplitude using an

inverse Laplace transform and, also independently, using the method of resolvents. For even

N , we find long-range correlations between the eigenvalues. Whereas for odd N , the spectral

correlations turn out to be short-ranged and they localize around delta-function singularities.

If at all a random matrix description exists for this, the potentials for the eigenvalues should

have some regimes of attraction – we verify this in a toy example. These properties are

markedly different from the pure gravity counterpart and the lower-dimensional case of JT

gravity. It is undoubtedly imperative to ask whether two-dimensional higher spin gravity,

described by a topological BF theory [22–25], also has these properties in its spectrum. We

do not address this question in this paper, hoping to return to it in the near future.

This paper is organized as follows. In §2 we evaluate the wormhole partition function

in higher spin gravity using modular bootstrap. This section contains an outline of the

bootstrap method and the ingredients of WN CFTs we need for the analysis. We study

the spectral statistics of wormhole partition function in §3 – this constitutes finding the

spectral form factor, the pair correlation function of the spectral density and the potentials

describing the level statistics. We conclude in §4 and discuss some avenues for future research.

The appendices contain some identities of Bessel functions, additional technical details and

consistency checks.
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Figure 2.1: The topology of the Euclidean wormhole is that of torus×interval, or equivalently

annulus×circle. The outer and inner tori boundaries have an opposite sense of orientation from

the bulk point of view.

2 Partition function of the Euclidean wormhole

In the context of AdS3/CFT2, Euclidean wormholes have been studied for the pure gravity

case in [18, 26]. The bulk topology of the 3d Euclidean wormhole is T2 × I, see Fig. 2.1. The

two boundaries of the wormhole are given by two distinct tori, that are connected via the

bulk geometry.

The partition function of the wormhole (often referred to as the ‘wormhole amplitude’)

can be obtained from the gravitational path integral using a constrained instanton approach,

and this method has been further systematized to higher dimensions [27, 56]. In hindsight, it

has been realized that the wormhole amplitude can be bootstrapped by imposing modular

constraints arising from the boundary tori. However, in this method, it is not just modular

invariance alone that fixes the amplitude. Other essential inputs – like smoothness, topological

considerations, boundary orientation and charge conservation – have bulk origins and play a

key role in determining the partition function.

2.1 The modular bootstrap procedure

In this subsection we review the steps involved in the modular bootstrap procedure [26]. It can

be seen from Fig. 2.1 that the tori, living at the boundaries of T2 × I, have no relative Dehn

twists and are oppositely orientated with respect to each other (i.e. the outward normals point

in opposite directions). This feature implies that modular transformations act oppositely on

the tori. We can define a double moduli preamplitude, Z̃(τ1, τ2), that obeys the following

4



invariance constraint:

Z̃(τ1, τ2) = Z̃
(
γτ1, γ

−1τ2

)
, γ ∈ PSL(2;Z). (2.1)

We have suppressed anti-holomorphic dependence to simplify the notation. The action of γ

and γ−1 denote the simultaneous modular and inverse modular transformations of τ1 and τ2

γ · τ =
aτ + b

cτ + d
, ad− bc = 1 . (2.2)

For future reference, we note that the S-modular transformation is τ 7→ −1/τ , while the

T-modular transformation is τ 7→ τ + 1. These two transformations generate the modular

group SL(2,Z).

Next, the preamplitude is proportional to the moduli space volume form, V0, which arise

in the bulk from the zero-mode contributions dictating the relative twist between the two

tori. This is a physical effect, hence Z̃ is imbued with this contribution. Furthermore, as the

two tori are the boundaries of the same connected bulk, charge conservation constrains the

CFTs living on the two tori boundaries to have the same spectrum of primaries. Requiring

bulk-smoothness also keeps the conformal dimensions above the BTZ threshold. In the

momentum representation, h− c−ccurr
24

= k2

4
(with h representing the conformal dimension, c

the central charge and ccurr the number of conserved currents), this implies that 0 ≤ k ≤ ∞.

With these inputs, one arrives at an useful ansatz for the preamplitude

Z̃(τ1, τ2) = V0

∫ ∞
0

dk dk̄ χk(τ1)χ̄k̄(τ̄1)χk(τ2)χ̄k̄(τ̄2) ρ(k, k̄), (2.3)

where, χk(τ) is the CFT character. The details of the character depend on the chiral algebra

of the CFT which is also the asymptotic symmetry algebra of the bulk theory. The bootstrap

constraint (2.1) is sufficient to determine the distribution of primaries, ρ(k, k̄), upto an overall

normalization. Once this is obtained, we plug it back into (2.3) to evaluate Z̃(τ1, τ2). Note

that in the above ansatz we have implicitly assumed that the CFT in question is irrational,

i.e. we have an infinite number of primaries owing to modular invariance. Furthermore, the

character appearing in (2.3) will turn out to be non-degenerate characters of the chiral algebra

which have no restrictions coming from null states.

The quantity Z̃(τ1, τ2), however, is not the full wormhole amplitude yet. It misses instances

where only one of the two tori gets modular transformed. From the bulk point of view, these

are distinct and allowed physical configurations. Therefore, the full partition function should

involve a sum over them. Such configurations are generated by γ acting on one of the torus
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moduli. We finally end up with

Z(τ1, τ2) =
∑

γ ∈PSL(2,Z)

Z̃(τ1, γτ2) . (2.4)

The sum above is over an infinite number of modular images and it is a priori unclear

whether the result is convergent. The convergence depends on the detailed structure of the

preamplitude Z̃(τ1, τ2) itself. We shall return to this point below in Sec 2.4. The modular

sum (2.4) is similar to a Poincaré series and, given (2.1), it is invariant under independent

modular transformations. This can be seen as follows

Z(γ1τ1, γ2τ2) =
∑

γ ∈PSL(2,Z)

Z̃(γ1τ1, γγ2τ2) =
∑

γ ∈PSL(2,Z)

Z̃(τ1, γ
−1
1 γγ2τ2)

=
∑

γ′ ∈PSL(2,Z)

Z̃(τ1, γ
′τ2) = Z(τ1, τ2). (2.5)

The partition function (2.4) can also be expressed as a Fourier sum (or q-series) and this

naturally projects states onto fixed spin sectors. The BTZ threshold k ≥ 0 then transforms

into the spinning BTZ threshold, which for spin s, keeps the energy above the extremality

bound Es ≥ 2π
(
|s| − ccurr.

12

)
[17, 54, 55].1

Before we carry out the procedure outlined above for irrational CFTs withWN symmetries,

we describe some essential ingredients that will be useful.

2.2 Some ingredients of WN CFTs

For WN CFTs, the symmetry algebra is generated by modes of the stress tensor and the

conserved higher spin currents, W
(s)
m for 2 ≤ s ≤ N (see e.g. [28, 29] for reviews). The

irrational regime corresponds to the value of the central charge being larger than the number

of conserved currents, c > N−1. In what follows, we shall require the characters of non-vacuum

primaries on the torus. These are given by

χk(τ) =
q
k2

4

η(τ)N−1
,

k2

4
= h− c− (N − 1)

24
. (2.6)

Here, η(τ) is the Dedekind eta-function and we have used a Liouville-like parametrization for

the conformal dimension. As usual, these characters contain the contribution of left/right

moving descendants of the primary state, (W
(s1)
−1 )k1(W

(s2)
−2 )k2 · · · |h〉. The case with N = 2

reduces to the usual Virasoro CFTs. The lightest primary states in irrational WN CFTs scale

with the central charge; this fact was found using unitarity constraints and modular bootstrap

1The shift −ccurr./12 arises from the one-loop partition function.

6



in [31].

For carrying out the bootstrap procedure for the wormhole partition function, we shall

also need the fusion kernel Skk′ for the following S-modular transformation

χk(−1/τ)

(−iτ)
N−1

2

=

∫ ∞
0

dk′Skk′χk′(τ) . (2.7)

Note that the above relation is somewhat non-standard due to the presence of additional

(−iτ) factors; the origin of these factors is the moduli space volume, V0, that we will encounter

momentarily. We can simplify the above relation by using explicit expressions for the characters

(2.6) and the S-modular transformation of η(τ)

e−
πik2

2τ

(−iτ)N−1
=

∫ ∞
0

dk′Skk′e
πik′2τ

2 . (2.8)

Our task is to extract Skk′ . We multiply both sides by e
πiq2τ

2 , use τ = x+ iy and integrate

over x. Let’s consider the RHS first∫ ∞
−∞

dx e
πiq2τ

2

∫ ∞
0

dk′Skk′e
πik′2τ

2 = 4

∫ ∞
0

dk′δ(q2 − k′2)Skk′ =
2

q
Skq . (2.9)

For the LHS of (2.8), we expand the exponential, e−
πik2

2τ , for small k and integrate over x

term-by-term. The final result can be resummed into a modified Bessel function:

∫ ∞
−∞

dx e
πiq2τ

2
e−

πik2

2τ

(−iτ)N−1
= 2π

(
k

q

)2−N

JN−2(πkq) . (2.10)

Comparing the last two equations, we obtain the fusion kernel to be

Skk′ = πk2−Nk′N−1JN−2(πkk′) . (2.11)

For N = 2 this becomes Skk′ = πk′J0(πkk′), in agreement with the Virasoro case considered

in [18]. We remark at this point that one can parametrize the conformal dimensions of a WN

CFT in a manner similar to Toda theories, where the momenta ~k of vertex operators live in

the root lattice of sl(N) [28, 29]. An analogous fusion kernel can be derived which would be

a function of the (N − 1) momenta. However, we shall not require that representation for our

present purposes and (2.11) will be sufficient.
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2.3 Evaluating the wormhole amplitude

In this subsection we evaluate the Euclidean wormhole partition function using the modular

bootstrap approach. As explained in §2.1 we start by determining the preamplitude and then

sum over modular images.

Fixing the preamplitude

In order to evaluate the preamplitude we need to determine the density of primaries, ρ(k, k̄), by

imposing the bootstrap equation (2.1). The preamplitude is understood to have its origins via

a three dimensional higher spin gravity path integral, with two torus boundaries characterized

by complex structures, τ1, τ2. In the case of pure gravity (or Virasoro CFTs at the boundaries)

the path integral is proportional to the moduli space volume form, V0, arising from the

constrained saddle nature of the wormhole solutions [56]. This volume form can be written

down in terms of the zero modes that control various features of the wormhole geometries,

including the length and boundary twists, and turns out to be
√

Im(τ1)Im(τ2) [26]. For

WN theories at the wormhole boundaries, the current algebra OPEs can be realized via the

Miura construction which involves (N − 1) free bosons [28, 29]. This is a generalization of

the single linear dilaton realizing the Virasoro algebra. It is then reasonable to expect that

the net contribution of the zero-modes is

V0 = (Im(τ1)Im(τ2))
N−1

2 . (2.12)

A first principle derivation of this will follow from analyzing the moduli space field ranges of

pure higher spin theory on T2 × I. In the pure gravity case, this volume specifically arises

from the symplectic measure induced by the Chern-Simons term which involves only a single

time derivative. In the SL(N,R) case, this will involve (N − 1) fields corresponding to the

Cartan directions, which should give the factor in (2.12).

Let us now consider the preamplitude. We can check that the ansatz (2.3) by construction

is invariant under simultaneous T and T−1 modular transformations. Therefore, the non-

trivial bootstrap constraints arise only for τ → −1/τ , and its inverse. Explicitly, it enforces

the following condition∫
dkdk̄

(|τ1|2)
N−1

2 (|τ2|2)
N−1

2

χk

(
− 1
τ1

)
χk

(
− 1
τ2

)
χ̄k̄

(
− 1
τ̄1

)
χ̄k̄

(
− 1
τ̄2

)
ρ(k, k̄) (2.13)

=

∫
dkdk̄ χk (τ1)χk (τ2) χ̄k̄ (τ̄1) χ̄k̄ (τ̄2) ρ(k, k̄),
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where we also used, Im (−1/τ) = Im (τ)/|τ |2. Next, upon using (2.7) in the LHS we arrive at∫
dkdk̄ Skk′Skk′′Sk̄k̄′Sk̄k̄′′ρ(k, k̄) = δ(k′ − k′′)δ(k̄′ − k̄′′)ρ(k′, k̄′) . (2.14)

Using the explicit form of the fusion kernel (2.11) we obtain∫
dkdk̄

(
kk̄
)4−2N

ρ(k, k̄)JN−2(πkk′)JN−2(πkk′′)JN−2(πk̄k̄′)JN−2(πk̄k̄′′) (2.15)

=
δ(k′ − k′′)δ(k̄′ − k̄′′)
π4
(
k′k̄′k′′k̄′′

)N−1
ρ(k′, k̄′).

We multiply both sides by k′′JN−2(πk′′q′) and k̄′′JN−2(πk̄′′q̄′). Then using the orthogonality

relationship of Bessel functions (see eq. (A.1)) we integrate over k′′, k̄′′ and that results in

ρ(q′, q̄′)

(q′q̄′)2N−3
=

ρ(k′, k̄′)(
k′k̄′
)2N−3

. (2.16)

This equality can only be satisfied if the above ratio is a constant. Therefore

ρ(k, k̄) =
π2N−2

4N−2Γ(N − 1)2
C
(
kk̄
)2N−3

. (2.17)

We have chosen a convenient normalization constant C, such that simplifications occur later.2

Plugging this back into (2.3) and explicitly evaluate the preamplitude to be

Z̃(τ1, τ2) = C
[
Z0(τ1)Z0(τ2)

(Im(τ1)Im(τ2))

|τ1 + τ2|2

]N−1

, Z0(τ) =
1√

Im(τ)|η(τ)|2
. (2.18)

Therefore, upto the overall constant, the higher-spin preamplitude is simply the pure gravity

result raised to the (N − 1)’th power. We now turn to the sum over modular images of this

quantity.

Modular sum

We are now in a position to use the preamplitude (2.18) to obtain the full partition function. As

outlined earlier, we need to perform a sum over one-sided modular images of the preamplitude

Z̃. As the Z0(τ)’s in (2.18) are modular invariant, the final result for the higher spin Euclidean

2We are working with the convention C = (2π2)−1 for N = 2; this is slightly different from C = 1 of [18].
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wormhole partition function is

Zhs(τ1, τ2) = C Z0(τ1)N−1Z0(τ2)N−1
∑

γ∈PSL(2,Z)

(
(Im(τ1)Im(γτ2))

|τ1 + γτ2|2

)N−1

, (2.19)

with Z0(τ) defined in (2.18). This equation is one of the key results of this paper. Note that

the wormhole amplitude above does not depend on the central charge. Let us now focus on

the sum over modular images

R(τ1, τ2) =
∑

γ∈PSL(2,Z)

(
(Im(τ1)Im(γτ2))

|τ1 + γτ2|2

)N−1

. (2.20)

As alluded to earlier, this Poincaré sum will be performed for fixed spin sectors, i.e. we will

decompose the wormhole partition function as follows

Z(τ1, τ2) =
∑
s1,s2

Zs1,s2(τ1, τ2) , (2.21)

where, s1 and s2 denote the specific spin configuration. To this end, we rewrite τ1 = z1 + iz2,

and, τ2 = w1 + iw2. The integer valued spins, s1 and s2, arise as Fourier conjugate variables

to z1 and w1 respectively. Since R is invariant under independent modular transformations

(and especially the T transformation) on either of the moduli, the Fourier series exists. More

explicitly this is

R(τ1, τ2) =
∞∑

s1,s2=−∞

e−2πiz1s1e−2πiw1s2R̃s1,s2(z2, w2). (2.22)

Therefore the fixed spin contribution to the wormhole partition function is given by

Zs1,s2(τ1, τ2) = C Z0(τ1)N−1Z0(τ2)N−1e−2πiz1s1e−2πiw1s2 R̃s1,s2(z2, w2) . (2.23)

The principal object here, R̃s1,s2 , can be expressed using the inverse Fourier relation

R̃s1,s2(z2, w2) =

∫ 1

0

dz1

∫ 1

0

dw1 e
2πi(z1s1+w1s2)

∑
γ∈PSL(2,Z)

(
(Im(τ1)Im(γτ2))

|τ1 + γτ2|2

)N−1

. (2.24)

In order to proceed, we shall exchange the order of the Fourier integrals and the modular sum.

However, before we perform the Fourier integrals, it is useful to separate out the PSL(2,Z)

summation into a part which involves only the T transformations and a part that involves at
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least a single S modular transformation

R̃s1,s2 = Ts1,s2 + Ss1,s2 . (2.25)

Ts1,s2 involves a single sum over integers, while Ss1,s2 , which is more difficult to evaluate,

involves summing over co-primes. Fortunately the universal low energy contribution to

Z(τ1, τ2) comes only from the part involving T transformations alone and we present it here

Ts1,s2(z2, w2) =
∞∑

n=−∞

∫ 1

0

dz1

∫ 1

0

dw1 e
2πiz1s1+2πiw1s2

(
(z2w2)

(z1 + w1 + n)2 + (z2 + w2)2

)N−1

(2.26)

For the first integral, we may join all the summations by changing variables inside the integral

of each summand, w1 → w1 + n. We thereby get rid of n dependence inside the integrand at

the expense of an extended contour of integration, (−∞,∞). Therefore we evaluate

Ts1,s2(z2, w2) =

∫ 1

0

dz1

∫ ∞
−∞

dw1 e
2πiz1s1+2πiw1s2

(
(z2w2)

(z1 + w1)2 + (z2 + w2)2

)N−1

. (2.27)

Taking advantage of the infinite w1 range, the integrals can be decoupled by changing variables

w = z1 + w1, which results in

Ts1,s2(z2, w2) = (z2w2)N−1

∫ 1

0

dz1 e
2πiz1(s1−s2)

∫ ∞
−∞

dw
e2πiws2

(w2 + (z2 + w2)2)N−1
, (2.28)

The z1 integral results in a Kronecker delta that enforces s1 = s2, whereas the w integral

furnishes an integral representation of the modified Bessel K function. We finally get

Ts1,s2(z2, w2) =
2 (πz2w2)N−1

Γ(N − 1)

(
z2 + w2

|s2|

)3
2
−N

K3
2
−N

(2π|s2|(z2 + w2)) δs1,s2 . (2.29)

We note that when N = 2 the above reduces precisely to the gravity answer. Details about

the S transformation part, which we denote with Ss1,s2 can be found in Appendix B. We

see, from (B.9), for the case of N = 3, while the exponential suppression in Ss1,s2 at low

temperatures is the same as in Ts1,s2 , the former is polynomially suppressed while the latter

is polynomially enhanced. Therefore, as stated before, we can see that low temperature

behaviour is dominated by Ts1,s2 . Putting everything together, the fixed spin contribution to

the wormhole partition function takes the form

Zs1,s2(τ1, τ2) = C
(
Z0(τ1)Z0(τ2)

)N−1

e−2πi(Re(τ1)s1+Re(τ2)s2) [Ts1,s2 + Ss1,s2 ] . (2.30)
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2.4 Comparison to other ensembles

Now that we have obtained the partition function of the Euclidean wormhole in higher spin

gravity (2.19), it is useful to contrast the result with other ensembles considered in the recent

past.

Let us first consider wormholes in pure gravity, which correspond to irrational CFTs with

Virasoro symmetry at the boundaries. The result for the wormhole amplitude was derived in

[18, 26] and is given by

Zpure grav.(τ1, τ2) =
1

2π2
Z0(τ1, τ̄1)Z0(τ2, τ̄2)

∑
γ∈PSL(2,Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2
. (2.31)

The higher spin result (2.19) along with (2.20), agrees with the above upon setting N = 2.

The overall constant 1/2π2 is fixed using the JT gravity limit; unfortunately, we do not have

an analogous 2d higher-spin gravity computation at our disposal to fix the overall constant C
in (2.19). Note that the Poincaré series in (2.31) does not converge and needs to be suitably

regulated [26]. The higher spin amplitude, on the other hand, has convergence built in. In

fact, the ‘zeta-function’ used in [26] to regularize the Poincaré sum of (2.31) is exactly the

same as the one appearing in the higher spin wormhole partition function (2.20).3

A more interesting comparison is with the wormhole partition function in ‘perturbative’

U(1)D × U(1)D Chern-Simons theory. This theory is the bulk dual of D free bosons averaged

over the Narain moduli space [7, 8]. The wormhole amplitude can be obtained from the

connected piece of the averaged genus-2 partition function, with a diagonal period matrix,

Ω = Diag(τ1, τ2). The result is [8]

ZNarain(τ1, τ2) = Z0(τ1, τ̄1)DZ0(τ2, τ̄2)D
∑

γ∈PSL(2,Z)

[
Im(τ1)Im(γτ2)

|τ1 + γτ2|2

]D
2

. (2.32)

This amplitude is also the result of the modular bootstrap problem for U(1)D × U(1)D chiral

algebra on the boundaries, along with the moduli space volume set as V0 = 1 [18]. The Z0

prefactors in (2.32), which count the zero modes and descendant states, agree with (2.19)

upon setting D = N − 1. This fact is isn’t a mere coincidence since N − 1 free bosons form a

realization of the WN algebra.This realization is the Miura transformation and it works at

arbitrary central charge [29].4 Curiously enough, the Poincaré sum in (2.32) is also of the

same form appearing in the higher spin amplitude (2.20). However, for D = N − 1, each term

3Please refer of [18, eq. (4.2) and (4.3)]. As a function of N , the Poincaré sum in (2.20) has a simple pole

only at N → 2+.
4Furthermore, the non-vacuum WN characters (2.6) of c > N theories are the as same as those of U(1)N−1

characters. We thank Tom Hartman for this observation.
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of the above sum is the square-root of the one appearing in the higher spin amplitude (2.20).

For the Poincaré sum of the Narain ensemble (2.32), we can use D/2 = N − 1 in (2.29). to

get the fixed spin sector contribution

Ts1,s2 =
2πD/2

Γ(D/2)
(z2w2)D/2

(
z2 + w2

s2

) 1−D
2

K 1−D
2

(2πs2(z2 + w2)) δs1,s2 . (2.33)

For z2 = β1 and w2 = β2 the result agrees with [26, first line of (3.20)]. The factor (z2w2)D/2

cancels out exactly with factors from Z0(τ1, τ̄1)
DZ0(τ2, τ̄2)

D; this leads to an absence of a

ramp in the spectral form factor.

Despite the minor differences in the wormhole amplitude, the Narain and higher spin

ensembles have very different energy eigenvalue statistics. To analyze this in detail, it is

beneficial to extract the spectral density correlations from Zhs(τ1, τ2). This is the topic of the

next section.

3 Spectral statistics from the wormhole amplitude

In a quantum chaotic system, it is universally expected that there is repulsion amongst energy

eigenvalues [32, 33]. It has recently emerged that the Euclidean wormhole encodes analogous

features for black hole microstates. The objective of this section is to quantify these features

for the higher spin wormhole and understand the details of the dual ensemble description. We

shall do this by studying the spectral form factor and the spectral density 2-point function.

3.1 The spectral form factor

Random matrix theory captures very universal features of quantum chaotic systems. In this

context, the spectral form factor (SFF) serves as a useful tool towards diagnosing quantum

chaos. The SFF is defined as follows

g(β, t) = 〈Z(β1)Z(β2)〉 = 〈Z(β + it)Z(β − it)〉 . (3.1)

The factors, Z(β1) and Z(β2), denote the partition functions with inverse temperatures β1

and β2 which are analytically continued to β + it and β − it. The SFF is a simpler proxy

for Lorentzian two-point correlation functions, i.e. the SFF depends only on the details of

spectrum and has the dependence on matrix elements of operators stripped off. The product

Z(β + it)Z(β − it) probes the discreteness of the spectrum, and this aspect is realized by

considering the late time behaviour of the quantity [39]. Furthermore, in chaotic systems the

SFF exhibits an universal profile [34] – this consists of an initial dip, followed by a linear
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ramp and then a plateau at very late times. In the above definition the average is taken

over ensemble irrational CFTs with WN symmetries.5 On the other hand, in random matrix

theory, an integral over matrices plays the role of averaging. The linear ramp in particular, is

related to the spectral rigidity of random matrix eigenvalues. The averaging operation also

leads to a loss of factorization. In our case the non-factorization is geometrically realized via

the three dimensional wormhole geometries, and the connected piece of the 2-point function

(3.1) is built into the bootstrapped wormhole amplitude (2.19).

In order to extract the SFF however, one needs to focus on a superselection sector of

the wormhole partition function.6 In our context this corresponds to first focusing on the

contribution of primaries of Z(τ1, τ2) within a fixed spin-sector. We can obtain this directly

by stripping off the descendant counting functions from the spin-decomposed amplitude

Zs1,s2(τ1, τ2) in equation (2.30)

〈trP(s1)[e
−(β+it)H ] trP(s2)[e

−(β−it)H ]〉 = C (Imτ1 Imτ2)
1−N

2 e−2πi(Re(τ1)s1+Re(τ2)s2) [Ts1,s2 + Ss1,s2 ] .
(3.2)

The superscript P indicates the contribution from primary states. The SFF can now be

obtained by analytic continuation,

gs1,s2(β, t) = 〈trP(s1)[e
−(β+it)H ] trP(s2)[e

−(β−it)H ]〉 . (3.3)

This object encodes correlations of energy eigenvalues across sectors of fixed spin. We focus

on the low-temperature regime. This corresponds to the region in parameter space where

energies are close to the threshold energy of the spin-s BTZ black hole

Es = 2π

(
|s| − N − 1

12

)
. (3.4)

Let us write down the Euclidean result first. We take the boundary tori to be rectangular

and set the modular parameters as τ1 = iβ1 and τ2 = iβ2. At low-temperatures (β1,2 →∞)

the dominant contribution arises from the sum over T -modular transformations. Taking into

account the temperature dependence from the Z0 prefactors (sans the descendant contributions)

and using large argument approximation of the Bessel function (A.2), we have the following

5The details of the averaging of this is unknown at the moment. However, we imagine the wormhole

amplitude can be reproduced by a suitable averaging over the moduli of the conformal manifold, along the

lines of what has been done for free theories [7, 8].
6We thank Kristan Jensen for emphasizing this point.
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result

〈trP(s1)[e
−β1H ] trP(s2)[e

−β2H ]〉hs '
πN−1C

Γ(N − 1)
e−(β1+β2)Es2

[ √
β1β2

β1 + β2

]N−1

|s2|N−2δs1,s2 . (3.5)

As a consistency check, this result agrees with pure gravity case for N = 2 [26, eq (3.27)]. It is

now straightforward to perform the analytic continuation to obtain the SFF (3.3). We obtain

g(hs)
s1,s2

(β, t) ' πN−1C
Γ(N − 1)

e−2βEs2
(β2 + t2)

N−1
2

(2β)N−1
|s2|N−2δs1,s2 . (3.6)

Therefore, at late times we have a power-law ramp tN−1 within a given fixed spin sector. This

generalizes the pure gravity case (N = 2) for which the ramp is linear.

It is worthwhile to compare the above results with the Narain ensemble (see [35] for an

exhaustive study). The wormhole partition function at low temperatures is, from (2.33)

〈trP(s1)[e
−β1H ] trP(s2)[e

−β2H ]〉Narain '
πD/2

Γ(D/2)

e−(β1+β2)Es2

(β1 + β2)D/2
|s2|

D−2
2 δs1,s2 , (3.7)

where, Es = 2π(|s| − D
12

). Upon setting β1,2 = β ± it, the above expression does not contain

any time dependence and, therefore, the ramp is absent in the SFF. In a sense, this conclusion

is well expected as the CFTs being averaged over are free theories and they do not exhibit

chaotic properties.7

The above features are for the connected piece of the SFF, which is given by Euclidean

wormhole amplitude. There is also a disconnected component in the SFF, 〈Z(β+it)〉〈Z(β−it)〉,
which gives a decay and dictates early time behaviour. In the context of RMT, this decay

is universal and depends only on the symmetry class of the model, for instance it is t−3/2

for Gaussian ensembles, and, t−1/2 for Wishart-Laguerre ensembles [36]. Note that the SFF

starts its life from 〈Z(β)〉2. By the time the disconnected piece decays the rise coming from

the connected piece begins to take over – this is also predicted by RMT. This leads to a

clear transition between the dip and the ramp. Writing down the connected SFF in spectral

decomposition

g(β, t) =

∫ ∞
0

dE1

∫ ∞
0

dE2 〈ρ(E1)ρ(E2)〉 e−β(E1+E2)e−it(E1−E2) , (3.8)

we note that at late times, the randomness of the energies favor only small E1 − E2 due to

phase cancellations. This makes the ramp sensitive to nearest level distributions, which is

encoded in the connected density-density correlator, 〈ρ(E1)ρ(E2)〉. For one-matrix models,

7Even after averaging the degrees of freedom (given by the central charge) equal the number of conserved

currents. In this sense, the system is integrable.
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this can be calculated in terms of the eigenvalue correlation kernel, K(E1, E2), which can

determine any arbitrary joint probability distribution [36]. For large random matrices, when

E1 − E2 is small, K(E1, E2) is given by an universal function known as the sine-kernel [37].

Using this sine-kernel, one can show that the connected SFF will start growing (as a ramp) at

late times; an array of one-matrix model examples has been reviewed in [38]. The dominant

behaviour of the ramp is always linear, whilst there are non-linear corrections that become

important at later times.

The linear ramp of the SFF arises from the Fourier transform of the divergent contribution

to the density-density correlator, 〈ρ(E1)ρ(E2)〉 ∼ |E1 − E2|−2 [39]. Since for higher spins

we find a power-law ramp, tN−1, we expect a stronger divergence in the spectral density

correlator. In the next subsection, we explore this expectation in detail.

3.2 Pair correlation function of spectral densities

We now want to extract the two-point function of spectral densities in a specific spin-sector.

As in (3.8) this two-point function is related to the wormhole amplitude in the following

manner:

〈trP(s1)[e
−β1H ] trP(s2)[e

−β2H ]〉 =

∫ ∞
0

dE1

∫ ∞
0

dE2 〈ρs1(E1)ρs2(E2)〉 e−β1E1−β2E2 . (3.9)

The density-density correlator can either be obtained from the discontinuities of the double

resolvent or by directly double inverse Laplace transforming the wormhole partition function.

In this section we use the latter method, and discuss the former in Appendix C. We focus on

the low temperature regime, where we observed a power-law ramp in the SFF. The partition

function is given in (3.5). The expression for 〈ρs1(E1)ρs2(E2)〉 is

〈ρs1(E1)ρs2(E2)〉 = Ds1,s2
∫ +i∞

−i∞
dβ2e

β2E2
∫ +i∞

−i∞
dβ1e

β1E1
[ √

β1β2

β1 + β2

]N−1

. (3.10)

where, we have defined the following to lighten the notation

Ds1,s2 =
πN−1C

Γ(N − 1)
|s2|N−2δs1,s2 , Ei = Ei − Esi . (3.11)

Let’s consider the inverse Laplace transform (ILT) wrt β1 first. This is

U(β2) =

∫ +i∞

−i∞
dβ1e

β1E1
[ √

β1β2

β1 + β2

]N−1

. (3.12)

The integral can be performed by expanding the E1 independent factor as a power series in
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β1/β2 and then integrating term by term. The result is

U(β2) =
β
N−1

2
2

Γ(N−1
2

)
E
N−3

2
1

∞∑
n=0

(N − 1)n

(N−1
2

)n

(−β2E1)n

n!

=
β
N−1

2
2

Γ(N−1
2

)
E
N−3

2
1 1F1

(
N − 1, N−1

2
;−β2E1

)
. (3.13)

Here, (a)n = Γ(a + n)/Γ(a), is the Pochammer function. We now need to inverse Laplace

transform wrt β2. The details turn out to be quite different depending on whether N is even

or odd. So let’s consider these cases separately.

Even N

The density-density correlator can be obtained from (3.13) as

〈ρs1(E1)ρs2(E2)〉 = Ds1,s2
∫ +i∞

−i∞
dβ1e

β2E2 U(β2) (3.14)

We write U(β2) as in the first line of (3.13) and perform the ILT term-by-term, i.e. the

integral transform acts on powers of β2. The basic identity we can use here is the following∫ +i∞

−i∞
dβ2 e

β2E2(β2)ν =
E−ν−1

2

Γ(−ν)
, (3.15)

which makes sense only if ν isn’t a positive integer. Upon resumming the integrated terms,

we finally have the following result for the pair correlator

〈ρs1(E1)ρs2(E2)〉N,even =
(−1)

N
2 (N − 1)

2π

(E1E2)
N−3

2 (E1 + E2)

(E1 − E2)N
Ds1,s2 . (3.16)

In Appendix C, we verify the above formula using the method of resolvents for N = 2, 4. For

N = 2 we get the result (C = (2π2)−1 for N = 2 in our conventions)

ρ1(E1, E2) = − 1

4π2

E1 + E2√
E1E2

1

(E1 − E2)2
δs1,s2 . (3.17)

This agrees with the pure gravity case. We observe that the two-point function (3.16) displays

long-range eigenvalue attraction for odd N/2 and repulsion for even N/2.
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Odd N

For odd N (or half-integer N/2), we can no longer use the identity (3.15) to perform the second

inverse Laplace transform. Instead, we can rewrite the hypergeometric function appearing in

(3.13) in terms of Laguerre polynomials [40]. For N = 2P + 1 we have the following identity

1F1(2P, P,−x) = e−x1F1(−P, P,−x) =

(
2P − 1

P

)−1

e−xLP−1
P (x) . (3.18)

Therefore

U(β2) =
1

Γ(P )
EP−1

1

(
2P − 1

P

)−1

e−β2E1
[
βP2 L

P−1
P (−β2E1)

]
. (3.19)

The inverse Laplace transform (3.14) can then be carried out by acting on each term of the

quantity in square brackets above. For a given value of P , this is a finite number of terms.

The ILT acts on integer powers of β2 in the following manner∫ +i∞

−i∞
dβ2 e

β2E21(β2)m = δ(m)(E21), m ∈ Z+ , (3.20)

with E21 = E2 − E1. The pair correlation function can then be written as

〈ρs1(E1)ρs2(E2)〉N,odd =
(N − 2)!

(N/2)!
E
N
2
−1

1

[
(∂E21)

N
2 L

N/2−1
N/2 (−E1∂E21)

]
δ(E21)Ds1,s2 , (3.21)

This shows that the result is a linear combination of derivatives of the Dirac delta function.

Unlike the case for even N where we have long-range correlations, we see that the pair

correlation function localizes at the contact-term singularities. As examples, we have the

following for W3 and W5

〈ρs1(E1)ρs2(E2)〉N=3 = π2C [δ′(E21) + E1δ
′′(E21)] |s2|δs1,s2 , (3.22)

〈ρs1(E1)ρs2(E2)〉N=5 =
π4C
6

[
3E1

(
3δ′′(E21) + 3E1δ

′′′(E21) +
E2

1

2
δ(4)(E21)

)]
|s2|3δs1,s2 . (3.23)

3.3 Is there a matrix model description?

We would now like to gain a better understanding of the spectral correlations. For simplicity,

we shall focus on the even N case for which we obtained the spectral density 2-point function

to be (3.16). In the context of Gaussian unitary ensembles (GUE), a similar behaviour of

the pair correlation function is seen, 〈ρ(λ1)ρ(λ2)〉 ∼ 1/(λ1 − λ2)
2. This arises from the 1d

Coulomb repulsion between the eigenvalues, V (λi, λj) = − log |λi − λj|. Since we observe a
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slightly generalized spectral density correlator for WN CFTs, it is worthwhile to ask: what

matrix ensembles or potentials V (λi, λj) do they correspond to? In what follows, we shall

consider a simplified version of this problem and glean the lessons.

To keep the discussion self-contained, let us recall the well studied GUE case first. The

matrix integral can be written in terms of the eigenvalues after diagonalizing the matrices

and performing a unitary change of basis. It reads

ZGUE =

∫
[Dρ(λ)]e−S, S = −L

2

2

∫
dλ ρ(λ) + L2

∫
dλ1dλ2 ρ(λ1)ρ(λ2) log |λ1 − λ2| . (3.24)

Here, L is the size of the matrix and ρ(λ) is the unit normalized eigenvalue density. The

logarithimic potential is essentially the (exponentiated) Vandermode determinant that arises

from the Jacobian while changing integration variables from matrix elements to eigenvalues.

Our next step is to derive the pair correlation function using (3.24) as the starting point –

cf. [39, 41]. The quadratic fluctuations about the saddle at large L is

δS = −L2

∫
dλ1dλ2 δρ(λ1)δρ(λ2) log |λ1 − λ2| , (3.25)

where, δρ(λ) = ρ(λ)− ρsaddle(λ). Fourier transforming these density fluctuations as δρ(λ) =∫
du
2π
eiuλδρ(u) and performing the integrals, we get

δS = −L
2

2

∫
du δρ(u)

1

|u|
δρ(−u) . (3.26)

The λ1,2 integrals in (3.26) are performed by changing variables, r = λ1 − λ2, and then

using the standard identity for the Fourier transform of log |r|.8 From this we can find the

propagator and revert back to λ-space

〈δρ(λ1)δρ(λ2)〉 ≈ 1

4π2L2

∫
du ei(λ1−λ2)u|u| = − 1

4π2L2(λ1 − λ2)2
. (3.27)

The form of this 2-point function is analogous to the N = 2 or Virasoro case (3.17), for small

energy separations.

We would now like to reverse engineer the potential for eigenvalue interactions from a

spectral density correlator, e.g. given (3.27), we want to reconstruct (3.25). A bare-bones

8This identity is
∫∞
−∞ dk eikx log |x| = −π/|k| − 2πγδ(k). Here, γ is the Euler-Mascheroni constant. Also,

strictly speaking, the π/|k| should be understood in a regularized/principal value sense. The delta-function

piece can be safely dropped, as the repulsion does not allow eigenvalues to coincide.
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version of (3.16) that retains the dependence on eigenvalue differences and the overall sign is

〈δρ(λ1)δρ(λ2)〉 ∼ (−1)N/2

(λ1 − λ2)N
, (3.28)

where, N is an even integer. ForN = 2 this reduces to the GUE case (3.27). The inverse Fourier

transform of (λ1 − λ2)
−N , with respect to conjugate variable u, is given by (−1)N/2|u|N−1.

We can then write down the action of the density fluctuations in the Fourier space

δS ∼
∫
du δρ̃(u)

1

|u|N−1
δρ̃(−u) =

∫
du1

∫
du2 δρ̃(u1)

δ(u1 + u2)

|u1|N−1
δρ̃(u2) . (3.29)

In the eigenvalue space, if the eigenvalue potential is given by, V (λ1 − λ2) = V (r), then we

also have the following analogue of (3.25)

δS ∼
∫
dλ1dλ2 δρ(λ1)V (λ1 − λ2)δρ(λ2) =

∫
dr dλ2 δρ(λ2 + r)V (r)δρ(λ2) . (3.30)

The two equations above describe the same quantity and should be equivalent. In order to

extract V (r), we introduce the Fourier transforms as in the previous paragraph, δρ(λj) =∫ duj
2π
eiuλjδρ(uj). The integral over λ2 yields a δ(u1 + u2) factor, cf. (3.29), and we are left

with the following equation for V (r)∫
du eiur V (r) =

1

|u|N−1
. (3.31)

Finally, we find that the potential takes the form

V (r) = rN−2
(
aN + bN log |r|

)
. (3.32)

This is the generalization of the V (r) = − log |r| behaviour of the GUE case. Here aN and

bN are numerical coefficients and their exact N -dependence isn’t particularly illuminating.

However, the details are such that the potentials take characteristic shapes – see Fig. 3.1.

Quite strikingly, when N/2 is even we find a double-well shape. This is mostly attractive,

with two degenerate basins located away from the origin at values that increase with N . This

implies that most eigenvalue differences are confined in the wells and their vicinity. On the

other hand, we see that when N/2 is odd, the potential resembles an inverted double-well.

Therefore, it is mostly repulsive with a weak attraction/confinement at very small eigenvalue

differences.9

9A similar unexplained periodicity (in central charge) arises in the spectrum in the sphere packing/CFT2

context [42]. It will be fascinating to uncover further connections in this direction. We thank Tom Hartman

for pointing out.
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Figure 3.1: Plot of the potentials, V (r), for N/2 being even (on the left) and odd integers (on

the right). For N = 2, we have V (r) = − log |r| (in gray) indicating eigenvalue repulsion in the

GUE. For N > 2 we get “double-well” or “double-crest” type potentials, depending on whether

N/2 is even or odd.

These features are in sharp contrast to the GUE matrix models. Although we considered a

fairly simple form of the pair correlation function (3.28), the potential (3.32) that gives rise to

such behaviour is quite different. At this moment, it is unclear to us whether suitable matrix

models (or deformations thereof) can give rise to these interactions between the eigenvalues.

4 Discussion

In this paper we analyzed Euclidean wormholes in 3d higher spin gravity. We used modular

bootstrap methods, generalizing the case of wormholes in pure gravity [18]. The wormhole

amplitude gives the connected part of 〈Z(τ1)Z(τ2)〉 of a suitably ensemble averaged, irrational,

WN CFT. This amplitude captures the eigenvalue statistics of black hole microstates. We

observed that the spectral form factors have a power-law ramp (∼ tN−1), and, the inferred

eigenvalue dynamics exhibits many interesting features, including strong and weak attractive

behaviours, as well as localization, which depend on the value of N . These features are novel,

and perplexing at the same time – they have not been seen previously for pure 3d gravity

[18, 26] or in the lower dimensional case of JT gravity [6]. A drawback of our analysis is that

the twist zero-mode volume, V0 of equation (2.12), was argued based on symmetries of the

dual CFT. It would be desirable to have a derivation of the same from the higher spin gravity

perspective.

At very late times, the spectral form factor saturates to a plateau of height Z(2β); this

follows from the very definition of the SFF and is universal. However, in order to reproduce

this from the wormhole amplitude we require to take into account contributions beyond the
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low-temperature regime. In particular, one needs to explicitly evaluate the Kloosterman sums

that include the S-transformed images of the preamplitude (see (B.9) for the N = 3 case).

Reproducing the value of the plateau (which should equal the torus partition function Z(2τ))

will be a good consistency check of the full bootstrapped amplitude. It is to be noted that

this remains an open problem even for the pure gravity case [26].

Our results point towards very interesting features for the matrix ensembles that can

produce the pair correlation of spectral densities. Typically random matrices exhibit eigenvalue

repulsion. However, when N is a multiple of 4, we found that the eigenvalues show attractive

behaviour. Even though such an effective attraction is unexpected in quantum chaos

discussions, there are some rare examples like [20]. Furthermore, some integrable systems

show an exponential ramp in the SFF; an example is the q = 2 SYK model [21, 43]. Therefore,

the power-law ramp for the irrational WN CFTs interpolates between the chaotic case (with

a linear ramp) and the fully integrable one. It would then be valuable to study these higher

spin ensembles further, even with the goal of understanding generic eigenvalue dynamics.

With this in mind and inspired by recent developments in JT gravity [6, 44–47], it will be

fascinating to translate the analysis here in terms of a matrix model, if at all it exists.

One can imagine more general wormhole backgrounds in higher spin gravity which contain

higher spin charges, in the same spirit of the higher spin black holes constructed in the past

[48]. Studying the corresponding wormhole amplitude (in the grand canonical ensemble of

non-zero higher spin chemical potentials) will reveal the statistics of the higher-spin charges.

Unfortunately, there are technical obstacles in carrying this out; even for the case of a

single torus boundary these partition functions are not known only perturbatively [49–53].

Furthermore, the modular properties of the partition functions are not clearly known which is

a hindrance to the bootstrap method employed here.

The results of this work and that of [54] provide information about the one- and two-point

functions 〈Z(τ)〉 and 〈Z(τ1)Z(τ2)〉 for the low-temperature regime of pure higher spin gravity

in 3-dimensions. This is the near-horizon regime of near-extremal black holes in which an

AdS2-throat appears [55]. For the case of higher spins, the 2d gravity description is provided

by a topological BF theory [22–25]. It would be reassuring to derive 〈Z(τ)〉, 〈Z(τ1)Z(τ2)〉
and higher point correlators which translate to BF theory on the disk, double-trumpet and

geometries with multiple boundaries respectively. A related question is: how does topological

recursion generalize for 2d BF theory? Given the topological nature of BF theory it is

very likely that a recursive machinery will exist that would fruitfully allow the evaluation of

partition functions of n-boundary wormholes in a genus expansion. Alternatively, one can hope

to obtain the n-boundary amplitude by generalizing techniques of Liouville gravity, developed

in [57], to the case of Toda gravity. These amplitudes would enable the determination of higher

moments of the spectral densities 〈ρ(E1)ρ(E2)ρ(E3) · · ·〉. Relatedly, it can be investigated to
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what extent higher moments of the spectral density are fixed/constrained by the first few

moments – this is an incarnation of the truncated moment problem.
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A Bessel function identities

We list a couple of properties of (modified) Bessel functions, Jν(x) and Kν(x), that have been

useful in our analysis.

1. The orthogonality relation of Bessel functions of the first kind is [58]∫ ∞
0

dx xJν(ax)Jν(bx) =
δ(a− b)

a
. (A.1)

2. At large arguments the modified Bessel function has the following behaviour

Kν(2πx→∞) ' e−2πx

2
√
x
. (A.2)

B Further details on the Poincaré sum

We start with the Poincare series in the Fourier space indexed by spins

R̃s1,s2 =

∫ 1

0

dz1

∫ 1

0

dw1 e
2πi(z1s1+w1s2)

∑
γ∈PSL(2Z)

(
(Im(τ1)Im(γτ2))

|τ1 + γτ2|2

)N−1

. (B.1)

Using the properties of PSL(2,Z), it can be shown that γ can be decomposed into

γ = {T n} ∪ {T nγc,dTm}, γc,d =

(
[d′−1]c [r]c,d′

c d′

)
(B.2)
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where, T generates τ → τ + 1, and all other variables are integers. The first part which

involves only T transformations, give rise to Ts1,s2 , which is written down explicitly in (2.26)

and evaluated in (2.29). The second part of γ gives rise to Ss1,s2 . The integer c is positive,

while d′ ∈ (Z/cZ)∗. This means, d′ is an integer such that, 1 ≤ d′ ≤ c− 1 is co-prime with

respect to c. The entry, [d′−1]c is just the inverse of d′ modulo c. The entry [r]c,d′ is defined

via the relation, [d′−1]cd
′ = 1 + c[r]c,d′ . Therefore we have

Ss1,s2 =
∞∑

n=−∞

∞∑
m=−∞

∑
c≥1,d∈(Z/cZ)∗

∫ 1

0

dz1

∫ 1

0

dw1 e
2πiz1s1+2πiw1s2

(
(Im(τ1)Im(T nγc,dT

m · τ2))

|τ1 + T nγc,dTm · τ2|2

)N−1

.

(B.3)

The effect of the multiple actions by the T transformations, present in Ss1,s2 , can be dealt

with in the same way, as was done with Ts1,s2 . Namely, via variable redefinitions, we absorb

into z1 and w1, these translations at the expense of extending the contour of integrations to

the entire real line. As a result we obtain

Ss1,s2 =
∑

c≥1,d∈(Z/cZ)∗

∫ ∞
−∞

dz1

∫ ∞
−∞

dw1 e
2πiz1s1+2πiw1s2

(
(Im(τ1)Im(γc,dτ2))

|τ1 + γc,dτ2|2

)N−1

. (B.4)

Next we note by plugging in γc,d explicitly that the numerator within parantheses becomes

independent of the integral as well as the summation, since

Im(z)Im(γc,dw)

|z + γc,dw|2
=

Im(z)Im(w)

|cwz + d′z + [d′−1]cw + [r]c,d′ |2
. (B.5)

Therefore we have

Ss1,s2 = (z2w2)N−1
∑

c≥1,d∈(Z/cZ)∗

∫ ∞
−∞

dz1

∫ ∞
−∞

dw1
e2πiz1s1+2πiw1s2

|cwz + d′z + [d′−1]cw + [r]c,d′|2N−2
. (B.6)

These integrals can be performed in the complex z1 and w1 planes, by closing the contours

appropriately. Either of the integrals present us with two N − 1 order poles, one in the UHP

while another one is its reflection into the LHP. Therefore, we need to evaluate a (N − 2)-th

order derivative to find the residue. This complicates the expressions, thus we focus on the

case with N = 3. For notational simplicity we now denote d′ by d, [d′−1]c by a and [r]c,d′ by b.

The integrals take the form∫ ∞
−∞

dz1

∫ ∞
−∞

dw1
e2πiz1s1+2πiw1s2

|cwz + dz + aw + b|4
. (B.7)
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For the w1 integral we find two poles of order two. They are symmetrically placed with

respect to the real w1 axis. For the case, s2 > 0 the UHP pole contributes, whereas for s2 < 0,

the residue contribution arises just from the pole located at

w∗ = −b+ i aw2 + (d+ i cw2)z

a+ c z
.

The location of the pole can be shown to be in the LHP since both w2 and z2 are non-negative.

Without loss of generality, we choose the case, wherein we close the contour via the LHP, this

contribution gives

πd4e
2πs2(w2+(cw2−id)(b+dz))

1+bc+cd z

2 (d2z2 + w2((1 + bc+ cdz1)2 + c2d2z2
2))

3

(
(1+bc+cdz1)2(2πs2w2−1)+2d2πs2z2+c2d2z2

2(2πs2w2−1)

)
.

We see that this has a third order pole in z1, once again in pair. For s1 > 0, we shall close

the contour via the UHP, and thus pick up the pole

z∗ = −1 + bc

cd
+
i

c

√
z2

w2

(1 + c2w2z2).

Evaluating the integral on this residue finally yields

Ss1,s2 =
∑

c≥1,d∈(Z/cZ)∗

π2 e
2πi

(
d
c
s2+

d−1

c
s1

)

16c3
√

(1 + c2w2z2)5w5
2z

5
2

e
−2π

√ z2
w2

(1+c2z2w2)
|s1|
c
−2π

√w2

z2
(1+c2z2w2)

|s2|
c

×
(

4π2(1 + c2w2z2)((s2w2 + s1z2)2 − 4s1s2(cw2z2)2)− c2w2z2(1 + 4c2w2z2)

+ 2πc(1 + 4c2w2z2)
√

(1 + c2w2z2)w2z2(s1z2 − s2w2)

)
. (B.8)

Note, that the sum over (Z/cZ)∗ only concerns the oscillatory exponent, which can be

represented using the Kloosterman zeta function, S(j, J ; c) =
∑

d∈(Z/cZ)∗ e
2πi(jd/c+Jd−1/c) =

S(J, j, c), as:

Ss1,s2 =
∑
c≥1

π2 S(s1, s2, c)

16c3
√

(1 + c2w2z2)5w5
2z

5
2

e
−2π

√ z2
w2

(1+c2z2w2)
|s1|
c
−2π

√w2

z2
(1+c2z2w2)

|s2|
c

×
(

4π2(1 + c2w2z2)((s2w2 + s1z2)2 − 4s1s2(cw2z2)2)− c2w2z2(1 + 4c2w2z2)

+ 2πc(1 + 4c2w2z2)
√

(1 + c2w2z2)w2z2(s1z2 − s2w2)

)
. (B.9)
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It is important to note that in the low temperature regime, apart from the exponential

suppression the polynomial suppression goes as 1/(β2β1)2. The computation for other values

of N can be done in a similar manner.

C Density correlators from the resolvent

The resolvent is a useful quantity in the context of matrix models, whose discontinuities have

information about densities and their correlators. The single resolvent has information about

the density of states, while the double resolvent encapsulates the pair correlation function of

spectral densities. The double resolvent is defined as

R(E1, E2) =

〈
tr

1

H − E1

tr
1

H − E2

〉
=

∫
dEdE ′

ρ(E,E ′)

(E − E1)(E ′ − E2)
. (C.1)

We can obtain the density-density correlator from its double discontinuities in the complex

E1, E2 planes

R(E1 ± iε, E2 ± iε) =

∫
dEdE ′ ρ(E,E ′)Q±(E − E1)Q±(E ′ − E2) ,

Q±(E − Ei) =

[
P
(

1

E − Ei

)
± iπδ(E − Ei)

]
. (C.2)

Here, P(x) denotes the principal value. It then follows that

ρ(E1, E2) =
R(++) +R(−−)−R(+−)−R(−+)

(−2πi)2
. (C.3)

From its definition (C.1), the double resolvent can be seen to be given by the double Legendre

transform of Z(β1, β2) = 〈tr(s1)[e
−β1H ] tr(s2)[e

−β2H ]〉. Therefore

R(E1, E2) =

∫ ∞
0

dβ1

∫ ∞
0

dβ2 e
β1(E1−Es1 )+β2(E2−Es2 )Z(β1, β2)

= Ds1,s2
∫ ∞

0

dβ2e
β2E2

∫ ∞
0

dβ1e
β1E1

[ √
β1β2

β1 + β2

]N−1

, (C.4)

where we have used definitions of (3.11). Once again the odd and even cases of N require

separate treatment due to very similar reasons as in the inverse Laplace transform method.

Here we present a few even cases, and show that the answers agree with the ones obtained

directly using inverse Laplace transforms. This provides a useful consistency check of the

results.
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• N = 2 : In this case the Legendre transform gives

R(E1, E2) =
π

2

1
√
E1E2

(√
E1 +

√
E2

)2Ds1,s2 . (C.5)

Now implementing formula (C.3), with the discontinuities coming from the square roots,

we obtain

ρ(E1, E2) = − 1

2π

E1 + E2√
E1E2

1

(E1 − E2)2
D(N=2)
s1,s2

. (C.6)

• N = 4 : In this case the resolvent is

R(E1, E2) =
3π

8

1(√
E1 +

√
E2

)4Ds1,s2 , (C.7)

which results in

ρ(E1, E2) =
3

2π

√
E1E2

E1 + E2

(E1 − E2)4
D(N=4)
s1,s2

. (C.8)

We see that these agree with (3.16).
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