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Abstract: We investigate the sensitivity of the FASERν detector to new physics in the
form of non-standard neutrino interactions. FASERν, which has recently been installed
480 m downstream of the ATLAS interaction point, will for the first time study interactions
of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to
any current and future neutrino experiment – is based on the Standard Model Effective
Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the
electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that
modify neutrino production in meson decays and detection via deep-inelastic scattering,
and we express the new physics effects in terms of modified flavor transition probabilities.
For some coupling structures, we find that FASERν will be able to constrain interactions
that are two to three orders of magnitude weaker than Standard Model weak interactions,
implying that the experiment will be indirectly probing new physics at the multi-TeV scale.
In some cases, FASERν constraints will become comparable to existing limits – some of
them derived for the first time in this paper – already with 150 fb−1 of data.
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1 Introduction

When the CNGS (CERN Neutrinos to Gran Sasso) project ended in 2012, it seemed that,
nearly five decades after the first horn-focused neutrino beam had been realized at CERN
in 1963 [1], accelerator-based neutrino experiments operating in Europe would become a
thing of the past. Today, CERN is making a comeback in an unexpected way: with the
Forward Search Experiment at the LHC (FASER) [2, 3], we are for the first time able to
observe neutrinos from a collider experiment [4].

Of particular interest in this context is FASERν [3, 4], a component of FASER consist-
ing of 1.2 tonnes of tungsten plates, interleaved with thin films of silver bromide emulsion.
FASERν is installed directly in front of the main detector and, thanks to the emulsion
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technology, offers the superb spatial resolution required especially for reconstructing τ neu-
trinos. FASER and FASERν are located downstream of the ATLAS interaction point at
a distance of 480 m, and for this reason are ideal for detecting high-energy neutrinos pro-
duced abundantly in the forward direction at the LHC. At energies up to several TeV, these
neutrinos offer novel opportunities for studying neutrino–nucleon interactions both within
the Standard Model (SM) and beyond.

It is the second possibility – probing physics beyond the SM – that we will focus on
in this paper. Our starting point will be the Weak Effective Theory (WEFT) Lagrangian,
which is the most general effective Lagrangian below the electroweak breaking scale. If non-
SM particles are much heavier than the weak scale, WEFT can be considered a lower-energy
descendant of SM Effective Field Theory (SMEFT) [5, 6], which is a SU(3) × SU(2) ×
U(1) gauge invariant effective theory above the electroweak scale. Considering effective
operators of dimension-6, we will express the effects of heavy (& 100 GeV) new physics on
lower energy neutrino interactions in terms of modified flavor transition probabilities. This
approach, which was introduced in refs. [7, 8], has the advantage that it is applicable also
to long-baseline neutrino experiments, where also neutrino oscillations play a role. We will
then comprehensively study the sensitivity of FASERν to a large set of WEFT operators,
highlighting the experiment’s excellent sensitivity especially to pseudoscalar couplings, to
couplings that lead to an anomalous flux of τ neutrinos, and to anomalous production of
charged τ leptons in νe or νµ interactions in the detector.

While our results will be derived for the specific case of FASERν, they will, with
minimal modification and rescaling, apply also to other neutrino detectors at the LHC, in
particular to the recently approved SND@LHC experiment [9].

Searches for non-standard neutrino interactions using LHC neutrinos will add a new
chapter to the long-standing search program for such “NSI”, which has previously focused
mostly on neutrino oscillation experiments and other low-energy searches, see for instance
refs. [7, 10–29]. Searches for other types of physics beyond the Standard Model in FASER
have previously been discussed in refs. [30–41], while refs. [42–45] have focused specifically
on FASERν. Besides FASERν and SND@LHC, additional proposals for detecting LHC
neutrinos have been put forwards in refs. [46, 47], highlighting even more the significant
community interest in this emerging subfield of neutrino physics.

The paper is organized as follows: in section 2 we introduce the WEFT formalism and
we compute analytically the modified neutrino event rates in the presence of new dimension-
6 interactions in the framework of WEFT. In section 3 we describe our numerical evaluation
of these rates as well as the statistical procedure we follow to determine the sensitivity of
FASERν. We present our results in section 4, and we compare them with complementary
constraints from other experiments in section 5. We conclude in section 6.

2 Formalism

Let us present in this section the Effective Field Theory (EFT) formalism that we will
use and that was introduced in refs. [7, 8]. From an EFT point of view, the most general
Lagrangian describing new physics below the electroweak scale is the WEFT Lagrangian,
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in which the electroweak gauge bosons, the Higgs boson, and the top quark are integrated
out while the electroweak symmetry is explicitly broken.

The part of the WEFT Lagrangian that we will focus on here is the one that FASERν
will be able to probe. It is the part that modifies charged-current neutrino interactions
with quarks:1

LWEFT ⊃ −
2Vjk
v2

{
[1 + εjkL ]αβ(ūjγµPLd

k)(¯̀
αγµPLνβ) + [εjkR ]αβ(ūjγµPRd

k)(¯̀
αγµPLνβ)

+
1

2
[εjkS ]αβ(ūjdk)(¯̀

αPLνβ)− 1

2
[εjkP ]αβ(ūjγ5d

k)(¯̀
αPLνβ)

+
1

4
[εjkT ]αβ(ūjσµνPLd

k)(¯̀
ασµνPLνβ) + h.c.

}
. (2.1)

Here, v ≡ (
√

2GF )−1/2 ≈ 246 GeV is the vacuum expectation value of the SM Higgs field,
Vjk are the elements of the Cabibbo–Kobayashi–Maskawa (CKM) matrix, PL,R = 1

2(1∓γ5)

are the chirality projection operators, and σµν = i
2 [γµ, γν ]. Mass eigenstates of the down-

quark, up-quark and charged lepton fields are denoted by dk, uj and `α, respectively.
The neutrino fields να are taken in the flavor (weak-interaction) basis here, and they are
connected to mass eigenstates through the leptonic mixing matrix: να =

∑3
n=1 Uαnνn.

We follow the usual convention of denoting flavor indices with Greek letters, and mass
eigenstate indices with Roman letters. The interaction strengths of the new operators
in eq. (2.1) are parameterized in terms of the dimensionless Wilson coefficients [εjkX ]αβ ,
where j, k specify the quark generations and α, β the lepton generations involved in the
corresponding dimension-6 operator. The index X denotes the Lorentz structure of the
operator and can be X = L,R, S, P, T for left-handed, right-handed, scalar, pseudo-scalar,
and tensor interactions, respectively.

In principle, the [εjkX ]αβ can be complex; we find, however, that the FASERν experiment
with which we are mainly concerned in this work, has hardly any sensitivity to their complex
phases. Therefore, we will treat them as real throughout this paper, with the understanding
that the sensitivity estimates we are going to present in section 4 apply to the modulus of
the [εjkX ]αβ in the case of complex coefficients.

Note that we do not consider operators of dimension higher than 6. At first sight, this
might seem problematic, given that FASERν will only be sensitive at quadratic order to
some of the dimension-6 operators. However, it is not at odds with WEFT power counting.
Indeed, the observable of interest (the neutrino event rate) will scale as R/RSM = 1 + c ε2X ,
where RSM is the count rate without new physics, and c is a numerical factor. A dimension-
8 WEFT operator with Wilson coefficient ε8/v4 will lead to corrections of order ∆R/RSM ∼√
c ε8E

2/v2, where E is the characteristic energy scale of the process, E2 ∼ Eν · GeV, in
FASERν. It is therefore safe to neglect operators of dimension higher than 6 as long as
c ε2X &

√
c ε8E

2/v2, or
√
c εX & E2/v2 assuming the dimension-6 and higher-order Wilson

coefficients are of similar order of magnitude. We will see from our results in section 4 that
this condition is always satisfied for models saturating the expected FASERν limits.2

1We assume here that total lepton number is conserved.
2The dimension-7 WEFT operators [48] cannot interfere with the SM amplitudes, so their contribution

is always smaller than that from dimension-6 operators and can therefore be neglected in this discussion.
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In our analysis, we take the Wilson coefficients in eq. (2.1) to be given at a renormal-
ization scale µ = 2 GeV in the MS scheme. This is appropriate for neutrino production in
meson decay. In principle, neutrino–nucleus interactions in the detector occur at energies
about an order of magnitude larger than this, so in principle, one needs to consider renor-
malization group running in the computation of the neutrino cross-sections. Given that
RGE effects are expected to be smaller than the systematic uncertainties in our flux pre-
dictions, we will neglect them here. We will, however, include RG effects when comparing
the sensitivity of FASERν to the sensitivity of collider searches in section 5.

The WEFT Wilson coefficients can be matched onto the parameters of the SMEFT at
a scale µ ∼ mW , see e.g. refs. [7, 49, 50]. As discussed in ref. [7], this matching exercise
shows that all the εX Wilson coefficients receive contributions at O(Λ−2), where Λ is the
SMEFT ultraviolet completion scale. Moreover, one finds [εjkR ]αβ ∝ δαβ at O(Λ−2), while
the remaining εX can be off-diagonal in the lepton flavor indices at this order. However in
this paper we allow for flavor-off-diagonal [εjkR ]αβ , i.e. α 6= β, which can be generated by
new physics below the electroweak scale.

The new interactions introduced in the Lagrangian of eq. (2.1) can affect the production
and detection of neutrinos, modifying the observed event rate, flavor composition, and
oscillation pattern compared to the SM. Let us assume each neutrino is produced from a
source particle S together with a charged lepton `α: S → X`ανn. When this process is
mediated at the parton level by the uj d̄k → `+α νn transition (or another transition related
by crossing symmetry), the corresponding production amplitude is denoted byMS,jk

αn . For
instance, neutrino production in charged pion decay (π+ → µ+νn) corresponds to a matrix
element of the form Mπ,ud

µn . Similarly, we denote by MD,jk
βn the amplitude for neutrino

charged-current scattering on a quark in the target nucleus: νndk → uj`−β . The amplitude

for the scattering on an anti-quark, νnūj → d̄k`−β , is denoted byMD̄,jk
βn . The structure of

the EFT Lagrangian in eq. (2.1) implies that these amplitudes take the general form

MS,jk
αn = U∗αnA

S,jk
L,α +

∑
X=L,R,S,P,T

[εjkXU ]∗αnA
S,jk
X,α ,

MD,jk
βn = UβnA

D,jk
L,β +

∑
X=L,R,S,P,T

[εjkXU ]βnA
D,jk
X,β , (2.2)

and an analogous relation for MD̄,jk
βn and AD̄,jkX,β . These equations implicitly define the

reduced matrix elements AS,jkX,α and AD,jkX,β (with all PMNS matrix elements and WEFT
coefficients factored out). For anti-neutrinos eq. (2.2) holds with U → U∗, and with AS,jkX,α ,
AD,jkX,β replaced by the corresponding anti-neutrino amplitudes. The differential event rate
for neutrinos of flavor β at a neutrino detector at a distance L from the source is [8]3

dRβ
dEν

= NT σ
SM
β (Eν)

∑
α,S

ΦS,SM
α (Eν) P̃Sαβ(Eν , L) , (2.3)

3Ref. [8] considered a single monochromatic source and a single type of target particles. In this paper we
generalize their expressions to the case of multiple sources moving with different energies in the lab frame,
and to account for DIS scattering on the target nucleus.
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where NT is the number of target particles, ΦS,SM
α (Eν) and σSM

β (Eν) are the SM neutrino
flux from the source S and the SM detection cross section, respectively, both at neutrino
energy Eν in the target’s rest frame. For the anti-neutrino flux and cross-section we use the
notation Φ̄S,SM

α and σ̄SM
β . The sum in eq. (2.3) runs over the flavor of the charged lepton

produced together with the neutrino, and over all types of source particles S, in particular
S = π±,K0

S ,K
0
L,K

±, etc. We stress that both ΦS,SM
α (Eν) and σSM

β (Eν) are calculated in
the absence of any new physics. The latter is included in the modified flavor transition
probabilities given by

P̃Sαβ(Eν , L) =
∑
n,m

e−i∆m
2
nmL/(2Eν)

×
[
U∗αnUαm +

∑
X,j,k

pS,jkXL,α[εjkX U ]∗αnUαm +
∑
X,j,k

pS,jk∗XL,αU
∗
αn[εjkX U ]αm +

∑
X,Y,j,k

pS,jkXY,α[εjkX U ]∗αn[εjkY U ]αm

]

×
[
UβnU

∗
βm +

∑
X,r,s

drsXL,β [εrsXU ]βnU
∗
βm +

∑
X,r,s

drs∗XL,βUβn[εrsXU ]∗βm +
∑

X,Y,r,s

drsXY,β [εrsXU ]βn[εrsY U ]∗βm

]
,

(2.4)

where ∆m2
nm ≡ m2

νn −m
2
νm are the neutrino mass squared differences, L is the baseline

(the source–detector distance), and U is again the 3×3 leptonic mixing matrix (the PMNS
matrix). It is important to note that the expression in eq. (2.4) is not an oscillation
probability in the usual sense. In particular, it can be larger than one. We use the tilde in
P̃Sαβ to remind ourselves of this fact. Nevertheless, P̃Sαβ is a useful quantity as it encapsulates
all the new physics effects in neutrino production, detection, and propagation in a single
quantity. In the SM limit, where the Wilson coefficients εX are zero, P̃Sαβ reduces to the
standard oscillation probability.

The production and detection coefficients, pS,jkXY,α and djkXY,β , quantify how strongly a
given WEFT operator affects the neutrino event rate. Roughly speaking, the production
coefficients parameterize the ratio of the decay width into neutrinos of energy Eν including
new physics to the decay width into neutrinos at the same energy in the SM. Similarly,
the detection coefficients parameterize the ratio between the interaction cross section for
neutrinos of energy Eν including new physics and the one without new physics. They carry
indices indicating the Lorentz structure of the interaction (X, Y ), the charged lepton flavor
(α, β), and the involved quark flavors (j, k).

The production coefficients are defined as

pS,jkXY,α ≡
∫
dES

φS(ES)
ES

∑
i β

S
i (ES)

∫
dΠP ′i

ASi,jkX,α A
Si,jk∗
Y,α∫

dES
φS(ES)
ES

∑
i′j′k′ β

S
i′ (ES)

∫
dΠP ′

i′
|ASi,j

′k′

L,α |2
(2.5)

Here dES φS(ES) denotes the number of source particles of type S with lab frame energy
in a small interval dES around ES . The sum over i enumerates all decay modes of S
that at the parton level include the transition uj d̄k → `αν. For instance, if S = K+,
we need to sum over the leptonic and semileptonic decay channels. The differential dΠP ′i
in eq. (2.5) is the phase space integration measure for the i-th production process, but
without the integral over neutrino energy: dΠPi ≡ dΠP ′i

dEν . Implicitly, this differential
also implies sums/averages over polarizations and any other unobserved degrees of freedom.
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The factor 1/ES that appears in both the numerator and in the denominator of eq. (2.5)
arises because the lab frame decay rate of S is proportional to 1/ES . Finally, the factor
βSi (ES) appearing in the numerator and the denominator of the production coefficients
describes the experimental acceptance corresponding to a given production channel i. In
most cases, it is possible to absorb this factor into the definition of φS(ES). The one
exception relevant to us will be neutrino production in kaon decays, KL,KS ,K

±, in which
case the acceptance for neutrinos from 2-body decays differs from the one for neutrinos
from 3-body decays because of the different energy spectra. We determine each of the
corresponding βSi (ES) factors as the ratio between the relative flux fraction of channel i at
FASERν and the SM branching ratio.

The detection coefficients for neutrinos are defined as

djkXY,β =

∑
N=p,n nN

∫
dx dQ2 x−2

[
AD,jk∗X,β AD,jkY,β fNqk (x,Q2) +AD̄,jk∗X,β AD̄,jkY,β fNq̄j (x,Q2)

]
∑

N=p,n

∑
j′k′ nN

∫
dx dQ2 x−2

[
AD,j

′k′∗
L,β AD,j

′k′

L,β fNqk′ (x,Q
2) +AD̄,j

′k′∗
L,β AD̄,j

′k′

L,β fNq̄j′ (x,Q
2)
] .

(2.6)

Here, np and nn are the numbers of protons and neutrons in the target nucleus. The
Bjorken variable x is the fraction of the nucleon momentum that is carried by the initial
state quark and Q2 = −(p`β − pν)2 is the momentum transfer. The functions fNq (x,Q2)

are the parton distribution functions (PDFs) describing the quark q content of the nucleon
N , where we set the factorization scale equal to Q. For anti-neutrinos, the role of quarks
and anti-quarks is swapped in eq. (2.6), and the corresponding detection coefficients will
be denoted by d̄jkXY,β .

Our definition of the production coefficients is valid only if the neutrino flux from a
given type of source particle S depends linearly on the decay width. This is the case for
neutrinos from π±, K0

L, and K
± decays because only a small fraction of these mesons with

ES & 100 GeV can decay before being stopped in the material surrounding the LHC beam
pipe and tunnel. In other words, the exponential decay law can be linearized for these
decays. Our production coefficients are also valid for K0

S and charm meson decay because
for these mesons, the branching ratio into leptonic and semileptonic modes is fairly small
so that new physics is only going to affect the branching ratios, but not the total decay
rate. Equation (2.5) would, however, not be valid for a hypothetical parent particle whose
lab-frame lifetime is comparable to or smaller than its free-flight distance, and whose total
decay width is significantly affected by new physics.

Note that the production and detection coefficients satisfy

pS,jkXY,α = [pS,jkY X,α]∗ and drsXY,β = [drsY X,β]∗ . (2.7)

A comment is in order on the SM neutrino fluxes ΦS,SM
α (Eν) appearing in eq. (2.3). Pre-

dicting these fluxes requires simulations, but simulations typically depend on many input
parameters that are derived from data, for instance measured decay rates and branching
ratios. Therefore, in the presence of new physics that affects decay rates and branching
ratios, the predictions of typical simulations may be contaminated by new physics effects.
Such simulations are therefore unsuitable for predicting the purely Standard Model fluxes
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ΦS,SM
α (Eν). Furthermore, the simulations depend on the CKM matrix elements, which

have to be determined experimentally and again may be “contaminated" by new physics.
In this study we will ignore this problem because, at this point, the difference between simu-
lated fluxes and those obtained from first principles are much smaller than the uncertainties
from other sources, e.g. from imperfect modeling of forward QCD scattering or from nuclear
structure effects in neutrino-nucleus scattering. In a fit to actual data, however, care should
be taken so that those pieces of the simulation that are prone to new physics contamination
– namely meson decay rates and branching ratios – are derived from first principles with-
out input from data. This will not lead to an increase of systematic uncertainties because
already the calculation of the production coefficients according to eq. (2.5) depends on sim-
ilar first-principles calculations and therefore suffers from similar systematic uncertainties.
Furthermore, in these future studies one should adopt some consistent CKM input scheme,
for example the one proposed in ref. [51], to address the problem of CKM contamination.
In a similar way, also the neutrino interaction cross section entering eq. (2.3) as σSM

β (Eν)

should be calculated without using any measurements that may be affected by the WEFT
operators we are aiming to constrain. This is a non-trivial task, given that the cross section
depends on PDFs, and the measurements from which PDFs are extracted can be affected
by the effective operators considered in this work. See e.g. ref. [52] for a possible approach
to disentangling new physics from the PDF fits.

Before we proceed to the calculation of the production and detection coefficients pS,jkXY,α
and drsXY,β , let us remark that, in the case of FASERν with its very high neutrino energies
and rather short baseline, it is justified to set L = 0, in which case we can simplify eq. (2.4):

P̃Sαβ(Eν)L=0 =
∑
γδ

[
δαγδαδ +

∑
X,j,k

pS,jkXL,α[εjkX ]∗αγδαδ +
∑
X,j,k

pS,jk∗XL,αδαγ [εjkX ]αδ +
∑

X,Y,j,k

pS,jkXY,α[εjkX ]∗αγ [εjkY ]αδ

]

×
[
δβγδβδ +

∑
X,r,s

drsXL,β [εrsX ]βγδβδ +
∑
X,r,s

drs∗XL,βδβγ [εrsX ]∗βδ +
∑

X,Y,r,s

drsXY,β [εrsX ]βγ [εrsY ]∗βδ

]
.

(2.8)

We see that P̃Sαβ(Eν)L=0 depends only on the EFT parameters εX weighted by the appro-
priate production and detection coefficients, while the the dependence on Uαn has been
eliminated by using unitarity of the PMNS matrix.

2.1 Neutrino Production in Meson Decays

Essentially all neutrinos observed in FASERν are produced in decays of light mesons and
baryons. Details on FASERν’s neutrino fluxes are given in section 3 and in ref. [3], see
in particular Table 1 in that reference. It was found that the dominant flux reaching the
FASERν detector consists mainly of (anti-)neutrinos from pion and kaon decays. In the
following we derive the production coefficients for these two dominant sources. We also
derive the production coefficients for Ds meson decays, which are the main source of τ
neutrinos in FASERν. Our discussion concerns neutrino production, but for anti-neutrinos
the analytic results are the same up to negligible effects due to CP violation in the neutral
kaon system.
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2.1.1 Pion Decay

Charged pion decays are mediated at the parton level by ud̄→ `+α ν, thus, they are sensitive
to the [εudX ]αβ Wilson coefficients in the WEFT Lagrangian of (2.1). In our formalism,
this translates to pion decays contributing to the pπ,udXY,α production coefficients, whereas
pπ,jkXY,α = 0 for jk 6= ud. The main decay channel is 2-body: π+ → `+α ν, while other channels
have tiny branching fractions and can be safely neglected here. This leads to a tremendous
simplification because 2-body matrix elements depend only on the masses of the involved
particles and not on the kinematics. Pulling the amplitudes in front of the integrals in (2.5),
the integrals cancel between the numerator and the denominator, and we are left with a
compact expression:

pπ,udXY,α =
Aπ,udX,αA

π,ud∗
Y,α

|Aπ,udL,α |2
. (2.9)

Thanks to this simplification, the coefficients pπ,udXY,α only depend on the fundamental physics
encapsulated by the amplitudes Aπ,udX,α . In particular they are independent of the energy
distribution of the parent pions.

To evaluate pπ,udXY,α, we need the pion decay amplitude, both in the SM and in the
presence of new physics with non-standard Lorentz structures. Regarding the latter, we can
infer from the quantum numbers of the charged pion, JP = 0−, that only the axial-vector
current ūγµγ5d and the pseudoscalar current ūγ5d can have non-zero matrix elements. The
vector and scalar currents are parity-even; for the tensor current, one can argue that no
antisymmetric tensor can be formed from the only available Lorentz vector in the problem,
namely pµπ, the pion 4-momentum. All in all, the amplitudes entering in (2.9) can be
expressed as

Aπ,udL,α = −Aπ,udR,α =
Vud
v2

(ūνγ
µPLv`α) 〈0| d̄γµγ5u |π+(pπ)〉 ,

Aπ,udP,α = −Vud
v2

(ūνPRv`α) 〈0| d̄γ5u |π+(pπ)〉 ,

Aπ,udS,α = Aπ,udT,α = 0, (2.10)

where v`α , ūν are the Dirac spinor wave functions of the charged lepton and the neutrino,
respectively.4 The hadronic matrix elements in (2.10) are customarily parameterized as [53]5

〈0| d̄γµγ5u |π+(pπ)〉 = ipµπfπ , 〈0| d̄γ5u |π+(pπ)〉 = −i m2
π

mu +md
fπ . (2.11)

where fπ = 130.2(0.8) MeV [53] is the pion decay constant (which will cancel from our final
results), mπ is the charged pion mass, and mu, md are the up and down quark masses.
With eq. (2.11), the left-handed and pseudoscalar amplitudes become

Aπ,udL,α = −iVud
v2

(ūνPRv`α)(fπm`α) , Aπ,udP,α = i
Vud
v2

(ūνPRv`α)
fπm

2
π

mu +md
, (2.12)

4Note that u in uν stands for the positive energy solution of the Dirac equation and should not be
confused with the field operator u of the up-quark field.

5The second expression in (2.11) can be obtained from the first one by contracting the latter with pµπ
and using the equations of motion.
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and their squares, summed over spins, are

∑
|Aπ,udL,α |

2 =
V 2
udf

2
π

v4
m2
`α

(
m2
π −m2

`α

)
,∑

Aπ,udL,α Ā
π,ud
P,α = −

V 2
udf

2
π

v4
m`α

(
m2
π −m2

`α

) m2
π

mu +md
,∑

|Aπ,udP,α |
2 =

V 2
udf

2
π

v4

(
m2
π −m2

`α

) m4
π

(mu +md)2
. (2.13)

Plugging eq. (2.13) into eq. (2.9), we obtain the production coefficients [8]

pπ,udLL,α = pπ,udRR,α = −pπ,udLR,α = 1 ,

pπ,udPL,α = −pπ,udPR,α = − m2
π

m`α(mu +md)
' −27 (−5600) for α = µ (e) , (2.14)

pπ,udPP,α =
m4
π

m2
`α

(mu +md)2
' 730 (3.1× 107) for α = µ (e) ,

where in the numerical evaluation we have used mu + md = 6.82(9) MeV [53]. The factor
mπ/m`α appears in the production coefficients involving pseudoscalar interactions because
they, unlike the SM ones, do not suffer from chiral suppression. Thus, even a small pseu-
doscalar coupling [εudP ]αγ (with α = µ, e) present in the effective Lagrangian (2.1) leads to
a significant enhancement of the FASERν neutrino fluxes compared to the SM prediction.
This enhancement will allow us to obtain particularly strong constraints (∼ 10−3) on some
of the Wilson coefficients εudP . Note, however, that in many extension of the SM the Wilson
coefficients corresponding to new scalar and pseudoscalar operators are expected to scale
as the corresponding quark masses, which would cancel this enhancement when considering
the sensitivity to the parameters of the ultraviolet-complete BSM model. We also note that
the bare quark masses appearing in eq. (2.14) are heavily dependent on the renormalization
scale. However, this scale dependence is canceled by the scale dependence of the Wilson
coefficients, allowing us to set robust constraints in spite of the scale dependence.

2.1.2 Kaon Decay

The second most important contribution to FASERν’s neutrino flux comes from kaon de-
cays. At the parton level the relevant decays are mediated by us̄ → `+α ν transitions,
therefore they are sensitive to the Wilson coefficients [εusX ]αβ . The evaluation of the corre-
sponding production coefficients pK,usXY,α is more involved than in the pion case. The reason
is that relevant decay channels are both 2-body (K+ → `+α ν) and 3-body (K+ → π0`

+
α ν,

KL,S → π−`+α ν). Moreover, the kinematics and phase space integrations are quite cumber-
some for 3-body decays. In the following we only quote the results, leaving more details of
the derivation for appendix A.

We write the production coefficients in the form

pK,usXY,α =
NXY

D2b
LL +D3b

LL

, (2.15)
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where NXY stands for the numerator in (2.5), and D2,3b
LL stand for 2-body and 3-body

contributions to the denominator in (2.5).
Starting with the denominator, the 2-body contribution due to the K+ → `+α ν decay

is given by

D2b
LL =

V 4
usf

2
K

8πv4
m2
`α

(
m2
K± −m

2
`α

) ∫
dEK

φK+(EK)

pKEK

[
Θ
(
Eν − Emin

ν

)
−Θ

(
Eν − Emax

ν

)]
,

(2.16)

where pK =
√
E2
K −m2

K , φK+(EK) is the energy distribution of the parent K+ mesons,
Θ(x) is the Heaviside step function, the charged kaon decay constant is fK = 155.7(3)MeV [53],
and

Emin
ν =

m2
K −m2

`α

2(EK − pK cos θ0)
, Emax

ν =
m2
K −m2

`α

2(EK − pK)
. (2.17)

Above, θ0 is the kinematic cut on the direction of the emitted neutrino in the lab frame,
relative to the beam axis. In our numerical analysis we use the value θ0 = 5.6×10−4, based
on the geometry of the FASERν detector [3]. The factor 1/pK in eq. (2.16) comes from the
2-body phase space integral, which can be written as dΠ2b = d cos θν,cmEν,cm/(8πmK) =

dEν/(8πpK), where θν,cm is the angle between the direction into which the neutrino is
emitted in the center-of-mass frame and the beam axis, and Eν,cm is its energy in that
frame, while Eν is its energy in the lab frame.

The 3-body contribution to the denominator arises due to semileptonic kaon decays.
We find

D3b
LL =

1

128π3

∫ ∞
Emin
K

dEK
EK

∑
i

φKi(EK)

∫ 1

cos θmin

d cos θ

EK − pK cos θ

∫ q2max

q2min

dq2
∑
spin

|AKi usL,α |
2,

(2.18)

where
∑

i runs over semileptonic K+, KS , KL decays, and

cos θmin = max

[
cos θ0,

2EKEν −m2
K + (mπ +m`α)2

2pKEν

]
,

Emin
K =

m2
K

m2
K − (mπ +m`α)2

Eν , w2 = m2
K + 2Eν(pK cos θ − EK) . (2.19)

The q2 integration limits are given in eq. (A.25). The amplitude squared occurring in
eq. (2.18) is given in eq. (A.19).

For the numerators in eq. (2.15) we have

NLL = NRR = D2b
LL +D3b

LL ,

NLR = −D2b
LL +D3b

LL ,

NLP = −NRP = −
m2
K±

m`α(mu +ms)
D2b
LL ,
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Figure 1. Production Coefficients for kaon decay. Left: decay to electrons. Right: decay to muons.

NPP =
m4
K±

m2
`α

(mu +ms)2
D2b
LL, (2.20)

and

NXY =
1

128π3

∫ ∞
Emin
K (Eν)

dEK
EK

∑
i

φi(EK)

∫ 1

cos θmin

d cos θ

EK − pK cos θ

∫ q2max

q2min

dq2
∑
spin

AKi,usX,α ĀKi,usY,α ,

(2.21)

for XY = LS,LT, SS, TT, ST . The expressions for the amplitudes needed in eq. (2.21) are
collected in eq. (A.19). Moreover, NRS = NLS and NRT = NLT , NSP = NTP = 0.

The production coefficients relevant to our work are plotted in fig. 1 as a function of
neutrino energy. For muonic decays of kaons the flux at the relevant neutrino energies is
dominated by the leptonic channel. For this reason pK,usLR,µ, p

K,us
LP,µ, and pK,usPP,µ are almost

flat in energy, similar to the production coefficients for purely leptonic decays of pions,
cf. eq. (2.14). The effect of the semileptonic admixture is to produce non-zero produc-
tion coefficients associated with the scalar and tensor interactions: pK,usLS,µ, p

K,us
LT,µ, p

K,us
SS,µ, etc.

Their shape, quickly decreasing with Eν , is due to the fact that the domination of leptonic
over semileptonic fluxes becomes stronger at high energy. Conversely, for electronic decays
of kaons, semileptonic channels largely dominate over the chirally suppressed K → eν.
Therefore the production coefficients associated with the scalar and tensor interactions are
approximately constant, their variation being due to the energy dependence of the corre-
sponding matrix elements. The production coefficients associated with the pseudoscalar
interactions, pK,usLP,e , and p

K,us
PP,e are still relatively large, because they are chirally enhanced

by mK/me. Their sharp increase with energy is due to the semileptonic fluxes quickly shut-
ting off at large Eν , which leads to the relative contribution of the leptonic decay becoming
more important at higher energies.

2.1.3 Charm Decay

The decays Ds → `+α ν are mediated at the parton level by cs̄→ `+α ν, thus they are sensitive
to the [εcsX ]αβ Wilson coefficients in the EFT Lagrangian of (2.1). While their contribution
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to the neutrino flux is much smaller than that of pion and kaon decays, they are the
main source of tau neutrinos in FASERν. Consequently, they give us access to the [εcsX ]τγ
Wilson coefficients, which cannot be probed by pion and kaon decays. The calculation is
completely analogous to the one for pion decay in Sec. 2.1.1. We find the non-vanishing
pD,csXY,α production coefficients:

pD,csLL,α = pD,csRR,α = −pD,csLR,α = 1 ,

pD,csPL,α = −pD,csPR,α = −
m2
Ds

m`α(mc +ms)
' −1.6, −27, −5.5× 103 for α = τ, µ, e , (2.22)

pD,csPP,α =
m4
Ds

m2
`α

(mc +ms)2
' 2.5, 710, 3.0× 107 for α = τ, µ, e .

In the numerical evaluation we used mc = 1.280(13) GeV and ms = 92.9(7) MeV [54].
We will neglect new physics contributions to neutrino production in D± and D0 decays

because they only make very small contributions to the overall neutrino flux.

2.2 Neutrino Detection via Deep-Inelastic Scattering

At FASERν energies, neutrino detection proceeds almost exclusively through charged-
current deep-inelastic scattering (DIS),

ν +N → `+X , (2.23)

where N = n, p is a nucleon and X can be any hadronic final state.

2.2.1 Deep-Inelastic Scattering in the Standard Model

In the SM, the differential cross section for deep-inelastic charged-current neutrino scatter-
ing on a nucleon N is

d2σSM
βN

dx dQ2
=

1

2πv4

[(
1−

m2
`β

ŝ

) ∑
q=d,s

fNq (x,Q2) +
(ŝ−Q2)(ŝ−Q2 −m2

`β
)

ŝ2

∑
q̄=ū,c̄

fNq̄ (x,Q2)

]
(2.24)

for neutrino scattering, and

d2σ̄SM
βN

dx dQ2
=

1

2πv4

[(
1−

m2
`β

ŝ

) ∑
q̄=d̄,s̄

fNq (x,Q2) +
(ŝ−Q2)(ŝ−Q2 −m2

`β
)

ŝ2

∑
q=u,c

fNq (x,Q2)

]
(2.25)

for anti-neutrino scattering. In these expressions, we have set all quark masses to zero.
m`β denotes the mass of the outgoing charged lepton of flavor β (which is not completely
negligible for β = τ) and

ŝ =
4mNE

2
ν

2Eν +mN
x ≈ 2mNEνx. (2.26)
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Figure 2. SM cross sections for neutrino (solid) and anti-neutrino (dashed) charged-current (CC)
deep-inelastic scattering on tungsten. We have used the LO MSTW PDFs [55], see text for details.

is the invariant mass squared of the neutrino–quark system. Next, x is the fraction of the
nucleon momentum carried by the incident quark, and Q2 ≡ −(pν − p`β )2 is the invariant
momentum transfer. The functions fNq (x,Q2) are the PDFs of the nucleons.

The SM limit of the detection cross section for a neutrino scattering on a nucleus, which
is denoted as σSM

β (Eν) in the master formula of eq. (2.3), is obtained by integrating (2.24)
over the x and Q2 variables and summing over the nucleons:

σSM
β (Eν) =

∑
N=n,p

nN

∫ 1

x0

dx

∫ ŝ−m2
`β

Q2
0

dQ2
d2σSM

βN

dx dQ2
, (2.27)

whereQ0 ∼ 1 GeV and x0 = (Q2
0+m2

`β
)/(2mNEν). An analogous formula holds for the anti-

neutrino cross section σ̄SM
β (Eν). The target nucleus in FASERν is tungsten with np = 74

protons and on average nn ' 110 neutrons. The results of the numerical integration are
shown in fig. 2 as a function of the incident neutrino energy. For the proton PDFs we used
the MSTW set [55] at leading order. The neutron PDFs are related to the proton ones by
the isospin symmetry: fnu = fpd and fnd = fpu . The distributions of the strange and charm
quarks and anti-quarks are the same for protons and neutrons. We find a good agreement
with ref. [3].

2.2.2 Deep-Inelastic Scattering in EFT Extensions of the Standard Model

We move to discussing the effects of new physics on the detection side, encoded in the
detection coefficients defined in eq. (2.6). To calculate these, we need the amplitudes for a
neutrino scattering on a quark inside a target nucleon in the presence of non-SM interaction
in eq. (2.1). For νndk → `−β u

j the amplitude decomposes as in eq. (2.2) with the reduced
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amplitudes given by

AD,jkL,β = −
2Vjk
v2

(ūuγ
µPLud)(ū`βγµPLuν) ,

AD,jkR,β = −
2Vjk
v2

(ūuγ
µPLud)(ū`βγµPLuν) ,

AD,jkS,β = −
Vjk
v2

(ūuud)(ū`βPLuν) ,

AD,jkS,β =
Vjk
v2

(ūuγ5ud)(ū`βPLuν) ,

AD,jkS,β = −
Vjk
2v2

(ūuσ
µνud)(ū`βσµνPLuν) ,

(2.28)

where ui are the spinor wave functions of the involved quarks and leptons. For νnūj → `−β d̄
k

the reduced amplitudes AD̄,jkL,β are obtained from the above ones by replacing uq → vq (up
to an irrelevant minus sign from Fermi statistics). For anti-neutrino scattering one needs
to replace u→ v in the lepton’s wave functions and take the complex conjugate.

In the limit where quarks are treated as massless, the spin-summed amplitudes squared
are given by the compact expressions

∑
spin

AD,jkL,β AD,jk∗L,β =
16|Vjk|2

v4
ŝ(ŝ−m2

`β
) ,

∑
spin

AD,jkL,β AD,jk∗X,β = 0, (X = R,S, P, T ),

∑
spin

AD,jkR,β A
D,jk∗
R,β =

16|Vjk|2

v4

(
ŝ−Q2

)(
ŝ−Q2 −m2

`β

)
,

∑
spin

AD,jkS,β AD,jk∗S,β =
∑
spin

AD,jkP,β AD,jk∗P,β =
2|Vjk|2

v4
Q2
(
Q2 +m2

`β

)
,

∑
spin

AD,jkT,β AD,jk∗T,β =
4|Vjk|2

v4

[
(2ŝ−Q2)2 −m2

`β
(4ŝ−Q2)

]
.

(2.29)

Note that, because we have taken the quark masses to be zero, all
∑
AD,jkL,β AD,jk∗X,β with

X 6= L, and thus all detection coefficients djkLX,β with X 6= L, vanish. This implies that the
only Wilson coefficients that can modify the detection process at linear order are the εjkL .
For neutrino–anti-quark scattering, we have∑

spin

AD̄,jkL,β AD̄,jk∗L,β =
∑
spin

AD,jkR,β A
D,jk∗
R,β∑

spin

AD̄,jkR,β A
D̄,jk∗
R,β =

∑
spin

AD,jkL,β AD,jk∗L,β , (2.30)

and the remaining
∑

spinA
D̄,jk
X,β A

D̄,jk∗
Y,β are identical to their counterparts for neutrino–quark

scattering.

– 14 –



neutrinos anti-neutrinos

dudXX,β dusXX,β dcsXX,β d̄udXX,β d̄usXX,β d̄csXX,β

L 0.91 5.2× 10−3 6.9× 10−2 0.82 3.1× 10−2 0.14
R 0.45 8.6× 10−3 7.2× 10−2 1.61 7.8× 10−2 0.15
S/P 0.04 4.5× 10−4 5.5× 10−3 0.07 3.3× 10−3 0.01
T 0.59 6.0× 10−3 6.7× 10−2 1.07 4.7× 10−2 0.12

Table 1. Detection coefficients for the scattering of neutrinos and anti-neutrinos with energy
Eν = 1 TeV on tungsten. The values shown are for β = e, but they are practically equal for
β = µ, τ .
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Figure 3. Energy dependence of the detection coefficients defined in eq. (2.6). Solid curves
correspond to tensor couplings, dashed curves to scalar and pseudoscalar couplings, and dot-dashed
curves to right-handed couplings.

To calculate the detection coefficients we can now insert eq. (2.29) into eq. (2.6) and
evaluate numerically the integral over the nucleon PDFs. The results for a particular neu-
trino energy Eν = 1 TeV are shown in table 1. For each Lorentz structure X, the largest
djkXX,β corresponds to the jk = ud quark structure, which profits from the large PDFs of
the up and down quarks in the nucleons and from the lack of Cabibbo suppression. We
note that, in most cases, the detection coefficients for anti-neutrinos are larger than the
ones for neutrinos. One reason is that the detection coefficients are inversely proportional
to the SM scattering rate, which is roughly three times smaller for anti-neutrinos than for
neutrinos. For right-handed couplings, the numerator in eq. (2.6) is moreover larger for
anti-neutrinos than for neutrinos. The scalar and pseudo-scalar coefficients are suppressed
by small numerical factors, while the right-handed and tensor ones are much larger. This
translates to a better sensitivity to the εudR and εudT Wilson coefficients on the detection side.
As for quark flavor structures other than ud, the detection coefficients dcsXY,β are suppressed
by the small PDFs of strange and charm quarks,6 while the dusXY,β are suppressed by the

6Note, however, that FASERν has the capability of tagging charm mesons. This could be used to reduce
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Figure 4. Neutrino and anti-neutrino fluxes at FASERν predicted by the SM for an integrated
luminosity of 150 fb−1. This corresponds to the luminosity expected in Run 3 of the LHC, at a
collider center-of-mass energy of 14 TeV. The kaon curves correspond to summed (anti-)neutrino
fluxes from K±, KL and KS decays. Figure based on [56, 57].

Cabibbo angle squared. Consequently, the sensitivity to εusX and εcsX is weak on the detec-
tion side. The coefficients dcdXY,β are suppressed by both the charm PDF and the Cabibbo
angle, and we therefore do not consider them any further in this work. The dependence of
the detection coefficients on the incident neutrino energy is shown in fig. 3. Most of the
detection coefficients are, to a good approximation, energy-independent. A dependence on
Eν appears due to the lepton masses, Q2 dependence of the PDFs, and subleading terms
in the relation between ŝ and Eν , which are small effects at energies relevant for FASERν.

3 Predicting the Sensitivity of FASERν

In this section we explain our procedure for estimating the sensitivity of FASERν to new
physics encapsulated in the Wilson coefficients εX of the WEFT Lagrangian eq. (2.1).
The master formula, eq. (2.3), for calculating the FASERν event rate requires as input
the number of target nuclei (NT ), the SM neutrino fluxes at production (ΦS,SM

α ), the SM
neutrino detection cross section on the target nucleus (σSM

β ), and the modified oscillation
probability (P̃Sαβ). The number of tungsten nuclei in FASERν is NT = 3.14× 1027, which

the background to interactions of the form ν + s→ `− + c, recovering some sensitivity to dcsXY,β .
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corresponds to a fiducial mass of 0.96 tons. Fiducialization takes into account a geometrical
acceptance of 80% in order to suppress backgrounds [3].

We use neutrino fluxes that were kindly provided to us by the FASERν collaboration
[56] and are shown in fig. 4. They correspond to the fluxes from ref. [57], see also ref. [58].
The event generator used was SIBYLL 2.3c [59–62]. The detection cross section is given by
eq. (2.24) for neutrinos and by eq. (2.25) for anti-neutrinos. We sum over the contributions
from scattering on protons and on neutrons, taking into account the fact that tungsten has
np = 74 protons and on average nn ' 110 neutrons. In our formalism, all dependence on
new physics is contained in the modified transition probability of eq. (2.8). Up to quadratic
order in the Wilson coefficients it takes the form

P̃Sαβ(Eν)L=0 ' δαβ + 2
∑
X,j,k

pS,jkXL,α[εjkX ]ααδαβ + 2
∑
j,k

djkLL,α[εjkL ]ββδαβ

+
∑

X,Y,j,k

[
pS,jkXY,α[εjkX ]αβ[εjkY ]αβ + djkXY,β[εjkX ]βα[εjkY ]βα

]
. (3.1)

Here, we have taken into account that the detection coefficients dLX vanish for X =

R,S, P, T , and that for all processes we consider here the production and detection coeffi-
cients are real. By construction, the Wilson coefficients [εjkX ]αβ that we want to constrain
enter the experimental count rate only through eq. (3.1). The production and detection
coefficients have already been computed in section 2. The terms cubic and quartic in εX ,
which are omitted from eq. (3.1) (but kept in our analysis), are relevant only when εX & 1.

In the SM limit, where all εX are zero, we recover P̃αβ = δαβ . At linear order in the new
physics couplings, FASERν is sensitive only to the lepton flavor-diagonal Wilson coefficients
[εjkX ]αα. In fact, the linear terms are due to new physics modifying the partial decay widths
of the source mesons into neutrinos and the detection cross-section. As these observables
can be measured more precisely in dedicated (non-neutrino) precision experiments, we
do not expect that the FASERν sensitivity to the linear terms can be competitive. The
situation changes at the quadratic level in εX , where the transition probability is no longer
proportional to δαβ . The advantage of FASERν over non-neutrino precision experiments
is here that it can identify the flavor of the emitted neutrino, and thus gain better access
to the off-diagonal elements of the [εjkX ]αβ matrices. In particular, FASERν’s sensitivity
to the [εjkX ]eτ and [εjkX ]µτ couplings is greatly enhanced by the large ratio of νe,µ over ντ
fluxes. Thus, even a tiny fraction of ντ from a production process that in the SM produces
only νe and νµ can be easily detected. Similarly, the sensitivity to even a small amount of
anomalous τ lepton production in the detector induced by νe or νµ is excellent, which leads
to an enhanced sensitivity of FASERν to [εjkX ]τe and [εjkX ]τµ.

As an example, consider the effects of the Wilson coefficients εudR on the number of tau
events measured in FASERν. We find

Nτ ' NSM
τ

[
1 + 0.25 [εudR ]2eτ + 100 [εudR ]2µτ + 40 [εudR ]2τe + 180 [εudR ]2τµ + 0.87 [εudR ]2ττ

]
, (3.2)

where NSM
τ ' 17 before applying acceptance and efficiency factors, and NSM

τ ' 10 with
these factors included. The sensitivity to [εudR ]τe and [εudR ]τµ comes from the detection side,
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when the τ lepton is produced in the detector from incident νe or νµ, respectively. Even
though the detection coefficients are only O(1) (dudRR ≈ 0.5 for neutrinos and d̄udRR ≈ 1.6 for
anti-neutrinos), the large incident flux of νe and νµ still leads to a sizeable event rate. The
effect is 5 times larger for [εudR ]τµ than for [εudR ]τe simply because the incident flux of muon
neutrinos is that much larger than the flux of electron neutrinos. The sensitivity to [εudR ]eτ
and [εudR ]µτ comes from the production side from the decays π → eντ or π → µντ . In the
presence of non-zero [εudR ]µτ , the large number of pion sources leads to sizeable anomalous
production of ντ , albeit the effect is a bit smaller than for new physics on the detection
side because [εudR ]µτ does not affect neutrinos from kaon decays. By a similar argument,
we also expect that the sensitivity to [εudR ]eτ will be very poor. While the flux of electron
neutrinos in the SM is sizeable, that flux is entirely dominated by kaon, charm, and hyperon
decays (see fig. 4), which are unaffected by [εudR ]eτ . Only π → eν decays are enhanced, but
their strong chiral suppression precludes any sizeable increase in the overall count rate at
FASERν. This simple example gives a qualitative understanding of the sensitivity to various
Wilson coefficients, which in the following is estimated by a more elaborate analysis.

We fold the event rate with a Gaussian energy smearing function with a width of
0.3Eν [3], and we then apply the vertex reconstruction efficiency taken from fig. 9 of ref. [3]
as well as the charged lepton identification efficiency, which is close to εe = 100% for
electrons, εµ = 86% for muons, and ετ = 75% for taus, see sec. VI.C of ref. [3]. Moreover,
note that the differences in acceptance between 2-body and 3-body kaon decays are already
accounted for by the factors βSi (ES) in the production coefficients in eq. (2.5). The main
sources of background at FASERν are muons produced at the ATLAS interaction point or
further downstream, as well as secondary particles that could mimic the neutrino signals.
However, these backgrounds can be suppressed to a negligible level by the fiducialization
cut, by only considering reconstructed neutrino energies Eν > 100 GeV, and by additional
kinematic cuts whose effect on the signal is encoded in the above-mentioned efficiency
factors. This last set of cuts, discussed in detail in sec. V.C of ref. [3], includes for instance
a cut on the total momentum fraction carried by the highest momentum particle, as well
as a cut on its angle with respect to the other particles in the event.

In our analysis, we consider neutrino energies 102 GeV ≤ Eν ≤ 104 GeV, sorted into 15
log-spaced bins for νe and νµ, and combined into a single bin for ντ . With the efficiencies
taken into account, we predict that, without new physics, FASERν will detect about ne +

nē = 908 electron neutrinos and anti-neutrinos, nµ + nµ̄ = 4979 muon neutrinos and anti-
neutrinos, and nτ + nτ̄ = 17 tau neutrinos and anti-neutrinos. These numbers differ from
the ones shown in Table II of ref. [3] because we are using updated neutrino fluxes [56, 57]
compared to that reference. We have checked that, using instead the neutrino fluxes from
ref. [3], we do reproduce the event numbers from that paper. We plot the expected event
spectra for the different neutrino flavors in fig. 5.

To investigate the sensitivity of FASERν to new physics, we define the Gaussian log-
likelihood function

χ2(εX) =
∑
ν,ν̄

∑
β=e,µ,τ

∑
i

[
N i
β(~a, εX)−NSM,i

β

]2
N i
β(~a, εX)

+
∑

α=e,µ,τ

a2
α

σ2
α

, (3.3)
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Figure 5. Predicted event spectra at FASERν. All the ε’s for νe and νµ are set to 0.2, while
they are 0.01 for the ντ events. For pseudoscalar couplings we rescale the number of events by the
indicated factor.

where the number of νβ-like events in the i-th energy bin is given by NSM,i
β for the SM,

and by N i
β(~a, εX) in the presence of new physics. The latter quantity depends not only on

the Wilson coefficients εX , but also on a set of nuisance parameters aα (α = e, µ, τ) which
parameterize a systematic normalization bias in the primary meson and SM neutrino fluxes.
More precisely, based on eq. (2.3), N i

β(~a, εX) is given by

N i
β(~a, εX) = NT

∫ Eimax

Eimin

dEν σ
SM
β (Eν)

∑
α,S

(1 + aα)ΦS,SM
α (Eν) P̃Sαβ(Eν , L) , (3.4)

where Eimin and Eimax denote the boundaries of the i-th energy bin. For the uncertainties
of the nuisance parameters, we will use two sets of values, namely a more optimistic one
with σe = 5%, σµ = 10%, and στ = 15% for electron, muon, and tau (anti-)neutrinos,
respectively (based on Table II of ref. [3]), and a more conservative one with σe = 30%,
σµ = 40%, and στ = 50%. Finally we sum over neutrinos and anti-neutrinos.

In computing the projected limits on the Wilson coefficients, we assume that FASERν
will observe exactly the number of events predicted by the SM in each flavor. We allow
only one of the [εjkX ]αβ coefficients to be non-zero at a time.

4 Results

We now proceed to the discussion of our main results, namely the projected constraints on
the Wilson coefficients appearing in eq. (2.1). We summarize these constraints in figs. 6
to 9 for right-handed, scalar, pseudoscalar, and tensor couplings, respectively. In addition
to quoting limits in terms of the dimensionless [εjkX ]αβ parameters (top axis and labels
inside each bar), we also express them in terms of the effective new physics scale [ΛjkX ]αβ ≡
v/([εjkX ]αβ)1/2. Operators for which ε > 1 is required to saturate the limit are shown in
gray to emphasize that, for such large couplings, our formalism is expected to become less
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Figure 6. The projected FASERν constraints on the Wilson coefficients of new pseudoscalar
interactions in the Weak Effective Field Theory (WEFT) framework. Projected limits are reported
both in terms of the dimensionless couplings [εjkX ]αβ (top axis) and in terms of the effective new

physics scale [ΛjkX ]αβ ≡ v/
√

[εjkX ]αβ (bottom axis). Each colored bar indicates the limit on one
particular interaction, with the shorter, darker piece corresponding to conservative assumptions on
the systematic uncertainties, the lighter colored piece corresponding to more optimistic assumptions,
and the unshaded extension on the right indicating the sensitivity of FASERν during the high-
luminosity LHC phase, with a factor of 20 more statistics.
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Figure 7. Similar to fig. 6, but showing constraints on right-handed couplings.

accurate due to threshold effects as the cutoff scale of the theory approaches the center-of-
mass energy of neutrino scattering in FASERν. We do not consider WEFT corrections to
left-handed interactions in our analysis because the intricate interplay of these interactions
with SM processes implies that deriving a reliable constraint would require re-extracting the
CKM elements from the data, taking into account possible contamination by new physics.
As mentioned already in section 3, we allow only one of the [εjkX ]αβ coefficients to be non-zero
entries at a time. Each row of figs. 6 to 9 shows three overlapping bars, the leftmost one
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Figure 9. Similar to fig. 6, but showing constraints on tensor couplings.
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corresponding to very conservative systematic uncertainties, the middle one corresponding
to more optimistic systematic uncertainties (see section 3), and the rightmost one indicating
the sensitivity of FASERν during the high-luminosity LHC phase, with 3 ab−1 of integrated
luminosity. Further improvements could of course be expected if also the detector were to
be enlarged.

Starting with constraints on pseudoscalar couplings, we see from fig. 6 that FASERν
will be able to constrain many of the entries of the εudP and εusP matrices at the per mille
level (see top and middle parts of fig. 6). The reason for FASERν’s excellent sensitivity
to these couplings is the strong chiral enhancement of the production coefficients for fully
leptonic meson decays, see e.g. eq. (2.14) for the case of pπ,udPL,µ and pπ,udPP,µ. The impact of this
enhancement may not be immediately obvious for the decays π+ → µ+νµ and K+ → µ+νµ,
which are already dominant even in the SM. As an already large branching ratio cannot
be enhanced much further by new physics, one might expect that lifting chiral suppression
would not change the νµ flux by a lot. However, the presence of new physics changes also
the total meson decay rate, and thus the fraction of mesons that can decay before being
stopped in the matter they encounter downstream of the ATLAS interaction point (beam
pipe, tunnel walls, etc.). Effectively, by detecting neutrinos from dominant decays like
π+ → µ+νµ and K+ → µ+νµ, FASERν is carrying out a precision measurement of the pion
and kaon partial decay widths into a specific neutrino flavor. Comparing this measurement
to a first-principles prediction (based on lattice QCD results for the decay constant) is what
allows the experiment to set limits on new physics even when the new physics affects the
leading meson decay modes. For new physics operators that affect only sub-leading decays,
one can typically achieve smaller theory errors because no first-principles prediction of a
total decay rate is necessary – the latter is fixed in-situ by measuring the dominant decay
mode. All that is needed in this case is a prediction for the branching ratio of the sub-
dominant decay channel. Chiral enhancement is even stronger for charged meson decays to
electrons, such that the decay π+ → e+να is enhanced to the extent that the constraints
on [εudP ]eα are as strong as the ones on [εudP ]µα.

Constraints on couplings to light flavor quarks involving τ leptons ([εudP ]τα and [εusP ]τα)
depend entirely on the detection process because pions and kaons cannot decay to τ ’s.
These constraints are therefore generally weaker than those on couplings to electrons and
muons. They are weaker for [εusP ]τα than for [εudP ]τα because neutrino interactions through
the former are in addition suppressed by the CKM element Vus (see our definition of [εusX ]τβ
in eq. (2.1)) and by the strange quark PDF. (Anti-neutrinos can still interact on valence
up quarks, but their flux is slightly lower.)

Chiral enhancement is weak in the case of fully leptonic charm decays because of the
appearance of mc in the denominators of eq. (2.22). As the fully leptonic branching ratio
of charm mesons is very small in the SM, the enhancement is not sufficient to significantly
increase the associated neutrino flux, therefore constraints on εcsP (bottom part of fig. 6)
are generally weaker than those on εudP and εusP . The exception are couplings involving τ
leptons because, unlike pions and kaons, charm mesons can decay to τs.

Comparing FASERν’s sensitivity to pseudoscalar new physics to the existing constraints
that will be discussed in more detail in section 5, we see that for some couplings – especially
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those benefiting from chiral enhancement – FASERν will be more sensitive than other
LHC searches. On the other hand, precision measurements of meson decays in low-energy
experiments will typically still have an edge over FASERν, even though for some operators
future measurements with LHC neutrinos will be quite competitive. Should a deviation
from the SM prediction be found, an important aspect of FASERν and other, similar,
experiments will be their sensitivity to the neutrino flavor, an observable that meson decay
measurements are insensitive to. This highlights the unique potential of LHC neutrinos in
hunting for new physics and is one of the main conclusions of this paper.

We now turn our attention to right-handed couplings involving first-generation quarks,
εudR . We see from the top part of fig. 7 that FASERν’s sensitivity to new physics in this sector
will be at the 10% level. This is worse than the sensitivity to pseudoscalar interactions due
to the lack of chiral enhancement. Nevertheless, some of the εudR benefit from other types
of enhancement: for the diagonal couplings [εudR ]ee and [εudR ]µµ, interference with the SM
amplitude implies sensitivity at the linear order. The off-diagonal coupling [εudR ]µτ converts
part of the very large muon (anti-)neutrino flux into ντ , for which the SM background flux
is low. Constraints on [εudR ]τe and [εudR ]τµ are entirely based on detection processes in which
a νe or νµ creates a τ lepton. Once again, these processes benefit from the low SM rate in
the τ channel. There is no contribution from the production side because pions (the only
unflavored mesons we consider) cannot decay to τ leptons.

Considering next right-handed couplings to up and strange quarks (middle part of
fig. 7), we find fairly strong constraints for all lepton flavor structures thanks to the fact
that the flux of forward kaons at the LHC is large, and that kaons have sizeable branching
ratios into both muons and electrons. Only the limit on [εusX ]ττ is weaker than the others
because it comes purely from modified detection processes, given that kaons cannot decay
to τ leptons for kinematic reasons.

Constraints on right-handed couplings to charm and strange quarks (bottom part of
fig. 7), are in general weaker because the flux of charm mesons is lower than the one of
pions and kaons, and because detection reactions sensitive to εcsX are suppressed by sea quark
PDFs. Among the [εcsR ]αβ coefficients, the most strongly constrained ones are [εcsR ]τe, [εcsR ]τµ,
and [εcsR ]ττ . The first two of these lead to the production of τ leptons in the detector off
the large νe and νµ fluxes, while the latter one profits from sensitivity at the linear order.
Similarly, [εcsR ]eµ allows νµ to produce electron-like signatures, and since the background
of electron-like events is lower than the one for muon-like events, this leads to enhanced
sensitivity.

In comparison to existing limits, we see that FASERν constraints on εjkR will not be
quite competitive yet. However, the difference in sensitivity is small in some cases and
may be overcome by future upgrades to FASER with a larger detector (and hence larger
acceptance) [63] and with an increased neutrino flux from the high-luminosity LHC.

Looking next at constraints on scalar couplings (fig. 8), we remark that we do not show
expected limits on εudS and εcsS here. The reason is that the production coefficients for these
couplings vanish in the case of pion and charm decays (see section 2.1), and the detection
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coefficients are small (see section 2.2). The sensitivity to εudS and εcsS is therefore extremely
poor. For the case of εusS , on the other hand, we obtain decent limits thanks to the sizeable
production coefficients in 3-body kaon decays. Nevertheless, these limits are not quite
competitive with existing constraints from collider studies and precision measurements of
kaon decays.

Last but not least we have investigated FASERν’s potential to constrain tensor inter-
actions parameterized by εjkT , see fig. 9. We first note that the production coefficients pudTY ,
pudXT , p

cs
TY , and p

cs
XT vanish (see discussion in section 2.1), while the detection coefficients

are sizeable (see table 1). This leads to limits that are decent, but not competitive. We
see that here, the eµ, τe, and τµ elements of εudT and εcsT are the most constrained ones be-
cause they correspond to interactions in which a neutrino flavor with a sizeable flux creates
charged leptons that in the SM can only be produced by a less abundant neutrino species.
This leads to an excellent signal-to-background ratio for these channels. It is noteworthy
in particular that the FASERν limit on [εudT ]τµ can potentially beat the one from τ decays
(though not the one from top decays, see section 5). For couplings to up and strange
quarks, the production coefficients do not vanish, but are still very small (see fig. 1), and
the detection coefficients are CKM-suppressed. Therefore, limits on εusT are very weak and
are not shown here.

5 Comparison with other experiments

In figs. 6 to 9, we have already compared FASERν’s sensitivity to new neutrino interac-
tions with existing constraints from other experimental probes. In the following, we explain
how these external limits are obtained. We will focus on bounds obtained in the frame-
work of WEFT, that is bounds from low-energy experiments sensitive to charged-current
interactions. For many couplings, we will also show constraints that are only valid if the
UV-completion of WEFT is SMEFT. We will do so in particular when the bounds obtained
in SMEFT are superior to the WEFT-only constraints.

The bounds from neutrino experiments, meson (semi-)leptonic decay and β-decays can
be directly compared to the FASERν projections as they are evaluated at an energy scale
that is well captured by the WEFT. On the other hand, bounds from colliders and charged-
lepton flavor violation are valid only under the assumption that WEFT is UV completed
by SMEFT. Bounds are given at 90% CL (unless otherwise stated), assuming only one
operator is nonzero, and using a renormalization scale µ = 2 GeV in the MS scheme. We
assume all Wilson coefficients are real, and the bounds given in the following refer to their
absolute value, |[εjkX ]αβ|. We collect the strongest bound, to our knowledge, for each Wilson
coefficient in table 2, 3 and 4. Entries printed in bold face in these tables have been derived
in this work, while those printed with a normal font weight are taken from the literature.

5.1 Neutrino experiments

From a qualitative point of view, the bounds from the NOMAD experiment [69, 70] are
equivalent to those expected from FASERν in the sense that they depend on the same
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Coupling Low energy (WEFT) High energy / CLFV (SMEFT)
90% CL bound process 90% CL bound process

[εudP ]ee 4.6 × 10−7 Γπ→eν/Γπ→µν
[εudP ]eµ 7.3× 10−6 Γπ→eν/Γπ→µν [7] 2.0 × 10−8 µ→ e conversion
[εudP ]eτ 7.3× 10−6 Γπ→eν/Γπ→µν [7] 2.5× 10−3 LHC [64]
[εudP ]µe 2.6 × 10−3 Γπ→eν/Γπ→µν 2.0 × 10−8 µ→ e conversion
[εudP ]µµ 9.4 × 10−5 Γπ→eν/Γπ→µν
[εudP ]µτ 2.6 × 10−3 Γπ→eν/Γπ→µν
[εudP ]τe 9.0 × 10−2 Γτ→πν 5.8× 10−3(∗)/4.4× 10−4 LHC [65] / τ decay [64]
[εudP ]τµ 9.0 × 10−2 Γτ→πν 5.8× 10−3(∗) LHC [65]
[εudP ]ττ 8.4× 10−3 τ -decay [65] 5.8× 10−3(∗) LHC [65]

[εusP ]ee 1.1 × 10−6 ΓK→eν/ΓK→µν
[εusP ]eµ 2.1 × 10−5 ΓK→eν/ΓK→µν 6.2 × 10−7 µ→ e conversion
[εusP ]eτ 2.1 × 10−5 ΓK→eν/ΓK→µν 7.1× 10−2 LHC [64]
[εusP ]µe 2.3 × 10−3 ΓK→eν/ΓK→µν 6.2 × 10−7 µ→ e conversion
[εusP ]µµ 2.2 × 10−4 ΓK→eν/ΓK→µν
[εusP ]µτ 2.3 × 10−3 ΓK→eν/ΓK→µν
[εusP ]τe 6.4 × 10−2 Γτ→Kν/ΓK→µν 3.1 × 10−2(∗)/8.1× 10−2 LHC (data [66])/τ -decay [64]
[εusP ]τµ 6.4 × 10−2 Γτ→Kν/ΓK→µν 3.1 × 10−2(∗) LHC (data [66])
[εusP ]ττ 1.3× 10−2 τ -decay [67] 3.1 × 10−2(∗) LHC (data [66])

[εcsP ]ee 4.8× 10−3 ΓDs→eν 1.3× 10−2 LHC [68]
[εcsP ]eµ 4.6× 10−3 ΓDs→eν 1.3× 10−2 / 2.7 × 10−6 LHC [68] / µ→ e conversion
[εcsP ]eτ 4.6× 10−3 ΓDs→eν 1.3× 10−2 / 1.9× 10−2 LHC / τ -decays [64, 68]
[εcsP ]µe 8.9× 10−3 ΓDs→µν 2.0× 10−2 / 2.7 × 10−6 LHC [68] / µ→ e conversion
[εcsP ]µµ 1.0× 10−3 ΓDs→µν 2.0× 10−2 LHC [68]
[εcsP ]µτ 8.9× 10−3 ΓDs→µν 2.0× 10−2 LHC [68]
[εcsP ]τe 2.0× 10−1 ΓDs→τν 1.6× 10−2 / 1.9× 10−2 LHC / τ -decays [64]
[εcsP ]τµ 2.0× 10−1 ΓDs→τν 2.5× 10−2 LHC [68]
[εcsP ]ττ 3.2× 10−2 ΓDs→τν 2.5× 10−2 LHC [68]

Table 2. Summary of 90% CL bounds on the absolute value of pseudoscalar WEFT Wilson
coefficients. The results in the left column are independent of the underlying high-energy theory,
whereas the right column shows bounds derived under the assumption that SMEFT is the underlying
theory at energies above the electroweak scale. Empty cells in the right column indicate operators
for which we are unaware of a SMEFT bound in the literature, or for which the SMEFT bound is
significantly weaker than the WEFT constraint. Bounds shown in bold face have been calculated
in this work. Bounds marked with (∗) are given at the 95% rather than 90% CL.

physical processes. NOMAD bounds on [εudR ]eµ,τe,τµ have been evaluated in [16] and have
been found to be at the O(10−2 − 10−3) level.

For scalar and tensor interactions, the only limits from neutrino experiments available
in the literature are from reactor data, ν̄e → ν̄e [7]. The relevant observables are sensitive
to the [εudX ]eµ and [εudX ]eτ coefficients with X = R,S, T at the linear order. The current
bounds on [εudX ]eµ and [εudX ]eτ are in the 0.05–0.10 range [7].

We are not aware of limits on pseudoscalar interactions from neutrino experiments.
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Coupling Low energy (WEFT) High energy / CLFV (SMEFT)
90% CL bound process 90% CL bound process

[εudR ]ee 2.5 × 10−3 Γπ→eν/Γπ→µν
[εudR ]eµ 3.7× 10−2 νµ → νe [16, 69, 70] - -
[εudR ]eτ 4.1 × 10−2 Γπ→eν/Γπ→µν - -
[εudR ]µe 7.1 × 10−2 Γπ→eν/Γπ→µν - -
[εudR ]µµ 2.5 × 10−3 Γπ→eν/Γπ→µν
[εudR ]µτ 7.1 × 10−2 Γπ→eν/Γπ→µν - -
[εudR ]τe 0.12 νe → ντ [16, 69, 70] - -
[εudR ]τµ 1.8× 10−2 νµ → ντ [16, 69, 70] - -
[εudR ]ττ 6.1× 10−3 τ -decay [65]

[εusR ]ee 5.2 × 10−3 ΓK→eν/ΓK→µν
[εusR ]eµ 1.0 × 10−1 ΓK→eν/ΓK→µν - -
[εusR ]eτ 1.0 × 10−1 ΓK→eν/ΓK→µν - -
[εusR ]µe 5.5 × 10−2 ΓK→eν/ΓK→µν - -
[εusR ]µµ 5.2 × 10−3 ΓK→eν/ΓK→µν
[εusR ]µτ 5.5 × 10−2 ΓK→eν/ΓK→µν - -
[εusR ]τe 10.7 × 10−2 Γτ→Kν/ΓK→µν - -
[εusR ]τµ 10.7 × 10−2 Γτ→Kν/ΓK→µν - -
[εusR ]ττ 1.5× 10−2 τ -decays [67]

[εcsR ]ee 1.3 × 10−2 ΓD→Kµν/ΓD→Keν

[εcsR ]eµ 0.13 ΓD→Kµν/ΓD→Keν - -
[εcsR ]eτ 0.13 ΓD→Kµν/ΓD→Keν - -
[εcsR ]µe 0.16 ΓD→Kµν/ΓD→Keν - -
[εcsR ]µµ 1.3 × 10−2 ΓD→Kµν/ΓD→Keν

[εcsR ]µτ 0.16 ΓD→Kµν/ΓD→Keν - -
[εcsR ]τe 3.2 × 10−1 ΓDs→τν - -
[εcsR ]τµ 3.2 × 10−1 ΓDs→τν - -
[εcsR ]ττ 5.0 × 10−2 ΓDs→τν

Table 3. Summary of 90% CL bounds on the absolute value of right-handed WEFT Wilson
coefficients. The results in the left column are independent of the underlying high-energy theory.
In the right-hand column we indicate with dashes the lepton flavor off-diagonal operators, which
are not generated from dimension-6 SMEFT operators. Empty cells in the right column indicate
operators for which we are unaware of a SMEFT bound in the literature, or for which the SMEFT
bound is significantly weaker than the WEFT constraint. Bounds shown in bold face have been
calculated in this work.

5.2 (Semi-)leptonic Hadron Decays and β-decays

Precision measurements of leptonic and semi-leptonic hadron decay rates as well as β-decay
rates are sensitive to the lepton-flavor off-diagonal EFT coefficients at quadratic order,
similarly to FASERν. Compared to FASERν, meson decay measurements typically benefit
from higher statistics because they do not require neutrino detection. This leads to a typical
uncertainty in the 10−2–10−3 range for the event rates, and consequently in the 10−1–10−2

range for the EFT coefficients, except when additional enhancements are present, such as
for pseudoscalar operators. Limits on flavor-diagonal coefficients are typically stronger than
those on off-diagonal coefficients because the corresponding amplitudes can interfere with
the SM ones, leading to sensitivity already at the linear order [65, 71, 72].
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Coupling Low energy (WEFT) High energy / CLFV (SMEFT)
90% CL bound process 90% CL bound process

[εusS ]ee 7.0× 10−3 K-decays [71]
[εusS ]eµ O(10−2) K-decays 6.2 × 10−7 µ→ e conversion
[εusS ]eτ O(10−2) K-decays 7.1× 10−2 LHC [64]
[εusS ]µe O(10−2) K-decays 6.2 × 10−7 µ→ e conversion
[εusS ]µµ 1.3× 10−3 K-decays [71]
[εusS ]µτ O(10−2) K-decays
[εusS ]τe O(10−1) τ decays 3.1 × 10−2(∗) LHC (data [66])
[εusS ]τµ O(10−1) τ decays 3.1 × 10−2(∗) LHC (data [66])
[εusS ]ττ 2.4× 10−2 τ decays [67] 3.1 × 10−2(∗) LHC (data [66])

[εudT ]ee 2.1× 10−3 β-decays [72]
[εudT ]eµ 3.3 × 10−2 β-decays 3.6 × 10−7 µ→ e conversion
[εudT ]eτ 3.3 × 10−2 β-decays 1.1× 10−3/5.7× 10−4 LHC [64]/τ decays [64]
[εudT ]µe - 3.6 × 10−7 µ→ e conversion
[εudT ]µµ -
[εudT ]µτ - O(10−4) LHC top decays [64, 73]
[εudT ]τe O(10−1) τ decays 1.1× 10−3/5.7× 10−4 LHC [64]/τ decays [64]
[εudT ]τµ O(10−1) τ decays 5.2× 10−3(∗) LHC [65]
[εudT ]ττ 1.3× 10−2 τ -decays [65] 5.2× 10−3(∗) LHC [65]

[εcsT ]ee 0.62 ΓD→Kµν/ΓD→Keν 8.8× 10−3 LHC [68]
[εcsT ]eµ 0.61 ΓD→Kµν/ΓD→Keν 8.8× 10−3 LHC [68]
[εcsT ]eτ 0.61 ΓD→Kµν/ΓD→Keν 8.8× 10−3 / 1.3× 10−4 LHC [68]/τ decays [64]
[εcsT ]µe 0.76 ΓD→Kµν/ΓD→Keν 1.2× 10−2 LHC [68]
[εcsT ]µµ 0.21 ΓD→Kµν/ΓD→Keν 1.2× 10−2 LHC [68]
[εcsT ]µτ 0.76 ΓD→Kµν/ΓD→Keν 1.2× 10−2 LHC [68]
[εcsT ]τe - 1.1× 10−2 / 1.3× 10−4 LHC [64]/ τ decay [64]
[εcsT ]τµ - 1.6× 10−2 LHC [68]
[εcsT ]ττ - 1.6× 10−2 LHC [68]

Table 4. Summary of 90% CL bounds on the absolute value of scalar and tensor WEFT Wilson
coefficients. The results in the left column are independent of the underlying high-energy theory,
whereas the right column shows bounds derived under the assumption that SMEFT is the underlying
theory at energies above the electroweak scale. Empty cells in the right column indicate operators
for which we are unaware of a SMEFT bound in the literature, or for which the SMEFT bound is
significantly weaker than the WEFT constraint. Bounds shown in bold face have been calculated
in this work. Bounds marked with (∗) are given at the 95% rather than 90% CL.

We can classify the processes sensitive to the [εudX ]αβ coefficients in several groups:

• β-decays are sensitive to the ee, eµ and eτ elements of the [εudX ]αβ matrices. We
follow the analysis of ref. [72] modified so as to include the effects from lepton-flavor
off-diagonal Wilson coefficients. We find that the [εudT ]eµ and [εudT ]eτ are bound to be
smaller than 3× 10−2, while the constraint on the ee coefficient is about an order of
magnitude stronger.

• Leptonic pion decays (π → eνµ,τ , µνe,τ ) are sensitive to the eµ, eτ , µe and µτ coef-
ficients of the axial and pseudoscalar interactions, i.e. εudR and εudP . The pseudoscalar
contribution enjoys large chiral enhancement, see section 2.1, which translates into
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strong bounds. Using the ratio Γ(π → eν)/Γ(π → µν) [54, 74] and switching on one
operator at a time one obtains bounds at O(10−6) and O(10−3) for lepton-flavor off-
diagonal couplings to electrons and muons, respectively [7], and at the 10−7 and 10−4

level for the diagonal ee and µµ couplings, respectively [71]. Note that, if couplings to
both electrons and muons were present, and if the corresponding Wilson coefficients
scale with the charged lepton masses, the two contributions would cancel in the ratio
Γ(π → eν)/Γ(π → µν), see e.g. [75]. In this case, slightly weaker bounds can still be
obtained from the individual decay widths using the decay constants calculated on
the lattice [53, 71]. Even these constraints can be relaxed if one allows for fine-tuned
cancellations between diagonal and off-diagonal terms [75]. Indirectly these processes
also probe scalar and tensor couplings as these mix with the pseudoscalar couplings
through loops [7, 76].

• Hadronic τ decays are sensitive to the τe, τµ, and ττ elements of the εudX matri-
ces, with any Lorentz structure. Lepton-flavor diagonal coefficients were studied in
ref. [65], leading to constraints in the 10−2–10−3 range. Since decay rates are sen-
sitive to the off-diagonal Wilson coefficients only at quadratic order, the bounds on
these coefficients are expected to be weaker, in the 10−1–10−2 range. We derived such
bounds for the pseudoscalar [εudP ]τe,τµ coefficients from τ → πν decays. Deriving pre-
cise bounds for the scalar and tensor coefficients would require a nontrivial dedicated
analysis, therefore we only give an order-of-magnitude estimate in table 4.

Similar to the bounds on ud couplings extracted from the rates of processes involving pions
and neutrons, one can also derive bounds on the us coefficients by replacing pions and
neutrons by kaons and hyperons. For instance, bounds at the level of 10−5 can be obtained
for the pseudoscalar coefficients [εusP ]eµ,eτ from the ratio of K → µν and K → eν decays.
Strong bounds on the us coefficients can be obtained as well from semileptonic kaon de-
cays. Typical analyses of strange decays have focused on lepton-flavor diagonal coefficients,
e.g. [71], which interfere with the SM contribution. Bounds on [εusS ]ee can be derived based
on the effect of these couplings on the kinematics of K → πeν decays parameterized in
terms of the Dalitz plot [71]. Since the dependence on the Wilson coefficients is mainly
quadratic, we estimate similar O(10−2) bounds on the eµ and eτ couplings. Comparable
bounds can also be expected on µe and µτ coefficients using K → πµν data, although such
an analysis has never been carried out as far as we know. Finally, [εusS ]µµ was constrained
in Ref. [71] using K → πµν data and lattice input on the scalar form factor.

Limits on the cs coefficients can be obtained from (semi)leptonic D meson decays, see
e.g. ref. [77] for a recent such analysis. We derive these limits by comparing the theoret-
ically predicted event rates with the new physics corrections discussed in section 2 to the
experimentally observed ones. The latter are taken from the 2020 edition of the Particle
Data Group review, ref. [54], while for theoretical input such as form factors from the lat-
tice, we rely on the FLAG 2019 Review [53]. Note that the tauonic coefficients [εcsT ]τα are
unconstrained because (i) they do not contribute to Ds → τν and (ii) the semileptonic
decay D → Kτν is kinematically forbidden.
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5.3 Collider bounds

If the SMEFT is a valid theory at LHC scales, then WEFT coefficients can be written as a
linear combination of SMEFT coefficients (“matching") [49, 50]. We use tree-level matching
to translate collider bounds on SMEFT operators into constraints on WEFT operators (see
ref. [78] for loop corrections). For the running and mixing effects between the operators we
follow ref. [76]. Besides requiring the validity of these approximations, we also assume that
contributions from higher-dimensional SMEFT operators (dim > 6) are negligible. This
is not a trivial assumption because LHC bounds are often dominated by processes that
depend quadratically on the dimension-6 coefficients.

For (pseudo-)scalar and tensor operators (X = P, S, T ), which flip chirality, interference
with chirality-conserving SM processes is effectively zero at high energies. As a result,
collider observables are only quadratically sensitive to εP,S,T , and thus the bounds that have
been obtained on lepton flavor-diagonal operators [εjkP,S,T ]αα should actually be interpreted
as bounds on the incoherent sum over all three neutrino flavors,

∑
β[εjkP,S,T ]αβ . This allows us

to write the bounds obtained from pp→ e+MET (ATLAS, 13 TeV, 36 fb−1 [79]) in ref. [80]
as [εudX ]eα < 2× 10−3 for α = e, µ, τ and X = S, P, T . The same dataset [79] can be used to
search for operators where the down quark is replaced by a strange quark, although with
less sensitivity due to PDF suppression. Bounds on couplings involving muons are obtained
in the same way as those on couplings involving electrons, while constraints on couplings
to τ leptons are slightly weaker [65, 71, 81]. The bounds on the [εudX ]τα (X = S, P, T ) based
on pp → τ + MET (ATLAS, 13TeV, 36 fb−1 [66]) were evaluated in [65] and found to be
O(10−3).

Here we perform a similar analysis to ref. [65] in order to put upper bounds on [εusX ]τα
(X = S, P ). We simulate the new physics signal (τ + MET) in MadGraph 5 v 2.9.2 [82]
with the SMEFTsim plugin [83, 84] for the hard process, Pythia v 8.2 [85] for the showering
and hadronization, and Delphes v 3.4.2 [86] as a simple detector simulation. In Delphes,
we use the default implementation of the ATLAS detector, but we set the tau tagging
efficiency to one in order to prevent Delphes from discarding events. Instead, we later
apply weight factors corresponding to the tau tagging efficiencies reported in ref. [66]. That
way, we make optimal use of the generated Monte Carlo statistics (10 000 events for each of
the considered SMEFT couplings [c`edQ]3321, [c

(1)
`eQu]3321, [c

(3)
`eQu]3321) and avoid discarding

events. Following ref. [66], we take the tau tagging efficiency to be 60% at transverse
momentum pT,τ < 100 GeV, 30% at pT,τ > 2 TeV, and we interpolate linearly in between.
In a similar way, we also apply trigger efficiencies, which are 98% at missing transverse
momentum /pT > 250 GeV and 80% at /pT = 150 GeV; we once again use linear interpolation
in between. We apply the following cuts: there must be at least one τ lepton in the
event, the missing transverse momentum must by larger than 150 GeV, the leading τ must
satisfy pT,τ > 50 GeV and |ητ | < 2.4 (τs in the pseudorapidity window 1.37 < |ητ | < 1.52

are excluded, though), the transverse momentum ratio pT,τ//pT must be between 0.7 and
1.3, and the azimuthal angle between the τ and the missing momentum vector must be
∆φ(τ, /pT ) > 2.4. We have verified that our simulation reproduces the SM transverse mass
distribution shown in fig. 1 of ref. [66], especially its high-mT tail, very well when all new
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physics effects are switched off. We can therefore confidently use it to set limits on the
aforementioned SMEFT operators. We do so for one operator at a time by determining the
value of its Wilson coefficient at which the predicted signal cross-section matches the 95%
confidence level bound shown in fig. 2 of ref. [66]. We do this for different mT thresholds,
and we pick the one that gives the optimal limit. We find that upper bounds on the Wilson
coefficients are O(few × 10−3). Once again, we perform the matching between SMEFT
and WEFT, see for instance ref. [7]. We finally run the Wilson coefficients down to the
2 GeV scale using the relations given in ref. [76]. For WEFT operators that can originate
from more than one SMEFT operator we use the limit obtained when switching on the most
weakly constrained SMEFT operator only. Our final result – a limit of [εusS,P ]τα < 5.8× 10−3

– is quoted in tables 2 and 4.
For operators with couplings to charm and strange quarks, finally, we adopt the LHC

bounds from ref. [68].

5.4 Charged-lepton flavor violation

Assuming SMEFT is the UV-completion of WEFT, the same dimension-6 operators that
generate lepton-flavor off-diagonal εjkX coefficients in the low-energy (WEFT) limit also gen-
erate neutral current interactions between quarks and two charged leptons of different flavor.
Such charged-lepton-flavor violating (CLFV) interactions are strongly constrained because
they generate processes that are forbidden in the SM, such as µ → eγ, τ → µγ, or µ → e

conversion on nuclei. Here, we focus on tree-level effects of this type. Following the discus-
sion in ref. [87], the experimental bounds on µ→ e conversion on gold nuclei [88] constrain
the SMEFTWilson coefficients [c

(1)
lequ]eµ11 and [cledq]eµ11 to be smaller than O((100 TeV)−2),

assuming only one SMEFT operator present at a time. Also the tensor operator [c
(3)
lequ]eµ11

can be constrained thanks to its renormalization group mixing with [c
(1)
lequ]eµ11. The result-

ing limit is about an order of magnitude weaker than the ones on [c
(1)
lequ]eµ11 and [cledq]eµ11.

In our calculation, we include RGE running according to ref. [89], and we use the wave
function overlap integrals from ref. [90]. As the SMEFT operators [c

(1)
lequ]eµ11, [cledq]eµ11,

and [c
(3)
lequ]eµ11 contribute to charged current interactions as well, the strong limits that

µ → e conversion imposes on them translate into equally strong bounds on their WEFT
counterparts. In particular, we find [εudS,P ]µe . 2× 10−8 and [εudT ]µe . 4× 10−7. The same
bounds hold for [εudS,P ]eµ and [εudT ]eµ, while slightly weaker bounds are found for operators
involving the strange quark: [εusS,P ]µe,eµ . 6× 10−7 and [εusT ]eµ,µe . 7× 10−6.

Constraints on τ → e transitions were recently discussed in ref. [64], who found O(10−4)

constraints on the tensor and pseudoscalar coefficients [εudT,P ]τe,eτ .
We stress again that both collider and CLFV bounds do not hold when SMEFT is not

a valid effective theory above the electroweak scale, for instance because new particles exist
at or below the electroweak scale.
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6 Discussions and Conclusions

In summary, we have highlighted the significant potential of the FASERν detector at CERN
to constrain new physics affecting neutrino interactions with matter. Working in Weak
Effective Field Theory (the most general effective theory at µ ∼ few GeV, assuming the ab-
sence of non-SM particles at this scale), we have identified the charged-current dimension-6
operators that modify the observable neutrino rates in FASERν. The effects of the corre-
sponding Wilson coefficients [εjkX ]αβ are encapsulated in the modified neutrino oscillation
“probability” P̃αβ . In this object, the Wilson coefficients are weighted by so-called produc-
tion and detection coefficients pS,jkXY,α and djkXY,α, which describe how neutrino production
and detection rates differ from their counterparts in the SM. We evaluated the production
and detection coefficients for the dimension-6 operators with all possible Lorentz structures
X,Y = L,R, S, P, T . This amounts to a comprehensive characterization of heavy new
physics in FASERν at the leading order in the relevant EFT.

We have found that neutrino production in fully leptonic meson decays, which accounts
for most of FASERν’s total neutrino flux, enjoys a particularly strong enhancement if there
are new pseudoscalar interactions. The reason is that such interactions do not suffer from
chiral suppression, unlike the SM V –A interactions. Consequently, the Wilson coefficients
of some pseudoscalar operators can be constrained at the per mille level ([εjkP ]αβ . 10−3),
corresponding to sensitivity to new physics scales up to ∼ 10 TeV. We also find good
sensitivity to some operators that lead to an anomalous ντ flux, or to the creation of τ
leptons in charged-current interactions of νe and νµ. The reason for this is the very low ντ
background in the Standard Model. Most other interactions will be constrained down to
[εjkX ]αβ ∼ 0.01–0.1, corresponding new physics at the TeV scale.

Compared to existing limits from other experiments, FASERν will, for a number of
operators, reach similar sensitivities, showing that LHC neutrinos offer an interesting new
way of probing physics beyond the Standard Model. Unlike other probes (meson decays,
ATLAS and CMS analyses, etc.) a collider neutrino experiment like FASERν has the unique
capability to identify the neutrino flavor. This is crucial complementary information in case
excesses are found elsewhere in the future. Moreover, it allows to lift parameter degeneracies
that may affect the interpretation of other measurements. One can, for instance, imagine
a situation where different new physics effects with different signs conspire to leave a given
meson or τ decay branching ratio unchanged compared to the SM, but change the flavor
of the emitted neutrinos. Only a neutrino detector like FASERν would be able to uncover
such a conspiracy.

Our main results – the FASERν sensitivity estimates and their comparison to other
constraints – are summarized in figs. 6 to 9.

We conclude that even a relatively cheap experiment like FASERν can make important
contributions to neutrino physics, indicating that neutrinos produced in LHC collisions offer
interesting untapped potential for discovery. Exploiting this potential with FASERν, in the
recently approved SND@LHC detector [9], and in other future projects will give a whole
new dimension to the LHC physics program and thus benefit both the collider community
and the neutrino community.

– 32 –



Acknowledgments

It is our great pleasure to thank Felix Kling for many useful discussions on the FASER
experiment, for providing the neutrino fluxes in machine-readable form, and for invaluable
comments on the manuscript. Moreover, we are grateful to Sacha Davidson for valuable
advice on the calculation of µ → e conversion rates in nuclei. Two babies were born
during the completion of this project, and we thank them for their understanding. AF has
received funding from the Agence Nationale de la Recherche (ANR) under grant ANR-19-
CE31-0012 (project MORA) and from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-
HIDDeN. MGA is supported by the Generalitat Valenciana (Spain) through the plan GenT
program (CIDEGENT/2018/014). JK’s work has been partially supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 637506, “νDirections”). YS is supported by the United
States-Israel Binational Science Foundation (BSF) (NSF-BSF program grant No. 2018683),
by the Israel Science Foundation (grant No. 482/20) and by the Azrieli foundation. YS
is Taub fellow (supported by the Taub Family Foundation). ZT is supported by the U.S.
Department of Energy under the award number DE-SC0020250.

A Production coefficients in kaon decay

In this appendix we provide details on the derivation of the production coefficients for kaon
decays in section 2.1.2.

A.1 Amplitudes

We begin by writing down the amplitudes for the leptonicK± → `+α ν and semileptonicK →
π−`+α ν kaon decays mediated by the effective interactions in the Lagrangian of eq. (2.1).

The case of leptonic decays is completely analogous to the pion decay discussed in
section 2.1.1. For the summed amplitude squared we can thus borrow eq. (2.13) and replace
π → K, d→ s: ∑

|AK,usL,α |
2 =

V 2
usf

2
K

v4
m2
`α

(
m2
K −m2

`α

)
,∑

AK,usL,α ĀK,usP,α = −
V 2
usf

2
K

v4
m`α

(
m2
K −m2

`α

) m2
K

mu +ms
,∑

|AK,usP,α |
2 =

V 2
usf

2
K

v4

(
m2
K −m2

`α

) m4
K

(mu +ms)2
. (A.1)

For the semileptonic decay the amplitude takes the form in eq. (2.2) with the production
amplitudes given by

AK,usL,α = AK,usR,α = −Vus
v2

(ūνγµPLv`α) 〈π−| s̄γµu |K0〉 , (A.2)

AK,usS,α = −Vus
v2

(ūνPRv`α) 〈π−| s̄u |K0〉 , (A.3)
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AK,usT,α = −Vus
2v2

(ūνσµνPRv`α) 〈π−| s̄σµνu |K0〉 , (A.4)

AK,usP,α = 0 , (A.5)

where v`α and ūν are the spinor wave functions of the outgoing charged lepton and neu-
trino. In the tensor amplitude we have replaced 〈π−| s̄σµνPRu |K0〉 → 〈π−| s̄σµνu |K0〉
using the Fierz identity (ūσµνPRv)(s̄σµνPLu) = 0. Moreover, we have used the fact that
〈π−| s̄γµγ5u |K0〉 = 〈π−| s̄γ5u |K0〉 = 0 due to parity conservation in QCD. For the non-zero
hadronic matrix elements, we adopt the parametrization from [91]:

〈π−|s̄γµu|K0〉 = Pµf+(q2) + qµf−(q2) , (A.6)

〈π−|s̄u|K0〉 = −
m2
K −m2

π

ms −mu
f0(q2) , (A.7)

〈π−|s̄σµνu|K0〉 = i
pµKp

ν
π − p

µ
πpνK

mK
BT (q2) , (A.8)

where P = pπ + pK is the sum of the pion and kaon 4-momenta, q = pK − pπ = pν + p`
is their difference. Using equations of motion one can derive the following relation between
the three form factors f+, f−, and f0:

f−(q2) =
m2
K −m2

π

q2

(
f0(q2)− f+(q2)

)
, (A.9)

from which it also follows that f0(0) = f+(0). For the independent form factors f+(q2),
f0(q2) we adopt the FlaviaNet dispersive parameterization [92]:

f+(q2) = f+(0) + Λ+
q2

m2
π

+O(q4) ,

f0(q2) = f+(0) +
(

logC −G(0)
) m2

π

m2
K −m2

π

q2

m2
π

+O(q4) , (A.10)

where G(0) = 0.0398(44) is calculated theoretically, and Λ+ = 0.02422(116) as well as
logC = 0.1998(138) are obtained on the lattice [93]. The Nf = 2 + 1 + 1 value of f+(0)

according to FLAG’19 is f+(0) = 0.9706(27) [53]. For the tensor form factor we use the
parameterization

BT (q2) ≈ BT (0)
(
1− sKπT q2

)
, (A.11)

with BT (0)/f+(0) = 0.68(3) and sKπT = 1.10(14) GeV−2 [94].
We plug the hadronic matrix elements from eqs. (A.6) to (A.8) into eqs. (A.2) to (A.4)

and simplify the result with some spinor algebra. InAK,usL,α , we use ūν/qPLv`α = −m`α(ūνPRv`α),
and ūν /PPLv`α = 2(ūν/pKPLv`α)+m`α(ūνPRv`α). Similarly, the tensor matrix elementAK,usL,α

can be rewritten using pµKp
ν
π(ūνσµνPRv`α) = i(pKp`−pKpν)(ūνPRv`α)+ im`α(ūν/pKPLv`α).

This leads to

AK,usL,α = AK,usR,α = −Vus
v2

{
2(ūν/pKPLv`α)f+(q2)
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+m`α(ūνPRv`α)

[
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]}
, (A.12)

AK,usS,α =
Vus
v2

(ūνPRv`α)
m2
K −m2

π

ms −mu
f0(q2) , (A.13)

AK,usT,α =
Vus
v2

[
(pKp` − pKpν)(ūνPRv`α) +m`α(ūν/pKPLv`α)

]BT (q2)

mK
. (A.14)

Recall that these are amplitudes for K → π−`+α ν. For the conjugate process K̄ → π+`−α ν̄,
proceeding along the same lines we obtain

AK̄,usL,α = AK̄,usR,α =
Vus
v2

{
2(ū`α/pKPLvν)f+(q2)

−m`α(ū`αPLvν)

[
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]}
, (A.15)

AK̄,usS,α =
Vus
v2

(ū`αPLvν)
m2
K −m2

π

ms −mu
f0(q2) , (A.16)

AK̄,usT,α =
Vus
v2

[
(pKpν − pKp`)(ū`αPLvν)−m`α(ū`α/pKPLvν)

]BT (q2)

mK
. (A.17)

To obtain the amplitudes K+ → π0`+α ν (K− → π0`−α ν̄) one simply multiplies the ones in
eq. (A.12) (eq. (A.15)) by the isospin rotation factor ηK± = 1/

√
2. The amplitudes for

KS,L → π−`+α ν can be related to eqs. (A.12) and (A.15) using |K0
S〉 = p|K0〉 − q|K̄0〉,

|K0
L〉 = q|K0〉+ p|K̄0〉, where |p|2 = |q2| = 1/2 up to small CP-violating effects.
We next need to evaluate the spin-summed squared production amplitudes, for which

we need in particular the spin sums∑
spins

|ūν/pKPLv`α |
2 =

∑
spins

|ū`α/pKPLvν |
2 = 4(pK · p`)(pK · pν)− 2m2

K(p` · pν) ,

∑
spins

|ūνPRv`α |2 =
∑
spins

|ū`αPLvν |2 = 2p` · pν ,∑
spins

(ūν/pKPLv`α)(ūνPRv`α) = −
∑
spins

(ūν/pKPLv`α)(ū`αPLvν) = −2m`α(pK · pν) .

(A.18)

The spin-summed squared amplitudes are then∑
|AKi,usL,α |

2 =
2η2
i V

2
us

v4

{
4
[
2(pKp`)(pKpν)−m2

K(p`pν)
]
f+(q2)2

− 4m2
`α(pKpν)f+(q2)

[
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]
+m2

`α(p`pν)

[
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]2}
∑

ĀKi,usL,α AKi,usS,α = m`α

2η2
i V

2
us

v4

m2
K −m2

π

ms −mu
f0(q2)

{
2(pKpν)f+(q2)

− (p`pν)

[
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]}
,
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∑
ĀKi,usL,α AKi,usT,α = m`α

2η2
i V

2
us

v4

BT (q2)

mK

{
− 2
[
(pK · p`)(pK · pν) + (pK · pν)2 −m2

K(p` · pν)
]
f+(q2)

+
[
(p`pν)(pKpν − pKp`) +m2

`α(pKpν)
][
f+(q2) +

(
m2
K −m2

π

)f+(q2)− f0(q2)

q2

]}
,

∑
|AKi,usS,α |

2 =
2η2
i V

2
us

v4
(p`pν)

[
m2
K −m2

π

ms −mu
f0(q2)

]2

,

∑
ĀKi,usS,α AKi,usT,α =

2η2
i V

2
us

v4

m2
K −m2

π

ms −mu
f0(q2)

BT (q2)

mK

{
(p`pν)(pKp` − pKpν)−m2

`α(pKpν)

}
,

∑
|AKi,usT,α |

2 =
2η2
i V

2
us

v4

BT (q2)2

m2
K

{
(p`pν)[pKpν − pKp`]2 +m2

`α

[
2(pK · pν)2 −m2

K(p` · pν)
]}

,

(A.19)

where η2
i = 1/2 for K± decays, η2

i = |p2| ≈ 1/2 for KS decays, and η2
i = |q2| ≈ 1/2 for KL

decays.

A.2 Phase Space

In order to calculate the production coefficients defined in eq. (2.5), one needs to decompose
the phase space dΠP of the final particles in the production process into dΠP ′dEν , where
Eν is the neutrino energy in the lab frame where the target is at rest. In this subsection we
discuss this decomposition for the leptonic (2-body) K+ → `+α ν and semi-leptonic (3-body)
K → π−`+ν decays.

For the 2-body phase space we start from the expression

dΠP =
1

8π2Eν
δ(m2

K−m2
`α−2pK ·kν)d3kν =

Eν
8π2

δ(m2
K−m2

`α−2EνEK+2EνpK cos θ)dEν d cos θ dφ ,

(A.20)
where EK and Eν are the kaon and neutrino energies, and θ and φ are the polar and
azimuthal angle parametrizing the direction of the neutrino momentum with respect to the
kaon momentum. This expression is valid in any reference frame. For example, in the kaon
rest frame where EK = mK , pK = 0, Eν ≡ Êν , integrating over Êν leads to the familiar
expression dΠP = Êν

16π2mK
dΩ with Êν = (m2

K −m2
`α

)/2. For the present purpose we need
to take a different road so as to decompose dΠP = dΠP ′dEν . In the following we assume
all kinematic variables are in the lab frame. Using the delta function to integrate over cos θ

we get

dΠP =
1

16π2pK
dEνdφ. (A.21)

For unpolarized decays (thus in all practical situations in neutrino experiments) the spin-
summed amplitudes squared are numbers depending only on particles’ masses and indepen-
dent of kinematics. Thus we can integrate over φ to simplify

dΠP =
1

8πpK
dEν . (A.22)
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In other words dΠP ′ = 1/(8πpK) The integration limits for the neutrino energies are Eν ∈
[Emin

ν , Emax
ν ] with

Emin
ν =

m2
K −m2

`α

2(EK + pK)
, Emax

ν =
m2
K −m2

`α

2(EK − pK)
. (A.23)

For the 3-body phase space it is convenient to start from the parametrization

dΠP =
1

1024π5m2
K

dw2dq2dcos θ̂ν dφ̂ν dφ̂π . (A.24)

Here, w2 = (pK − pν)2, q2 = (pK − pπ)2, θ̂ν and φ̂ν are the polar and azimuthal angles
of the neutrino momentum in the kaon rest frame, and φ̃π is the azimuthal angle of the
pion momentum in the rest frame of the π–` system. In these variables, the phase space
integration limits are φ̃π ∈ [0, 2π], φ̂ν ∈ [0, 2π], cos θ̂ν ∈ [−1, 1], w2 ∈ [(mπ + m`α)2,m2

K ],
and

q2
min =

m2
K

2

[
w2 +m2

`α
−m2

π

w2
+
m2
`α

+m2
π − w2

m2
K

−
(

1− w2

m2
K

)
βq

]
,

q2
max =

m2
K

2

[
w2 +m2

`α
−m2

π

w2
+
m2
`α

+m2
π − w2

m2
K

+

(
1− w2

m2
K

)
βq

]
,

βq ≡

√(
1−

m2
π +m2

`α

w2

)2

−
4m2

πm
2
`α

w4
. (A.25)

For unpolarized decays, the squared matrix element summed over spins depends only on
w2 and q2. If we were interested in the decay width integrated over the neutrino energy
we could integrate eq. (A.24) over all the angular variables and recover the standard Dalitz
form of the 3-body phase space, dΠP = dw2dq2/(128π3m2

K). For the present purpose,
however, we need to take a different route so as to factor out dEν from eq. (A.24). Indeed,
the neutrino energy in the lab frame is a function of w2 and cos θ̂ν :

Eν =
m2
K − w2

2m2
K

(
EK + pK cos θ̂ν

)
, (A.26)

where EK and pK are the energy and momentum of the kaon in the lab frame. It follows
that

dw2 dcos θ̂ν =
2m2

K

pK(m2
K − w2)

dw2 dEν . (A.27)

Plugging the above into eq. (A.24) and integrating over the azimuthal angles we obtain

dΠP =
1

128π3pK(m2
K − w2)

dEν dw
2 dq2 . (A.28)

The integration limits for the neutrino energy are Eν ∈
m2
K−w

2

2m2
K

[
EK − pK , EK + pK

]
.

Furthermore, it is convenient to trade w2 for cos θ, where θ is the angle between the
neutrino and kaon directions in the lab frame. The reason is that neutrino detectors rarely
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cover the entire solid angle, and in the new variables it is easier to impose a cut on the
neutrino emission angle. The variables w2 and cos θ are related by

w2 = m2
K + 2Eν(pK cos θ − EK), (A.29)

from which it follows that dEν dw2 = 2EνpK dEν d cos θ. Plugging that into eq. (A.28) we
get

dΠP =
1

128π3(EK − pK cos θ)
dEν d cos θ dq2 . (A.30)

The integration limits for θ and Eν are cos θ ∈ [cos θmin, 1], Eν ∈ [0, Emax
ν ], where

cos θmin = max

[
− 1,

2EKEν −m2
K + (mπ +m`α)2

2pKEν

]
,

Emax
ν =

m2
K − (mπ +m`α)2

2m2
K

(
EK + pK). (A.31)

Finally, in experiments such as FASERν the kaon energies in the lab frame are not
monochromatic, and observables have to be integrated over EK . In this case, it is convenient
to swap the integration order, so that the EK integration is performed for a fixed Eν . Then
the kaon energy is in the range EK ∈ [Emin

K (Eν), Emax
K ], where

Emin
K (Eν) =

m2
K

m2
K − (mπ +m`)2

Eν , (A.32)

and Emax
K is set by the properties of the kaon beam. The neutrino energies can be subse-

quently integrated over the range Eν ∈ [0, Emax
ν ] where Emax

ν =
m2
K−(mπ+m`α )2

m2
K

Emax
K .
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